Tag Archives: chemical

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 1

By Carl Silverberg
4 Comments

Core values often get wrapped into buzzwords such as sustainability, locally sourced and organic. In the first part of a series of four articles exploring greenhouses and the environment, we’re going to take a look at indoor vs. outdoor farming in terms of resource management.

Full disclosure; I love the fact that I can eat fresh blueberries in February when my bushes outside are just sticks. Is there a better way to do it than trucking the berries from the farm to a distribution plant to the airport, where they’re flown from the airport to a distribution center, to the grocery store and finally to my kitchen table? That’s a lot of trucking and a lot of energy being wasted for my $3.99 pint of blueberries.The largest generation in the history of the country is demanding more locally grown, sustainable and organic food. 

If those same blueberries were grown at a local greenhouse then trucked from the greenhouse directly to the grocery store, that would save diesel fuel and a lot of carbon emissions. People who can only afford to live near a highway, a port or an airport don’t need to ask a pulmonary specialist why their family has a higher rate of COPD than a family who lives on a cul-de-sac in the suburbs.

Fact: 55% of vegetables in the U.S. are grown under cover. The same energy saving principles apply to indoor cannabis and the reasons are consumer driven and producer driven. The largest generation in the history of the country is demanding more locally grown, sustainable and organic food. They want it for themselves and they want it for their kids.

The rapid proliferation of greenhouses over the past ten years is no coincidence. Millennials are forcing changes: organic fruit and vegetables now account for almost 15% of the produce market. A CNN poll last month revealed that 8 of 10 of registered Democrats listed climate change as a “very important” priority for presidential candidates. The issue is not party I.D.; the issue is that a large chunk of Americans are saying they’re worried about the direct and indirect impacts of climate change, such as increased flooding and wildfires.

So how does the consumer side tie into the cannabis industry? Consumers like doing business with companies who share their values. The hard part is balancing consumer values with investor values, which is why many indoor growers are turning to cultivation management platforms to help them satisfy both constituencies. They get the efficiency and they get to show their customers that they are good stewards of their environment. The goal is to catch things before it’s too late to save the plants. If you do that, you save the labor it costs to fix the problem, the labor and the expense of throwing away plants and you reduce pesticide and chemical usage. When that happens, your greenhouse makes more money and shows your customers you care about their values.

The indoor change is happening rapidly because people realize that technology is driving increased revenue while core consumer values are demanding less water waste, fewer pesticides, herbicides and fertilizers.Let’s add some more facts to the indoor-outdoor argument. According to an NCBI study of lettuce growing, “hydroponic lettuce production had an estimated water demand of 20 liters/kg, while conventional lettuce production had an estimated water demand of 250 liters/kg.”  Even if the ratio is only 10:1, that’s a huge impact on a precious resource.

Looking at the pesticide issue, people often forget about the direct impact on people who farm. “Rates in the agricultural industry are the highest of any industrial sector and pesticide-related skin conditions represent between 15 and 25% of pesticide illness reports,” a 2016 article in The Journal of Cogent Medicine states. Given the recent reports about the chemicals in Roundup, do we even need to continue the conversation and talk about the effects of fertilizer?

I’ll finish up with a quote from a former grower. “The estimates I saw were in the range of between 25%-40% of produce being lost with outdoor farming while most greenhouse growers operate with a 10% loss ratio.”

The indoor change is happening rapidly because people realize that technology is driving increased revenue while core consumer values are demanding less water waste, fewer pesticides, herbicides and fertilizers. Lastly, most Americans simply have a moral aversion to seeing farms throw away food when so many other people are lined up at food banks.

Disposable Gloves: The Unregulated Cannabis Threat

By Lynda Ronaldson
No Comments

Today in the states where medical and recreational cannabis is legal, cannabis products purchased from licensed facilities are required to have undergone testing by accredited labs. The compliance testing verifies advertised potency levels and checks for microbial contamination, herbicides, pesticides, fungicides and the presence of mold and mildew, among other potential contaminants.

Until recently, little attention has been given to disposable gloves and their possible involvement in the contamination of the products they handle.  What factors should you consider when purchasing gloves?

Disposable Gloves Facts

Disposable gloves, like cannabis products, are not made of equal quality. There are several different types of disposable gloves on the market, and huge variations in glove quality and chemical compositions exist between and within each glove type.

Recent scientific studies have revealed how gloves produced in factories with poor manufacturing standards and raw material ingredients can contaminate the products they handle. High-level toxins in disposable gloves were found to affect lab results, toxins in gloves contaminated the food they touched, and pathogen contamination of unused disposable gloves has been proven. Should the cannabis industry take more interest in the disposable gloves they are using? With so much at stake if compliance test results are compromised, we think so!

Glove Procurement: Factors to Consider

What factors should you consider when purchasing gloves?

  1. Industrial grade gloves- There is no such thing as an industrial grade glove certification, although it does give an incorrect impression that gloves are strong and resilient. Industrial grade means they have not been subjected to inspection nor have passed any specific testing requirements.
  2. Food contact gloves are certified under FDA Title 21 CFR Part 177, which states the components of the glove comply with the FDA regulations and the gloves consist of “substances generally recognized as safe for use in food or food packaging.” Few controls exist for glove manufacturing relating to the reliability of raw materials and manufacturing processes, and costs can be reduced with the use of cheap, toxic materials.
  3. Medical grade gloves have to pass a series of technical tests in order to meet the safety requirements specified by the FDA. Gloves are tested for puncture and abrasion resistance, must meet tension and elongation tests and are also tested for chemical substance resistance. Manufacturers of these gloves must receive 510k certification. As this study shows, even medical gloves can contain high levels of toxic ingredients, affecting laboratory test results.
  4. The Acceptable Quality Level (AQL) refers to a quality standard for measuring pinhole defects- the lower the AQL, the less defects the gloves have. There are no AQL requirements for food grade or industrial grade gloves, meaning there are no guidelines for the number of failures per box. Medical grade gloves must have an AQL of 2.5 or less, meaning 2.5 failed gloves per 100 gloves is an acceptable level.
  5. For Californian cannabis companies, are your disposable gloves Prop. 65 compliant? Accelerator chemicals, such as 2-Mercaptobenzothiazole (MBT) found in some nitrile gloves, have recently been added to the Prop. 65 chemicals known to cause cancer.

How Gloves Can Contaminate Products

Physical, chemical and microbiological hazards have been identified in disposable glove supply chains. Gloves of any grade are not tested for cleanliness (microbial and bioburden levels), raw material toxicity and chemical composition, or pathogen contamination.

100% of glove factories supplying the United States are based in Southeast Asia. These factories are generally self­-regulated, with FDA compliance required for a rough outline of the ingredients of the gloves rather than the final product. Few controls are required for glove manufacturing relating to the reliability of raw materials, manufacturing processes and factory compliance or conditions. A clear opportunity exists for accidental or intentional contamination within the glove-making process, especially to reduce costs.

In order to safeguard their customers from product contamination, a selection of tests and certifications, some of which are unique within the glove industry, are being implemented by glove supplier Eagle Protect. These tests make sure Eagle’s gloves coming into the United States are made in clean, well run factories, free of any type of contamination and are consistent in material makeup to original food safe specifications. This glove Fingerprint testing program, consists of a number of proprietary risk reduction steps and targeted third-party testing methods, includes gas chromatography combined with mass spectroscopy (GC/MS); surface free energy determination; in vitro cytotoxicity analysis; and microbial viability-linked metagenomic analysis.

With a great deal of faith placed on a glove supplier’s ability to deliver disposable gloves sight unseen, we believe these tests are essential to further reduce risks or pathogen contamination associated with them, keeping your cannabis products safe.

Food processing and sanitation

Sanitation Starting Points: More Than Sweeping the Floors and Wiping Down the Table

By Ellice Ogle
No Comments
Food processing and sanitation

Sanitation is not just sweeping the floors and wiping down the table – sanitation has a wide-ranging function in a cannabis food manufacturing facility. For example, sanitation covers the employees (and unwanted pests), food-contact equipment (and non-food-contact equipment), trash disposal (including sewage), and more. Ultimately, sanitation systems maintain a clean environment to prevent foodborne illness from affecting human health. Fortunately, there are resources and tools to ease into establishing a robust sanitation program.

Overall, the main goal of sanitation is to produce safe food, to keep consumers healthy and safe from foodborne illness. With the cannabis industry growing and gaining legalization, cannabis reaches a larger, wider audience. This population includes consumers most vulnerable to foodborne illness such as people with immunocompromised systems, the elderly, the pregnant, or the young. These consumers, and all consumers, need and deserve safe cannabis products every experience.

FDAlogoTo produce safe food, food manufacturing facilities in the United States must at least follow the Food and Drug Administration (FDA)’s Code of Federal Regulations Title 21 Chapter I Subchapter B Part 117, current good manufacturing practice, hazard analysis, and risk-based preventive controls for human food. Although cannabis is currently not federally regulated, these regulations are still relevant for a cannabis food manufacturing facility since the same basic principles still apply. Also, these regulations are a good resource to simplify a comprehensive sanitation program into more manageable components, between sanitary operations and sanitary facilities. With more manageable components, the transition is smoother to then identify the appropriate tools that will achieve a thorough sanitation program.

Sanitary operations

1) General maintenance of the facilities: The buildings and fixtures of the food manufacturing facility cover a lot of ground – hiring a maintenance team will divide the responsibility, ensuring the entire facility can be maintained in a clean and sanitary condition. Furthermore, a team can build out a tool like a preventative maintenance program to restrict issues from ever becoming issues.

Figure 1: Dirty Cloth Towel in Dirty “Sanitizer” Solution
Dirty Cloth Towel in Dirty “Sanitizer” Solution (an example of what NOT to do)

2) Control of the chemicals used for cleaning and sanitizing: Not all chemicals are equal – select the appropriate cleaning and sanitizing chemicals from reputable suppliers. Obtain the right knowledge and training on proper use, storage, and proper protective equipment (PPE). This ensures the safe and effective application of the chemicals in minimizing the risk of foodborne illness.

3) Pest control: Understand the environment within the facility and outside the facility. This will aid in identifying the most common or likely pests, in order to focus the pest control efforts. Keep in mind that internal pest management programs can be just as successful as hiring external pest control services.

4) Procedures for sanitation of both food-contact and non-food-contact surfaces: Developing sanitation standard operating procedures (SSOPs) provides guidance to employees on appropriate cleaning and sanitizing practices, to balance effective and efficient operations. A master sanitation schedule can control the frequency of indicated sanitation procedures.

5) Storage and handling of cleaned portable equipment and utensils: Cross contamination in storage can be minimized with tools such as controlled traffic flow, signage, training, color coding, and more.

Sanitary facilities

6) Water supply, plumbing, and sewage disposal: Routine inspections of plumbing, floor drainage, and sewage systems prevent unintended water flow and damage.

7) Toilet facilities: Clearly defining standards for the toilet facilities and setting accountability to everyone who uses them will ensure that the toilet facilities are not a source of contamination for the food products.

Food processing and sanitation
PPE for all employees at every stage of processing is essential

8) Hand-washing facilities: Good manufacturing practices (GMPs) include proper hand washing and proper hand washing starts with suitable hand-washing facilities. For example, frequent checks on running water, hand soap, and single use towels ensure that all hands are clean and ready to produce safe food.

9) Trash disposal: While trash can be a source of cross contamination, trash can also attract and harbor pests. Scheduling regular trash disposal and controlling traffic flow of waste are two ways to minimize the risk of cross contamination from trash.

Bonus

Even after meeting these requirements, sanitation programs can be more sophisticated. An example is to institute an environmental monitoring program to verify and validate that the sanitation program is effective. Another example is in identifying and measuring key performance indicators (KPIs) within the sanitation program that can improve not just the sanitation processes, but the operations as a whole. Principally, sanitation is cleanliness on the most basic level, but waste management can encompass sanitation and grow into a larger discussion on sustainability. All in all, sanitation programs must reshape and evolve alongside the company growth.

Sanitation is interwoven throughout the food manufacturing process; sanitation is not a single task to be carried out by a sole individual. As such, it is beneficial to incorporate sanitation practices into cannabis food manufacturing processes from the beginning. Protect your brand from product rework or recalls and, most importantly, protect your consumers from foodborne illness, by practicing proper sanitation.

Spotlight on AOAC: New Leadership, New Initiatives In Cannabis & Food

By Aaron G. Biros
No Comments

AOAC INTERNATIONAL is an independent, third party, not-for-profit association and voluntary consensus standards developing organization. Founded in 1884, AOAC INTERNATIONAL was originally coined the Association of Official Agricultural Chemists. Later on, they changed their name to the Association of Official Analytical Chemists. Now that their members include microbiologists, food scientists as well as chemists, the organization officially changed its name to just AOAC INTERNATIONAL.

Much of AOAC’s work surrounds promoting food safety, food security and public health. Their work generally encompasses setting scientific standards for testing methodology, evaluating and adopting test methods and evaluating laboratory proficiency of test methods. The organization provides a forum for scientists to develop microbiological and chemical standards.

In December of 2018, they appointed Dr. Palmer Orlandi as deputy executive director and chief science officer. Dr. Orlandi has an extensive background at the U.S. Food and Drug Administration (FDA), serving the regulatory agency for more than 20 years. Most recently, he was the CSO and research director in the Office of Food and Veterinary Medicine at the FDA. He earned the rank of Rear Admiral and Assistant Surgeon General in 2017.

Dr. Palmer Orlandi is the new Deputy Executive Director and Chief Science Officer at AOAC.

Where It All Began With Cannabis

As recently as three years ago, AOAC began getting involved in the cannabis laboratory testing community, with a working group dedicated to developing standard method performance requirements for AOAC Official MethodsSM for cannabis testing. We sat down with Dr. Palmer Orlandi and a number of AOAC’s leaders to get an update on their progress working with cannabis testing as well as food security and food fraud.

According to Scott Coates, senior director of the AOAC Research Institute, they were approached three years ago to set up a working group for cannabis testing. “We created standards that we call the standard method performance requirements (SMPR®), which are detailed descriptions of what analytical methods should be able to do,” says Coates. “Using SMPRs, we issued a series of calls for methods and looked for methods that meet our standards. So far, we’ve completed four SMPRs- cannabinoids in plant material, cannabinoids in plant extracts, cannabinoids in chocolate (edibles), and one for pesticides in cannabis plant material.” AOAC doesn’t develop methods themselves, but they perform a comprehensive review of the methods and if they deem them acceptable, then the methods can be adopted and published in the AOAC compendium of methods, the Official Methods of Analysis of AOAC INTERNATIONAL.

Deborah McKenzie, senior director of Standards and Official Methods at AOAC

Deborah McKenzie, senior director of Standards and Official MethodsSM at AOAC, says the initial working group set the stage for really sinking their teeth into cannabis testing. “It started with methods for testing cannabinoids in plant dried material and plant extract,” says McKenzie. “That’s where our previous work has started to mold into the current effort we are launching.” McKenzie says they are looking forward to getting more involved with methods regarding chemical contaminants in cannabis, cannabinoids in various foods and consumables, as well as microbial organisms in cannabis. “We are pretty focused on testing labs having reliable and validated analytical solutions as our broad goal right now.”

Moving Forward, Expanding Their Programs

Coates says the work they’ve done over the past few years was more of a singular project, developed strictly for creating standards and to review methods. Now they are currently developing their Cannabis Analytical Science Program (CASP), which is expected to be an ongoing program. “We are looking to fully support the cannabis analytical community as best we can, which will potentially include working on reference materials, proficiency testing, education, training and ISO 17025 accreditation, all particularly as it applies to lab testing in the cannabis industry,” says Coates. “So, this CASP work is a much bigger and broader effort to cover more and to provide more support for labs doing the analysis of cannabis and its constituents, as well as hemp.”

According to Dr. Orlandi, they want this program to have a broad reach in the cannabis testing community. “As Scott pointed out, it’s not just strictly developing standards and methods,” says Dr. Orlandi. “It is going to be as all-encompassing as possible and will lead to training programs, a proficiency testing program and other areas.” Arlene Fox, senior director of AOAC’s Laboratory Proficiency Testing Program, says they are actively engaging in proficiency testing. “We are in the process of evaluating what is out there, what is possible and what’s needed as far as expanding proficiency testing for cannabis labs,” says Fox.

Regulatory Challenges & Obstacles

The obvious roadblock to much of AOAC’s work is that cannabis is still considered a controlled substance. “That creates some challenges for the work that we do in certain areas,” says Dr. Orlandi. “That is why this isn’t just a one-year project. We will work with these challenges and our stakeholders to address them.” AOAC had to put some limits on participation- for example, they had to decide that they cannot look for contributions or collaborations with producers and distributors, so long as cannabis is still a Schedule I controlled substance in the US.

Arlene Fox, senior director of AOAC’s Laboratory Proficiency Testing Program

Muddying the waters even further, the recent signing of the Farm Bill puts a clear distinction between most types of cannabis and industrial hemp. David Schmidt, executive director of AOAC realizes they need to be realistic with their stakeholders and in the eye of federal law.

While scientifically speaking, it’s pretty much the same plant just with slightly different chemical constituents, AOAC INTERNATIONAL has to draw a line in the sand somewhere. “As Palmer suggests, because of the Farm Bill being implemented and hemp being defined now as a legal substance from a controlled substance standpoint, industrial hemp has been given this exclusion,” says Schmidt. “So, we are trying to be realistic now, working with our stakeholders that work with hemp, trying to understand the reality of the federal law. We want to make clear that we can meet stakeholder needs and we want to distinguish hemp from cannabis to remain confident in the legality of it.” Schmidt says this is one of a number of topics they plan on addressing in detail at their upcoming 9thannual 2019 Midyear Meeting, held March 11-14 in Gaithersburg, Maryland.

Uniformity in Methodology: The Future of Cannabis Testing

Dr. Orlandi says his experience at the FDA has prepared him well for the work being done at AOAC. “The role that I served at the FDA prior to joining my colleagues here at AOAC was very similar: And that is to bring together stakeholders to accomplish or to solve a common problem.” Some of their stakeholders in the CASP program include BC Testing, Inc., the Association of Food and Drug Officials (AFDO), Bia Diagnostics, Bio-Rad, Industrial Laboratories, Materia Medica Labs, PerkinElmer, R-Biopharm AG, Supra R & D, TEQ Analytical Laboratories, Titan Analytical and Trilogy Analytical, among others.

David Schmidt, executive director of AOAC

“The underlying reason behind this effort is to create some level of harmonization for standards and methods,” says Dr. Orlandi. “They can be used in the near future to stay ahead of the curve for when regulatory agencies become involved. The idea is that these standards for analytical methods will already be established and as uniform as possible.”

When comparing cannabis to other industries in the US, Scott Coates mentions that most standards are signed off by the federal government. “When we started looking at pesticides in cannabis, it became really clear that we have a number of states doing things differently with different limits of quantification,” says Coates. “Each state, generally speaking, is setting their own standards. As Palmer was saying, one thing we are trying to do with this CASP program eventually will be to have some harmonization, instead of 30 different states having 30 different standards and methods.” So, on a much broader level, their goal for the CASP program is to develop a common set of standard methods, including hemp testing and even the Canadian market. “Hopefully this will be an international collaboration for standards for the methodology,” says Coates. They want to create a common set of standards, setting limits of quantification that will be accepted internationally, that will be accurate and repeatable and for the entire cannabis industry, not just state by state.

Food Authenticity & Fraud

One of the other activities that AOAC just launched recently is the food authenticity and fraud program. As the name implies, the goal is to start developing standards and methods and materials to look at economically adulterated foods, says Dr. Orlandi. That includes non-targeted analyses looking at matrices of food products that may be adulterated with an unknown target, as well as targeted analytes, identifying common adulterants in a variety of food products. “One example in the food industry is fraudulent olive oil,” says Dr. Orlandi. “Honey is another commodity that has experienced adulteration.” He says that in most cases these are economically motivated instances of fraud.

AOAC INTERNATIONAL is working in a large variety of other areas as well. All of these topics will be explored in much greater detail at their upcoming 9thannual 2019 Midyear Meeting, held March 11-14 in Gaithersburg, Maryland.

Deibel Cannabis Laboratories Launches Cannabis-Specific HACCP Program

By Dr. Laurie Post
No Comments

Manufacturers of cannabis products need a program tailored to the cannabis industry that helps assure the safety of cannabis products with respect to known hazards such as pesticides, residual solvents, microbial impurities, heavy metals and mycotoxins. Deibel Cannabis Laboratories has developed a course that that will teach those manufacturing cannabis products how to manage known product safety hazards using a Hazard Analysis and Critical Control Point (HACCP) system.

HACCP has a long history of use in the food industry based on preventing potential hazards from occurring rather than reacting to issues when they arise. This program was started in the US but is globally recognized, used by food companies around the world to help produce safe products for consumers. Deibel Cannabis Laboratories applies the same prevention based system of HACCP to the creation of safe and wholesome cannabis goods whether they be edible, medicinal or topical. They also explore ways cultivators can use HACCP principles in their operation.12

Deibel Labs was founded by Dr. Robert Deibel in the 1970’s. Dr. Deibel is one of the original pioneers of HACCP, expanding the program from its original three HACCP principles to the seven principles we recognize today. Dr. Deibel developed the first “HACCP Short Course,” teaching this prevention-based program to food industry leaders in the 1970s.

According to Charles Deibel, president of Deibel Labs, this is an important step for the cannabis space. “Deibel Labs is proud to continue in our historic role as leaders in HACCP training by providing the cannabis industry with a training course developed by Deibel Labs associates who are International HACCP Alliance accredited lead instructors with years of experience in crafting and implementing HACCP plans for the food industry.”

They are launching a pilot two-day Cannabis HACCP Class to select clients at the end of January in Santa Cruz, CA. The full Cannabis HACCP course schedule for 2019 is currently in development. Accreditation by the HACCP Alliance is expected by early January, assuring that a standardized and internationally recognized training curriculum is provided by accredited instructors.

The course is forward-thinking, anticipating that sometime in the near future cannabis manufacturers will be required to control and document the safe production, handling and preparation of products according to state or even federal regulatory standards. Participants will be able to develop their own model HACCP program in an interactive group learning environment.

Attendees will:

  • Understand how Prerequisite Programs provide the foundation on which HACCP programs are built including GMPs, Sanitation and Pest Control Programs
  • Be able to identify where and how product safety problems can occur using a Hazard Analysis that considers Biological, Chemical and Physical Hazards
  • Gain the skills, knowledge, and tools necessary to develop effective Critical Controls, formulate corrective actions, conduct program verification and validation activities
  • Learn how to document activities and maintain records

Stay tuned for more information on when the 2019 course schedule is announced and how to register.

Product Labeling Law: A Primer and a Warning for California Cannabis Executives

By Jonathan C. Sandler
No Comments

What do you get when you combine a Schedule 1 federally controlled substance with a plethora of food, beverage and cosmetic entrepreneurs marketing new products to inexperienced users and then place that combustible combination into California’s plaintiff-friendly legal environment?

A lot of rich plaintiffs’ attorneys.

California continues to be a favored plaintiffs’ lawyers’ venue for filing consumer-related lawsuits against food and cosmetic companies. These lawsuits result in tens of millions in settlements each year and hundreds of millions in judgments. Staying current on statutes and trends is critical to doing business in California and cannabis companies are no exception.

While the Food and Drug Administration (“FDA”) has provided very little guidance on how cannabis products should be labeled, a lack of specific regulations does not mean that there are no applicable labeling requirements for cannabis. This is particularly true in states like California that have a multitude of statutes designed to protect consumers from false or misleading advertising and labeling. Below includes a brief list to help guide companies’ labelling processes:

  1. Look to available guidance for the relevant industries. For example, food labeling of cannabis products still requires compliance with other nutritional labeling statutes. The same goes for supplements and cosmetics. The Fair Packaging and Label Act (“FPLA”) regulates labeling of all “consumer commodities” as to net contents, product identity, and manufacturer’s, packer’s or distributor’s name and location.
  2. Consider the intended use of the product as well as the directions. For example, is the product meant to be consumed all at once or should it be consumed over a period of time? Depending upon the product, this question can affect whether compliance with the FDA dietary supplements guidance is required or whether the Food Drug and Cosmetic Act applies.
  3. Consider your supply chains. This can be one of the most difficult aspects for cannabis companies that are looking to expand, but need more supply. However, keeping track of ingredients is a critical aspect to being able to defend against lawsuits. In the past, cannabis companies have been sued because they have expanded their suppliers without assuring consistency in the products and then combining inconsistent ingredients into one common product that is now mislabeled. While the Bureau of Cannabis Control testing requirements should help with some of the cannabis information, all ingredients need to be tracked and the final products tested.
  4. Cannabis companies must label their products with applicable state laws. For example, the California Safe Drinking Water and Toxic Enforcement Act of 1986, better known as Proposition 65 (“Prop. 65”)is being used by the plaintiffs’ bar as a basis to sue cannabis companies.
    • Prop. 65 is a statewide initiative that regulates companies that make or sell their products in California in two ways: (1) it requires companies whose products contain certain levels of chemicals to provide clear and reasonable warnings. Prop. 65 does not ban or restrict the sale of chemicals on the list or their inclusion in products, but it requires warnings if the listed chemicals are included; and (2) It prevents companies from discharging these chemicals into the state’s water supply.
    • All companies doing business in California and all products manufactured or sold in California are subject to Prop. 65 with three exceptions: (1) the company has fewer than 10 employees, (2) government agencies, or (3) the products contain less than a threshold amount of the chemicals.
    • Penalties for violations can be staggering. Prop. 65 is enforced both by the California Attorney General and private lawsuits on behalf of the California Attorney General. The potential penalties for violations of Prop. 65 include a fine of up to $2,500 per day. Additionally, one of the largest drivers of litigation is that the private enforcers (plaintiffs’ bar) can recover their attorneys’ fees. The total amount paid in settlements in 2017 was over $25 million and of the more than $18 million in judgments, $13 million was attributed to attorneys’ fees.
  5. The California Consumers Legal Remedies Act (“CLRA”) is another California statute that is intended to protect consumers from false advertising and other unfair business practices. The CLRA allows consumers to bring individual or California class action lawsuits to recover damages and enjoin the prohibited practices. The statute also allows a prevailing consumer to recover attorneys’ fees and costs. Cannabis companies need to be mindful of their representations related to their products. California courts are filled with cases involving terms like “natural” or “healthy” or “high performing.”

Product labeling, mottos and advertisements may seem straightforward, but they form the basis for hundreds of lawsuits filed every year throughout the country, and especially in California. At this stage of trying to get one’s product out the door and to the consumer, it is tempting to move quickly. However, the importance of sound research, strategy and consulting an experienced team to ensure compliance and avoid costly mistakes is critical.

Soapbox

Are LED Grow Lights Worth It?

By Dr. Zacariah Hildenbrand, Robert Manes
8 Comments

There really is no question that Light Emitting Diodes (LEDs) work, but just how well do they work?

For the last 50+ years, indoor cannabis cultivators have used High Pressure Sodium (HPS) lights to illuminate their flowering crops. This technology was developed for, and is still used, as street lighting and there really hasn’t been a fundamental change to the output in the last half century.LED technology showed great promise to solve some of the primary drawbacks to the use of HPS technology for indoor cannabis cultivation. 

We are often asked why this technology was used to grow cannabis, and the answers are simple: 1) due to strict legislation and even stricter penalties for growing cannabis, growers wished to move their crops indoors, and, 2) there really hasn’t been another technology that would allow us to cheaply place 400, 600, or even 1000W of light on a crop. In addition, HPS technology is rich in certain frequencies of red light, which is so important to flowering crops. Unfortunately, HPS lamps have their drawbacks, such as high heat output and lack of other “colors,” along the lighting spectrum. In fact, up to 95% of light produced by an HPS lamp is emitted in the infrared range, which we perceive as heat.

Enter the Light Emitting Diode. LED technology showed great promise to solve some of the primary drawbacks to the use of HPS technology for indoor cannabis cultivation. The ability to manipulate spectrum, precision delivery of light, elimination of dangerous heat, and lack of substantive toxic chemical makeup are a few reasons to deploy LEDs. However, as with any new technology, there were some significant hurdles to overcome.

Early experimentation using Light Emitting Diodes (LEDs) to grow cannabis, suffice to say, did not go well.  Poor performance, misleading advertising and equipment failures plagued the first mass-produced LED grow lights. The aspect of poor performance can be blamed on several factors, but the most prominent are very low efficacy, in terms of light produced per Watt consumed, and incorrect application of spectrum (color) for horticultural purposes. Causes of “misleading advertising” was a mixed bag of dubious sales pitches and lack of understanding the technology and of horticultural lighting requirements. Additionally, there certainly were some quality control issues with LEDs and electronics equipment in general, especially from offshore manufacturers in China and Korea.

A plant in flowering under an LED fixture

That legacy of poor performance still has a partial hold on the current indoor cannabis cultivation industry. Many of the current “Master Growers” have tried LEDs at some point and for the various reasons mentioned above, reverted to HPS lighting. Some of this reluctance to embrace LEDs comes from unfamiliarity with application of the technology to grow better cannabis, while some can be attributed to stubbornness to deviate from a decades-long, tried-and-true application of HPS lighting.

Certainly, growing with LEDs require some changes in methodology. For instance, when using true “full spectrum” grow lights, more nutrients are consumed. This is caused by stimulation of more photoreceptors in plants. To further explain, photoreceptors are the trigger mechanisms in plants that start the process of photosynthesis, and each photoreceptor is color/frequency-dependent. True full spectrum LED systems fulfill spectrum shortages experienced with HPS technology. Anyone that grows with LEDs will at some time experience “cotton top,” or bleaching at the upper regions of their plants.  Increased nutrient delivery solves this issue.

As we continue to uncover the vast medical potential of cannabis, precise phytochemical composition and consistent quality will become all-important.While the industry is still saturated with confusing rhetoric and some poorly performing equipment, LEDs are gaining momentum in the cannabis market. LED efficacies have increased to levels far greater than any other lighting technology. Broad spectrum white and narrow-frequency LEDs in all visible (and some invisible to the human eye) colors are being produced with great precision and consistency. Quality control in manufacturing is at an all-time high and longevity of LEDs has been proven by the passage of time since their introduction as illumination sources.

As the world embraces LED horticultural lighting, probably the most encouraging news is that current and upcoming generations of cannabis growers are more receptive to new ideas and are much more tech-savvy than their predecessors. Better understanding of cannabis-related photobiology is helping LED grow light manufacturers produce lighting that increases crop yields and perhaps more importantly, cannabis quality. As we continue to uncover the vast medical potential of cannabis, precise phytochemical composition and consistent quality will become all-important.

Obviously, the indoor cannabis industry is expanding rapidly and this expansion raises deep environmental concerns. More power is being used for indoor lighting, and for the cooling required by this lighting. Power systems are being taxed beyond forecasts and in some cases, beyond the capabilities of the infrastructure and power companies’ ability to produce and deliver electricity.  Some states have proposed cannabis-related legislature to limit power consumed per square foot, and some are specifically requiring that LEDs be used to grow cannabis. While some business leaders and cultivation operators may groan at the acquisition cost and change in operating procedures when deploying LEDs, common sense states that it is imperative we produce cannabis applying the most environmentally friendly practices available.

Dr. Ed Askew
Soapbox

Distillation Of Your Cannabis Extract: Ignorance Is Not Bliss

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

In a previous article I discussed the elephant in the room for clients of laboratory services- the possibility of errors, inaccurate testing and dishonesty.

Now, I will explain how the current “smoke and mirrors” of distillation claims are impacting the cannabis industry in the recreational and medical areas. We have all heard the saying, “ignorance is bliss.” But, the ignorance of how distillation really works is creating misinformation and misleading consumers.

That is, just because a cannabis extract has been distilled, doesn’t mean it is safer.There have been reports of people claiming that “Distilled cannabis productsthat are Category 2 distillate are pesticide free and phosphate free, while Category 1 has pesticides and phosphates, but within acceptable limits”

The problem is that these claims of Category 1 and Category 2 cannot be proven just by saying they are distilled. Ignorance of the physical chemistry rules of distillation will lead to increased concentrations of pesticides and other organic contaminants in the supposedly purified cannabis distillate. That is, just because a cannabis extract has been distilled, doesn’t mean it is safer.

So, let’s look at a basic physical chemistry explanation of the cannabis distillation process.

  • First off, you must have an extract to distill. This extract is produced by butane, carbon dioxide or ethanol extraction of cannabis botanical raw material. This extract is a tarry or waxy solid. It contains cannabinoids, terpenes and other botanical chemicals. It will also contain pesticides, organic chemicals and inorganic chemicals present in the raw material. The extraction process will concentrate all of these chemical compounds in the final extract.
  • Now you are ready to distill the extract. The extract is transferred to the vacuum distillation vessel. Vacuum distillation is typically used so as to prevent the decomposition of the cannabinoid products by thermal reactions or oxidation. Under a vacuum, the cannabinoids turn into a vapor at a lower temperature and oxygen is limited.
  • Part of the vacuum distillation apparatus is the distillation column. The dimensions of this column (length and width) along with the packing or design (theoretical plates) will determine the efficiency of distillation separation of each chemical compound. What this means is that the more theoretical plates in a column, the purer the chemical compound in the distillate. (e.g. Vigreux column = 2-5 theoretical plates, Oldershaw column = 10-15 plates, Sieve plate column = any number you can pay for).
  • The temperature and vacuum controls must be adjustable and accurate for all parts of the distillation apparatus. Failure to control the temperature and vacuum on any part to the apparatus will lead to:
    • Thermal destruction of the distillate
    • Oxidation of the distillate
    • Impure distillate

Now, you can see that a proper distillation apparatus is not something you throw together from a high school chemistry lab. But just having the proper equipment will not produce a pure cannabis product. The physical chemistry that takes place in any distillation is the percentage a chemical compound that occurs in the vapor phase compared to the percentage in liquid phase.So, how can you produce a cannabis distillate that is clean and pure?

For example, let’s look at whiskey distillation. In a simple pot still, alcohol is distilled over with some water to produce a mixture that is 25%-30% ethanol. Transferring this distillate to an additional series of pot stills concentrates this alcohol solution to a higher concentration of 85%-90% ethanol. So, each pot still is like a single theoretical plate in a distillation column.

But, if there are any chemical compounds that are soluble in the vapor produced, they will also be carried over with the vapor during distillation. This means that pesticides or other contaminants that are present in the cannabis extract can be carried over during distillation!

So, how can you produce a cannabis distillate that is clean and pure?

  • Produce a cannabis extract that has lower concentrations of bad chemicals. Since a lot of the cannabis extracts available for distillation are coming from grey-black market cannabis, the chances of contamination are high. So, the first thing to do is to set up an extraction cleanup procedure.
    • An example of this is to wash the raw extract to remove inorganic phosphates. Then recrystallize the washed extract to remove some of the pesticides.
  • Make sure that the distillation apparatus is set up to have proper temperature and vacuum controls. This will limit production of cannabis decomposition products in the final distillate.
  • Make sure your distillation apparatus has more than enough theoretical plates. This will make sure that your cannabis distillate has the purity needed.
  • Finally, make sure that the staff that operates the cannabis distillation processes are well trained and have the experience and knowledge to understand their work.

Inexperienced or under-trained individuals will produce inferior and contaminated product. Additional information of extract cleanup and effective vacuum distillation can be obtained by contacting the author.

FSC logo

Food Safety Consortium To Address Cannabis Safety, Edibles Manufacturing

By Aaron G. Biros
1 Comment
FSC logo

The 6thAnnual Food Safety Consortium Conference & Expo will feature an entire track dedicated to cannabis. As announced in May of this year, the Cannabis Quality series will feature presentations by subject matter experts in the areas of regulations, edibles manufacturing, cannabis safety & quality as well as laboratory testing.FSC logo

The Food Safety Consortium is hosted by our sister publication, Food Safety Tech, and the Cannabis Quality series will be co-hosted by Cannabis Industry Journal. A number of cannabis-focused organizations will participate in the series of talks, which are designed to help attendees better understand the cannabis edibles market, regulations surrounding the industry and standards for manufacturers. Some highlights include the following:

  • Ben Gelt, board chairman at the Cannabis Certification Council (CCC), will moderate a panel where leaders in the edibles market discuss supply chain, production and other difficulties in manufacturing infused products. Panelists include Leslie Siu, Founder/CEO Mother & Clone, Jenna Rice, Director of Operations at Gron and Kristen Hill, MIP Director, Native Roots Dispensary, among others. “The Cannabis Certification Council believes consumer education campaigns like #Whatsinmyweed are critical to drive standards and transparency like we see in food,” says Gelt. “What better place to discuss the food safety challenges the cannabis industry faces than the Food Safety Consortium”
  • Radojka Barycki, CEO of Nova Compliance, will discuss the role of food safety in the cannabis industry and identify some biological and chemical hazards in cannabis product testing in her talk, “Cannabis: A Compliance Revolution.”
  • Larry Mishkin, counsel to Hoban Law Group and partner at the law firm, Silver & Mishkin, which serves cannabis businesses in Illinois, will provide insights during the conference.
  • Cameron Prince, vice president of regulatory affairs at The Acheson Group, will help attendees better understand key market indicators and current trends in edibles manufacturing during his talk on November 15. “With the current trend of legalizing cannabis edibles, medicinal and recreational suppliers alike are looking to quickly enter the edibles market,” says Prince. “Understanding the nuances of moving to food production relative to food safety, along with navigating the food industry’s regulatory environment will be critical to the success of these companies.”
  • Tim Lombardo and Marielle Weintraub, both from Covance Food Solutions, will identify common pathogens and areas where cross contamination can occur for edibles manufacturers.

The Food Safety Consortium will be held November 13–15 in Schaumburg, Illinois (just outside of Chicago). To see the full list of presenters and register for the conference, go the Food Safety Consortium’s website.

Radojka Barycki picture

Food Safety: Do You Know What Is In Your Water?

By Radojka Barycki
No Comments
Radojka Barycki picture

Water is essential for life and it is an important part of agriculture and food manufacturing. Water has many uses in the cannabis industry. Among the most common uses are irrigation, ingredient/product processing and cleaning processes.

Water can be the carrier of pathogenic microorganisms and chemicals that can be transferred to food through agriculture and manufacturing practices. Poor quality water may have a negative impact in food processing and potentially on public health. Therefore, development and implementation of risk management plans that ensure the safety of water through the controls of hazardous constituents is essential to maintain the safety of agricultural and manufactured food or cannabis products.

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans.Although there no current regulations regarding the water used in cannabis cultivation and processing, it is highly recommended that the industry uses potable water as standard practice. Potable water is water that is safe for drinking and therefore for use in agriculture and food manufacturing. In the United States, the Environmental Protection Agency (EPA) sets the standards for water systems under the Safe Drinking Water Act (SDWA.)The regulations include the mandatory levels defined as Maximum Contaminant Levels (MCLs) for each contaminant that can be found in water. Federal Drinking Water Standards are organized into six groups: Microorganisms, Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides. The agriculture and food manufacturing industry use the SDWA as a standard to determine water potability. Therefore, water testing forms part of their routine programs. Sampling points for water sources are identified, and samples are taken and sent to a reputable laboratory to determine its quality and safety.

Microbiological Testing

Petri dish containing the fungus Aspergillus flavus
Petri dish containing the fungus Aspergillus flavus.
Photo courtesy of USDA ARS & Peggy Greb.

Determining the safety of the water through microbiological testing is very important. Pathogens of concern such as E. coli, Salmonella, Cryptosporidium parvum and Cyclospora sp. can be transmitted to food through water. These pathogens have been known to be lethal to humans, especially when a consumer’s immune system is compromised (e.g. cancer patients, elderly, etc.) If your water source is well, the local state agency may come to your facility and test the water regularly for indicator organisms such as coliforms. If the levels are outside the limit, a warning will be given to your company. If your water source is the city, regular testing at the facility for indicator microorganisms is recommended. In each case, an action plan must be in place if results are unfavorable to ensure that only potable water is used in the operations.

Chemical Testing (Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides) 

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans. Although, there are several regulations governing the discharge of chemicals into storm water, fields and even into city water treatment plants, it is important that you test your incoming water for these chemicals on a regular basis. In addition, it is important that a risk assessment of your water source is conducted since you may be at a higher risk for certain components that require testing. For example, if your manufacturing facility is near an agricultural area, pesticides may enter the surface water (lakes, streams, and rivers) or the aquifer (ground water) through absorption into the ground or pollution. In this case, you may be at higher risk for Tetrahalomethanes (THMs), which are a byproduct of pesticides. Therefore, you should increase the testing for these components in comparison to other less likely to occur chemicals in this situation. Also, if your agriculture operation is near a nuclear plant, then radionuclides may become a higher risk than any of the other components.

GMPFinally, in addition to the implementation of risk management plans to ensure the safety of water, it is highly recommended that companies working in food manufacturing facilities become familiar with their water source to ensure adequate supply to carry on their operations, which is one of the requirements under the 21 CFR 117. Subpart B – Current Good Manufacturing Practices (cGMPs) for food manufacturers under the Preventive Controls for Human Foods Rule that was enacted under the Food Safety Modernization Act in 2015. Also, adequate supply is part of the Good Agricultural Practices (GAP) The EPA has created a program that allows you to conduct a risk assessment on your water source. This program is called Source Water Protection. It has six steps that are followed to develop a plan that not only protect sourcing but also ensures safety by identifying threats for the water supply. These six steps are:

  1. Delineate the Source Water Protection Area (SWPA): In this step a map of the land area that could contribute pollutants to the water is created. States are required to create these maps, so you should check with local and/or state offices for these.
  2. Inventory known and potential sources of contamination: Operations within the area may contribute contaminants into the water source. States usually delineates these operations in their maps as part of their efforts to ensure public safety. Some examples of operations that may contribute to contaminants into the water are: landfill, mining operations, nuclear plants, residential septic systems, golf courses, etc. When looking at these maps, be sure that you verify the identified sources by conducting your own survey. Some agencies may not have the resources to update the maps on a regular basis.
  3. Determine the susceptibility of the Public Water Source (PWS) to contaminate sources or activities within the SWPA: This is basically a risk assessment. In here you will characterize the risk based on the severity of the threat and the likelihood of the source water contamination. There are risk matrices that are used as tools for this purpose.
  4. Notify the public about threats identified in the contaminant source inventory and what they mean to the PWS: Create a communication plan to make the State and local agencies aware of any findings or accidents in your operation that may lead to contamination of the PWS.
  5. Implement management measures to prevent, reduce or eliminate risks to your water supply: Once risks are characterized, a plan must be developed and implemented to keep risks under control and ensure the safety of your water.
  6. Develop contingency planning strategies that address water supply contamination or service interruption emergencies: OSHA requires you to have an Emergency Preparedness Plan (EPP). This plans outlines what to do in case of an emergency to ensure the safety of the people working in the operation and the continuity of the business. This same approach should be taken when it comes to water supply. The main questions to ask are: a) What would we do if we find out the water has been contaminated? b) What plan is in place to keep the business running while ensure the safety of the products? c) How can we get the operation back up and running on site once the water source is re-stablished?

The main goal of all these programs is having safe water for the operations while keeping continuity of the business in case of water contamination.