Tag Archives: construction

Cannabis Manufacturing Considerations: From Raw Materials to Finished Goods

By David Vaillencourt, Kathleen May
2 Comments

Facility layout and design are important components of overall operations, both in terms of maximizing the effectiveness and efficiency of the process(es) executed in a facility, and in meeting the needs of personnel. Prior to the purchase of an existing building or investing in new construction, the activities and processes that will be conducted in a facility must be mapped out and evaluated to determine the appropriate infrastructure and flow of processes and materials. In cannabis markets where vertical integration is the required business model, multiple product and process flows must be incorporated into the design and construction. Materials of construction and critical utilities are essential considerations if there is the desire to meet Good Manufacturing Practice (GMP) compliance or to process in an ISO certified cleanroom. Regardless of what type of facility is needed or desired, applicable local, federal and international regulations and standards must be reviewed to ensure proper design, construction and operation, as well as to guarantee safety of employees.

Materials of Construction

The materials of construction for interior work surfaces, walls, floors and ceilings should be fabricated of non-porous, smooth and corrosive resistant surfaces that are easily cleanable to prevent harboring of microorganisms and damage from chemical residues. Flooring should also provide wear resistance, stain and chemical resistance for high traffic applications. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces22 provides a method for evaluating the antibacterial activity of antibacterial-treated plastics, and other non-porous, surfaces of products (including intermediate products). Interior and exterior (including the roof) materials of construction should meet the requirements of ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Covering7, UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings 8, the International Building Code (IBC) 9, the National Fire Protection Association (NFPA) 11, Occupational Safety and Health Administration (OSHA) and other applicable building and safety standards, particularly when the use, storage, filling, and handling of hazardous materials occurs in the facility. 

Utilities

Critical and non-critical utilities need to be considered in the initial planning phase of a facility build out. Critical utilities are the utilities that when used have the potential to impact product quality. These utilities include water systems, heating, ventilation and air conditioning (HVAC), compressed air and pure steam. Non-critical utilities may not present a direct risk to product quality, but are necessary to support the successful, compliant and safe operations of a facility. These utilities include electrical infrastructure, lighting, fire detection and suppression systems, gas detection and sewage.

  1. Water
Microbial monitoring methods can include frequent/consistent testing

Water quality, both chemical and microbial, is a fundamental and often overlooked critical parameter in the design phase of cannabis operations. Water is used to irrigate plants, for personnel handwashing, potentially as a component in compounding/formulation of finished goods and for cleaning activities. The United States Pharmacopeia (USP) Chapter 1231, Water for Pharmaceutical Purposes 2, provides extensive guidance on the design, operation, and monitoring of water systems. Water quality should be tested and monitored to ensure compliance to microbiological and chemical specifications based on the chosen water type, the intended use of the water, and the environment in which the water is used. Microbial monitoring methods are described in USP Chapter 61, Testing: Microbial Enumeration Tests 3and Chapter 62, Testing: Tests for Specified Microorganisms 4, and chemical monitoring methods are described in USP Chapter 643, Total Organic Carbon 5, and Chapter 645, Water Conductivity 6.Overall water usage must be considered during the facility design phase. In addition to utilizing water for irrigation, cleaning, product processing, and personal hygiene, water is used for heating and cooling of the HVAC system, fogging in pest control procedures and in wastewater treatment procedures  A facility’s water system must be capable of managing the amount of water required for the entire operation. Water usage and drainage must meet environmental protection standards. State and local municipalities may have water usage limits, capture and reuse requirements and regulations regarding runoff and erosion control that must also be considered as part of the water system design.

  1. Lighting

Lighting considerations for a cultivation facility are a balance between energy efficiency and what is optimal for plant growth. The preferred lighting choice has typically been High Intensity Discharge (HID) lighting, which includes metal halide (MH) and high-pressure sodium (HPS) bulbs. However, as of late, light-emitting diodes (LED) systems are gaining popularity due to increased energy saving possibilities and innovative technologies. Adequate lighting is critical for ensuring employees can effectively and safely perform their job functions. Many tasks performed on the production floor or in the laboratory require great attention to detail. Therefore, proper lighting is a significant consideration when designing a facility.

  1. HVAC
urban-gro
Proper lighting is a significant consideration when designing a facility.

Environmental factors, such as temperature, relative humidity (RH), airflow and air quality play a significant role in maintaining and controlling cannabis operations. A facility’s HVAC system has a direct impact on cultivation and manufacturing environments, and HVAC performance may make or break the success of an operation. Sensible heat ratios (SHRs) may be impacted by lighting usage and RH levels may be impacted by the water usage/irrigation schedule in a cultivation facility. Dehumidification considerations as described in the National Cannabis Industry Association (NCIA) Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification 26 are critical to support plant growth and vitality, minimize microbial proliferation in the work environment and to sustain product shelf-life/stability. All of these factors must be evaluated when commissioning an HVAC system. HVAC systems with monitoring sensors (temperature, RH and pressure) should be considered. Proper placement of sensors allows for real-time monitoring and a proactive approach to addressing excursions that could negatively impact the work environment.

  1. Compressed Air

Compressed air is another, often overlooked, critical component in cannabis operations. Compressed air may be used for a number of applications, including blowing off and drying work surfaces and bottles/containers prior to filling operations, and providing air for pneumatically controlled valves and cylinders. Common contaminants in compressed air are nonviable particles, water, oil, and viable microorganisms. Contaminants should be controlled with the use appropriate in-line filtration. Compressed air application that could impact final product quality and safety requires routine monitoring and testing. ISO 8573:2010, Compressed Air Specifications 21, separates air quality levels into classes to help differentiate air requirements based on facility type.

  1. Electrical Infrastructure

Facilities should be designed to meet the electrical demands of equipment operation, lighting, and accurate functionality of HVAC systems. Processes and procedures should be designed according to the requirements outlined in the National Electrical Code (NEC) 12, Institute of Electrical and Electronics Engineers (IEEE) 13, National Electrical Safety Code (NESC) 14, International Building Code (IBC) 9, International Energy Conservation Code (IECC) 15 and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ).

  1. Fire Detection and Suppression

“Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs.”Proper fire detection and suppression systems should be installed and maintained per the guidelines of the National Fire Protection Association (NFPA) 11, International Building Code (IBC) 9, International Fire Code (IFC) 10, and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ). Facilities should provide standard symbols to communicate fire safety, emergency and associated hazards information as defined in NFPA 170, Standard for Fire Safety and Emergency Symbols 27.

  1. Gas detection

Processes that utilize flammable gasses and solvents should have a continuous gas detection system as required per the IBC, Chapter 39, Section 3905 9. The gas detection should not be greater than 25 percent of the lower explosive limit/lower flammability limit (LEL/LFL) of the materials. Gas detection systems should be listed and labeled in accordance with UL 864, Standard for Control Units and Accessories for Fire Alarm Systems 16 and/or UL 2017, Standard for General-Purpose Signaling Devices and Systems 17 and UL 2075, Standard for Gas and Vapor Detectors and Sensors 18.

Product and Process Flow

Product and process flow considerations include flow of materials as well as personnel. The classic product and process flow of a facility is unidirectional where raw materials enter on one end and finished goods exit at the other. This design minimizes the risk of commingling unapproved and approved raw materials, components and finished goods. Facility space utilization is optimized by providing a more streamlined, efficient and effective process from batch production to final product release with minimal risk of errors. Additionally, efficient flow reduces safety risks to employees and an overall financial risk to the organization as a result of costly injuries. A continuous flow of raw materials and components ensures that supplies are available when needed and they are assessable with no obstructions that could present a potential safety hazard to employees. Proper training and education of personnel on general safety principles, defined work practices, equipment and controls can help reduce workplace accidents involving the moving, handling, and storing of materials. 

Facilities Management

Facilities management includes the processes and procedures required for the overall maintenance and security of a cannabis operation. Facilities management considerations during the design phase include pest control, preventative maintenance of critical utilities, and security.

Damage from whiteflies, thrips and powdery mildew could be prevented with an appropriate PCP

A Pest Control Program (PCP) ensures that pest and vermin control is carried out to eliminate health risks from pests and vermin, and to maintain the standards of hygiene necessary for the operation. Shipping and receiving areas are common entryways for pests. The type of dock and dock lever used could be a welcome mat or a blockade for rodents, birds, insects, and other vermin. Standard Operating Procedures (SOPs) should define the procedure and responsibility for PCP planning, implementation and monitoring.

Routine preventative maintenance (PM) on critical utilities should be conducted to maintain optimal performance and prevent microbial and/or particulate ingress into the work environment. Scheduled PMs may include filter replacement, leak and velocity testing, cleaning and sanitization, adjustment of airflow, the inspection of the air intake, fans, bearings and belts and the calibration of monitoring sensors.

In most medical cannabis markets, an established Security Program is a requirement as part of the licensing process. ASTM International standards: D8205 Guide for Video Surveillance System 23, D8217 Guide for Access Control System[24], and D8218 Guide for Intrusion Detection System (IDS) 25 provide guidance on how to set up a suitable facility security system and program. Facilities should be equipped with security cameras. The number and location of the security cameras should be based on the size, design and layout of the facility. Additional cameras may be required for larger facilities to ensure all “blind spots” are addressed. The facility security system should be monitored by an alarm system with 24/7 tracking. Retention of surveillance data should be defined in an SOP per the AHJ. Motion detectors, if utilized, should be linked to the alarm system, automatic lighting, and automatic notification reporting. The roof area should be monitored by motion sensors to prevent cut-and-drop intrusion. Daily and annual checks should be conducted on the alarm system to ensure proper operation. Physical barriers such as fencing, locked gates, secure doors, window protection, automatic access systems should be used to prevent unauthorized access to the facility. Security barriers must comply with local security, fire safety and zoning regulations. High security locks should be installed on all doors and gates. Facility access should be controlled via Radio Frequency Identification (RFID) access cards, biometric entry systems, keys, locks or codes. All areas where cannabis raw material or cannabis-derived products are processed or stored should be controlled, locked and access restricted to authorized personnel. These areas should be properly designated “Restricted Area – Authorized Personnel Only”.

Future Expansion

The thought of expansion in the beginning stages of facility design is probably the last thing on the mind of the business owner(s) as they are trying to get the operation up and running, but it is likely the first thing on the mind of investors, if they happen to be involved in the business venture. Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs. Thought must be given to how critical systems and product and process flows may be impacted if future expansion is anticipated. The goal should be to minimize down time while maximizing space and production output. Therefore, proper up-front planning regarding future growth is imperative for the operation to be successful and maintain productivity while navigating through those changes.


References:

  1. United States Environmental Protection Agency (EPA) Safe Drinking Water Act (SDWA).
  2. United States Pharmacopeia (USP) Chapter <1231>, Water for Pharmaceutical Purposes.
  3. United States Pharmacopeia (USP) Chapter <61>, Testing: Microbial Enumeration Tests.
  4. United States Pharmacopeia (USP) Chapter <62>, Testing: Tests for Specified Microorganisms.
  5. United States Pharmacopeia (USP) Chapter <643>, Total Organic Carbon.
  6. United States Pharmacopeia (USP) Chapter <645>, Water Conductivity.
  7. ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Coverings.
  8. UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings.
  9. International Building Code (IBC).
  10. International Fire Code (IFC).
  11. National Fire Protection Association (NFPA).
  12. National Electrical Code (NEC).
  13. Institute of Electrical and Electronics Engineers (IEEE).
  14. National Electrical Safety Code (NESC).
  15. International Energy Conservation Code (IECC).
  16. UL 864, Standard for Control Units and Accessories for Fire Alarm Systems.
  17. UL 2017, Standard for General-Purpose Signaling Devices and Systems.
  18. UL 2075, Standard for Gas and Vapor Detectors and Sensors.
  19. International Society for Pharmaceutical Engineers (ISPE) Good Practice Guide.
  20. International Society for Pharmaceutical Engineers (ISPE) Guide Water and Steam Systems.
  21. ISO 8573:2010, Compressed Air Specifications.
  22. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces.
  23. D8205 Guide for Video Surveillance System.
  24. D8217 Guide for Access Control Syst
  25. D8218 Guide for Intrusion Detection System (IDS).
  26. National Cannabis Industry Association (NCIA): Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification.
  27. NFPA 170, Standard for Fire Safety and Emergency Symbols.

The Ten Biggest Mistakes When Building a Cultivation Facility

By Michael Burnstein
2 Comments

As cannabis legalization becomes more prolific across the United States, entrepreneurs are entering the cultivation business in droves. With so many new companies entering the market and growing cannabis, there are a lot of common errors made when getting started. Here are ten of the biggest mistakes you can make when building a cannabis grow facility:

  • Failure to consult with experts in the cannabis business – poor planning in floorplan and layout could create deficient workflow causing extra time and costing profits. Bad gardening procedures may result in crop failure and noncompliance could mean a loss of license. Way too often, people will draft a design and begin construction without taking the time to talk to an expert first. Some important questions to ask yourself and your consultant are: What materials should be used in the building of the grow? Is my bed-to-flower ratio correct? How long will it take before I can see my first harvest? 
  • Contractor selection – DO NOT build your own facility; leave it to the experts. Sure, you have experience building things and you have a friend who has worked in construction. Do not make this mistake – Our experience can save you from the mistake’s others have made. To stay lucrative in this competitive industry and to maximize your products’ quality and yields, have the facility built right the first time. Paying an experienced, qualified cannabis professional to build you a facility will produce better yields and will save you time, stress and money in getting you from start of construction to your first crop.
  • Not maximizing your square footage potential – With today’s fast changing environment, multi-tiered stationary racks, rolling benches and archive style rolling racks help maximize square footage. Without the proper garden layout, you will find yourself pounds short of your potential each harvest.
  • Inadequate power – Not planning or finding out if there is sufficient power available at the site for your current and future needs. This will stop you from building the overall square footage you want. When finding a building make sure you first know how much power you will need for the size grow you want. With proper engineering you will find out what load requirements will be so you can plan accordingly.
  • Material selection – The construction material that goes into a cultivation and extraction facility should consist of nonabsorbent anti-microbial finishes. The days of wood grow benches are long gone. Epoxy flooring, metal studs and other materials are mandatory for a quality-built, long-lasting facility.
  • Hand watering – Once your facility is up and running, many people feel they have spent enough money and they can save by hiring people to water by hand, rather than going with an automated system to handle the watering and nutrients. The problem with this is your employees are not on your plants timetable. What if an employee calls off and can’t come into water at the right time or they mix the wrong amount of nutrients from the formula you have selected? These are issues we see a lot. It is critical to perform precise, scheduled watering and nutrient delivery to increase your yields.
  • Failure to monitor and automate – Automating your grow is important for controlling the light and fertigation schedules as well as data collection and is crucial to maximizing yields. Being able to do this remotely gives you peace of mind in that you can monitor your grow room temperature and humidity at all times and be notified when something is not right.
  • MedicineManTechGrowPoor climate – This can cause stunted growth, smaller harvests and test failures. Our experience has taken us to facilities that have had mold and mildew issue due to poor climate. Proper air balancing, additional dehumidification along with a proper cleaning procedure can get a facility back in working order. Installing proper climate control systems could save millions of dollars.
  • Choosing the wrong site or building – Not knowing the history of the building you are choosing to rent or buy can create logistical and monetary nightmares. The wrong site can be a distribution and marketing disaster. In the wrong building, exponentially more money is spent to bring that building up to the standards needed for successful production and yields. For example, bringing in the ceiling and the cleaning of an existing facility can be a great expense. If you do not know what you are looking at when you purchase, you may be in for months of unaccounted expenses and inaccurate timelines. This can be detrimental for companies and individuals that are on restricted timelines and have to start producing successful and continuous yields from a space that has to be converted into a prime grow facility.
  • Failure to maintain your facility – A dirty site creates an invitation for pests, workplace injuries, unhealthy working environment and equipment failure. Keeping the facility and equipment properly maintained with routine service will ensure efficiency, longevity of equipment life span and reduce mold and bacteria risk. Clean facilities = clean plants and better flower.
european union states

Why Europe May Serve as an Important Bellwether for Hempcrete Use in the United States

By Stephanie McGraw
No Comments
european union states

Hemp-based construction materials are an attractive option for achieving environmentally friendly goals in construction, including reduced emissions and conservation of natural resources. Hemp construction materials dating back to the 6th Century have been discovered in France and it has long been eyed with interest by hemp growers and manufacturers, as well as environmentalists in the United States and abroad. As the European Union moves forward with its 2019 European Green Deal, United States hemp, construction and limestone industries, as well as regulatory agencies, will be provided with an important preview of the benefits, risks and issues arising out of the use of hemp in construction.

The European Green Deal and Circular Economy Action Plan

Hemp applications in construction are gaining increased interest as the EU seeks to neutralize its greenhouse gas emissions by 2050. Much of the specifics for this transition to zero emissions are outlined in the EU’s “A New Circular Economy Action Plan,” announced on March 11, 2020. According to the EU, “This Circular Economy Action Plan provides a future-oriented agenda for achieving a cleaner and more competitive Europe in co-creation with economic actors, consumers, citizens and civil society organisations.” The plan aims at accelerating the transformational change required by the European Green Deal and tackles emissions and sustainability issues across a number of industries and products, including construction.

Construction in the EU accounts for approximately 50% of all extracted natural resources and more than 35% of the EU’s total waste generation. According to the plan, greenhouse gas emissions from material extraction, manufacturing of construction products and construction and renovation of buildings are estimated at 5-12% of total national greenhouse gas emissions. It is estimated that greater material efficiency could save 80% of those emissions. To achieve those savings, the plan announces various efforts to address sustainability, improve durability and increase energy efficiency of construction materials.

How Hemp Could Help Europe Achieve Neutral Emissions

Hemp, and specifically hempcrete, is being eyed with heightened interest as the EU enacts its plan. Indeed, recent mergers and acquisitions in the European hemp industry signal just how attractive this hemp-based product may be as international, national and local green initiatives gain momentum. But how would hemp be utilized in construction and what types of legal issues will this industry face as it expands?

Image: National Hemp Association

The primary hemp-based construction material is “hempcrete.” Hempcrete is typically composed of hemp hurds (the center of the hemp plant’s stalk), water and lime (powdered limestone). These materials are mixed into a slurry. The slurry petrifies the hemp and the mixture turns into stone once it cures. Some applications mix other, traditional construction materials with the hempcrete. The material can be applied like stucco or turned into bricks. According to the National Hemp Association, hempcrete is non-toxic, does not release gaseous materials into the atmosphere, is mold-resistant, is fire– and pest-resistant, is energy-efficient and sustainable. To that last point, hemp, which is ready for harvest after approximately four months, provides clear advantages over modern construction materials, which are either mined or harvested from old forests. Furthermore, the use of lime instead of cement reduces the CO2 emissions of construction by about 80%.

Watching Europe with an Eye on Regulation and Liability Risks

Hempcrete indeed sounds like a wünder-product for the construction industry (and the hemp industry). Unfortunately, while it may alleviate some of the negative environmental impacts of the construction sector, it will not alleviate the threat of litigation in this industry, particularly in the litigious United States. The European Union’s experience with it will provide important insights for U.S. industries.

Hempcrete blocks being used in construction

Because hemp was only recently legalized in the United States with the passage of the 2018 Farm Bill, it is not included in mainstream building codes in the United States, the International Residential Code, nor the International Building Code. Fortunately, there are pathways for the consideration and use of non-traditional materials, like hempcrete, in building codes. However, construction applications of any form of hemp, including hempcrete, at this point would likely require extensive discussions with local building authorities and an application showing that the performance criteria for the building are satisfied by the material. Such criteria would include standards and testing relating to structural performance, thermal performance, and fire resistance. Importantly, the ASTM does have a subcommittee working on various performance standards for hemp in construction applications. European progress on this front would pave an important regulatory pathway for the United States, as well as provide base-line standards for evaluating hempcrete materials.

Insights into regulation and performance standards are not the only reason to watch the EU construction industry in the coming decades. Introduction of hempcrete and hemp-based building materials in the United States will likely stoke litigation surrounding these materials. Although there is no novel way to avoid the most common causes of construction litigation, including breach of contract, quality of construction, delays, non-payment and personal injury, the lessons learned in Europe could provide risk management and best-practice guidance for the U.S. industry. Of particular concern for the hemp industry should be the potential for product liability, warranty, and consumer protection litigation in the United States. The European experience with hempcrete’s structural performance, energy efficiency, mold-, pest- and fire-resistant properties will be informative, not just for the industry, but also for plaintiff attorneys. Ensuring that hempcrete has been tested appropriately and meets industry gold-standards will be paramount for the defense of such litigation and EU practices will be instructive.

The United States construction industry, and particularly hempcrete product manufacturers, should pay close attention as the EU expands green construction practices, including the use of hempcrete. The trials and errors of European industry counterparts will inform U.S. regulations, litigation and risk management best practices.

 

Flooring Tips for Cannabis Growing Facilities

By Sophia Daukus
5 Comments

In the burgeoning cannabis market, grow facilities are facing more and more competition every day. New indoor cultivation enterprises are often being set up in formerly vacant industrial buildings and commercial spaces, while in other cases, companies are planning and constructing new grow facilities from the ground up. For all these establishments, continually lowering production costs while supplying the highest possible quality in ever-increasing yields is the way forward.

Whether in existing or new structures, concrete floors are ubiquitous throughout the majority of cannabis growing facilities. With the right treatment, these indoor concrete traffic surfaces can greatly contribute to a company achieving its operational objectives. Alternatively, insufficiently protected concrete floors can create annoying and costly barriers to accomplishing company goals.

Challenges in Cannabis Grow Facility Construction

As with any emergent industry, mainstream acceptance and market growth is bringing regulation to cannabis cultivation. Local governments are paying more attention to how cannabis growing facilities are constructed and operated. In addition to the standard business matters of building safety, employee working conditions and tax contributions, elected officials are increasingly under pressure from constituents to analyze the overall effect of grow facilities on their communities at large.

High consumption of energy for grow room lights and high water usage are just part of the equation. The temperature and humidity needs of a grow facility can be similar to that of an indoor swimming pool environment. While warmth and moisture are ideal for cannabis growth, they also provide the ideal conditions for the growth and proliferation of fungi and other undesirable microorganisms. Therefore, to help preserve plant health in the moist indoor climate, fumigation often comes into play.

Carbon dioxide (CO2) enrichment of grow room air, a common practice proven to increase crop yields, presents another set of safety and health considerations in dense urban environments.

Adding to these challenges, many cannabis grow facilities are producing plants destined for either pharmacological or nutritional use. This in itself demands scrutiny by regulators for the sake of the consuming public.

As a result, grow room managers and owners must stay informed about the evolution of the industry in terms of local and federal agency regulations concerning their facilities, their overall operation and their products.

Bare Concrete Floors in Grow Rooms

As a foundational construction material, concrete continues to lead the way in commercial and industrial construction. Despite the many advantages of concrete floors, when left unprotected they can present significant challenges specific to cannabis grow rooms.

  • Untreated, bare concrete is naturally porous, easily absorbing liquids and environmental moisture. Substances found in grow rooms, such as fertilizers, fungicides and other chemicals, can leach through the porous concrete floor slab into the soil and ground water. Whether organic or synthetic, concentrations of such substances can be highly detrimental to the surrounding environment.
  • Whether in an existing or newly constructed facility, it is not uncommon for the under-slab vapor barrier to be compromised during construction. When this occurs, moisture from the soil beneath the floor slab can enter the concrete and move osmotically upward, creating a phenomenon known as Moisture Vapor Transmission (MVT). The resulting moisture and moisture vapor tends to become ever more alkaline as it rises upward through the concrete slab. MVT can result in blistering, bubbles and other damage to floor coverings.
  • The warm temperatures, regular watering of plants and high relative humidity maintained within many grow rooms can contribute to a weakening of the structural integrity of unprotected grow room slabs.
  • Within the confined space of a grow room, the warm, moist air invites microbe proliferation. Food and pharmaceutical plants are high on the priority list when it comes to facility hygiene levels, as demanded by code.

Public health guidelines for cannabis cultivation facilities in various parts of the country are increasingly mirroring those of food processing. Typical requirements include having smooth, durable, non-absorbent floor surfaces that are easily cleaned and in good repair, possessing proper floor slope towards a sanitary floor drain, with no puddling, as well as an integral floor-to-wall cove base. These directives cannot be met with bare concrete alone.

Optimal Grow Room Flooring Performance

In some locations, cannabis growing facilities are already subject to strict building codes and regulations. This will no doubt be spreading to other regions in the near future. For example, the Public Health Agency of Los Angeles County publishes construction guidelines to ensure cannabis facility floors meet standards mirroring the food processing and pharmaceutical manufacturing industries, where sanitation, facility hygiene and safety are paramount. In these types of facilities, bare, unprotected concrete floor slabs are not allowed as a general rule, due to the material’s innate porosity and absorbency.

Flooring in grow rooms, like in their food and pharma industry counterparts, should optimally:

  1. Provide a monolithic and virtually seamless surface to help eliminate crevices, grout lines and other dark, damp locations where soil and pathogens tend to hide
  2. Be impervious and non-porous, providing a surface that can isolate toxic materials on the surface for proper clean-up where needed
  3. Enable correction or improvement of the floor slope for proper drainage, with no low spots to help avoid puddling
  4. Be installed with integral floor-to-wall cove options for easier wash-down and sanitizing
  5. Have the strength and thermal shock resistance, plus the tenacious bond, to undergo steam-cleaning and/or hot power washing, where needed
  6. Enable seamless, continuous surface installation over concrete curbs and containment areas
  7. Offer antimicrobial options for highly sensitive locations
  8. Demonstrate high compressive strength and impact resistance for durability under heavy loads
  1. Display excellent abrasion resistance, allowing the system to perform under grueling daily wear-and-tear
  2. Present customizable slip-resistance options that can be balanced with easy clean-ability
  3. Facilitate the use of floor safety markings, such as color-coded traffic and work area designations
  1. Be formulated with low odor, low-VOC chemistries that meet all EPA and similar regulations
  2. Be able to contribute LEED Green Building Credits, where desired
  3. Include options for refurbishing old or damaged concrete surfaces to allow reuse of existing facility resources, as opposed to having to be demolished, thus unnecessarily contributing to landfill waste
  4. Withstand and perform in continually damp grow room conditions, without degrading
  5. Be compliant with FDA, USDA, EPA, ADA, OSHA, as well as local regulations and/or guidelines
  6. Include MVT mitigating solutions where Moisture Vapor Transmission site issues are present
  7. Provide waterproofing underlayment options for multi-story facilities
  8. Demonstrate excellent resistance to a broad range of chemicals, fertilizers and extreme pH substances

Finding an affordable floor system with all the above features may seem like a tall order. Luckily, innovative manufacturers now offer cannabis facility flooring that meets sanitation, regulatory compliancy, durability and budgetary needs of growers.

Resinous Flooring Value for Cannabis Facilities

Choosing the right floor solutions for a given cultivation facility may be one of the most important decisions an owner or manager makes. Since floors are present throughout the structure, poor selection and compromised protection of concrete slabs can end up wreaking havoc with profits and yields over time.

Few facilities can afford the inconvenience and expense of an otherwise unnecessary floor repair or replacement. Having to suddenly move cumbersome plant beds and heavy pots in order to give workers access to the floor area can be headache. In addition, the unscheduled downtime and overall juggling of resources that invariably must take place make a strong case for investing in optimal grow room flooring from the start.

An excellent long-term value, professional-grade resinous floor systems present cannabis growers with a unique set of solutions for cultivation rooms. Not only does this type of flooring offer all the desirable features listed above, but also furnish a host of added benefits to grow room operations, including:

Very High Gloss Finish

  • Highly reflective floor surfaces enable light entering the space from overhead to bounce back upward, exposing the underside of leaves to the light and potentially increasing yields
  • Exceptionally high gloss floor finishes in light colors help make the most of your existing lighting sources, significantly increasing room illumination
  • Achieving greater illumination without adding fixtures helps reduce energy consumption and associated costs

Virtually Seamless Surface

  • Fluid-applied resin-based flooring provides an impermeable, monolithic surface that is exceptionally easy to clean and maintain
  • The virtually seamless finish of resinous coated floors greatly reduces the number of locations for soil, pathogens and microbes to gather
  • Resinous floors, by incorporating integral cove bases to eliminate ninety degree angles, correcting floor slope to eliminate puddling, and allowing for a virtually seamless surface, provide an optimally sanitary flooring solution

Outstanding Moisture Tolerance

  • Designed specifically for use in wet industrial environments, cementitious urethane flooring is a top choice for humid grow rooms
  • Also called “urethane mortar”, this type of floor can help mitigate certain undesirable site conditions, such as Moisture Vapor Transmission (MVT)

Chemical, Acid and Alkali Resistance

  • Whether organic or synthetic, many soil enhancers and substances used to eradicate undesirable fungi and pests can damage concrete and shorten the usable life of foundational slabs
  • Protecting concrete slabs with monolithic, non-absorbent and appropriately chemical resistant coating systems allows concrete to perform as designed, for as long as intended
  • A proper barrier coating on the floor allows spilled or sprayed substances to be properly cleaned up and disposed of, rather than allowing the liquids to seep through the porous slab, and into the surrounding natural environment

Added Safety

  • Resinous coating systems’ slip-resistance is completely customizable at the time of installation, enabling growers to request more traction in pedestrian walkways and less slip-resistance under raised beds.
  • Epoxy, urethane and polyaspartic resinous flooring systems accommodate the installation of safety and line markings, as well as varying colors to delineate specific work areas
  • The antimicrobial flooring options available from some manufacturers offer further hygiene support in highly sensitive facilities
  • Today’s industrial resinous floor coatings from reputable suppliers are very low to zero V.O.C. and compliant with EPA and other environmental regulations

Resinous coating systems provide ideal value to informed growers who require durable, reliable and long-lasting high performance flooring for their facilities.

Support from the Ground Up

From incredible medical advances to high tensile fiber in construction materials, the expanding cannabis industry is bringing exciting opportunities to many areas of the economy. As more and more growers enter the market, so increases the pressure to compete.

By choosing light reflective, seamless and moisture tolerant resinous flooring that meets regulatory guidelines for grow rooms, managers can help reduce their overhead costs on multiple fronts — and get a jump on the competition.

8 Mistakes Businesses Make When Managing Product Labels: Part 1

By Rob Freeman
2 Comments

Editor’s Note: This article contains the first four common labeling mistakes that businesses can make. Click here to view the next four common labeling mistakes


Whether you’re a small business owner or a production manager of a large manufacturer, if you’ve ever experienced problems with your product labels you know it can quickly turn into a serious issue until that problem is resolved. From the time it’s applied to your product all the way to the POS (Point of Sale), labels always seem to be the least significant part of the production process- until something goes wrong. And when it does go wrong, it can create major branding issues and cost your company tens of thousands of dollars due to hefty supply chain late penalties and/or even government fines.

This article aims to provide insight as to how a company like Label Solutions Inc. helps businesses and manufacturers create new labels for their products as well as what to look for should you experience label failure at your retail locations. Topics discussed in this article do not cover all possible issues, but these common mistakes will hopefully help you better understand how creating a product label works, and how to possibly prevent your own problems in the future.

Mistake #1: Not Understanding the Importance Between the “Construction” Versus the “Artwork & Compliance” of the Label

This may seem like common sense, but it is often overlooked. Especially when dealing with fast-track projects.

Construction of the Label is the material selected and production process to produce the label. When creating a new label from the ground up, it is important to factor in how your product will be produced, necessary shipping and supply chain needs, how it is stored in inventory and how it will be presented at the POS. Understanding what environments your product will be exposed to throughout its life cycle will give you an advantage when approving substrate material, inks, and the strength of adhesive that might be necessary for your application.

The Artwork & Compliance of the Label refers to the overall design of the label, artwork, customer messaging, bar codes and regulatory requirements you need to follow in order to avoid serious government fines that might relate to your industry (Referring to agencies such as OSHA, DOT, and the FDA).In most cases the construction of the label does not apply to the compliance of the label.

Most label providers do not have the in-house expertise to offer compliance assistance. Although it is still the manufacturer who is liable for all final artwork approvals on their product, label providers that do offer advisory services can help update label content when regulatory changes are enacted. This “safety net” can save your company from extra production costs and, potentially, excessive legal time and material costs. In short, you should always review final label artwork approvals with your compliance team and/or legal expert, but it never hurts to have a “safety net” to help eliminate unnecessary orders or production delays.

In most cases the construction of the label does not apply to the compliance of the label. An exception to this statement would be industries such as the electronics industry that use UL (Underwriter Laboratories) labels that must meet UL specifications and be produced under recognized UL files. In other words, the compliance of a UL label is the construction of the label.

Best Method Approach: An excellent example of companies that understand the difference between the Construction vs. Artwork & Compliance of the label would be the compressed gas industry. Gas suppliers and distributors require long term regulatory compliant labels on their cylinders and micro-bulk tanks. These gas tanks are used in a wide variety of industries such as for manufacturing, welding, medical procedures, and specialty gas mixes for the micro-electronics industry.

The compressed gas industry requires that their labels follow strict, up-to-date OHSA and DOT compliance requirements. As for the construction of the label, it is common practice that the label remains legible on the cylinder for an average of five years. The 5-year duration is due to the millions of tanks that are in circulation throughout the US and Canada. What’s more, each label is produced to adhere to the cylinder’s metal surface during extreme outdoor weather conditions such as fluctuating temperatures, freezing rain, high winds, and direct sunlight year-round.

Mistake #2: Applying Labels Incorrectly to Your Products

Whether the label is applied to the product surface by hand or automatically with a label applicator, the label itself may not be applied level or evenly. Besides this being a major branding issue, this could also affect how the bar codes are scanned and could eventually impact your delivery times while trying to correct a batch.

Best Method Approach: There are construction alternatives that you can choose from to potentially reduce the impact of incorrect label application. For example, products with certain label adhesives allow your production team to reposition the label within a few minutes before the tack completely sets to the surface. The type of surface (cardboard, metal, plastic, glass, etc.) and the type of adhesive will determine how much time your production team will have before the tack sets.

The best practice is to apply labels prior to filling the bottles and cans as opposed to filling first and then applying the label in your production line.A good example of this best practice can be seen in the beverage market. Whether the client produces a uniquely crafted beer, or a rare ingredient infused into a new health drink, labels that are auto-applied to bottles and cans will sometimes experience equipment tension issues that need to be recalibrated. Once labels are applied off-alignment, a delayed tack setting can allow the label to be quickly repositioned by hand when needed. The best practice is to apply labels prior to filling the bottles and cans as opposed to filling first and then applying the label in your production line. The reason, excess spillage from filling can interfere with most adhesives.

This same repositionable adhesive is excellent to keep in mind for large equipment production assembly lines that apply prime (branding) labels and warning labels by hand. Even with large wide-format labels, the adhesive tack can be formulated so your employees have a few minutes to adjust, straighten, and smooth away trapped air bubbles once it has been placed on the surface. Knowing you have this option can help reduce label inventory waste, additional production material wastes and avoid delaying production time. More importantly, this option keeps your brand and your warning/instructional labels looking fresh.

Mistake #3: Not Sharing Your Production Run Schedules with Your Label ProviderSupply chain management (SCM) models are excellent examples of the best approach.

Some of Label Solutions’ largest accounts have the most efficient real-time tracking supply chain models in North America, but even they cannot avoid sudden increased orders for their products stemming from high customer demand or similar issues. It is a good problem to have, but it is a problem, nonetheless. Manufacturers utilize supply chain management tools to notify their suppliers of their monthly order forecasts, which in turn helps suppliers manage their materials and deliveries more efficiently.

On the other side of the spectrum, when small businesses share their production schedules with a supplier it means that both parties (the manufacturer and label provider) understand when to expect higher or lower order quantities each month. Label providers should back date their label production schedules, so they have the materials available to handle your busier months while ensuring on-time deliveries.

Best Method Approach: Supply chain management (SCM) models are excellent examples of the best approach. Although SCM’s are designed for scalability and real-time tracking, the benefit to you also helps your label supplier. For example, our large retail and industrial manufacturing clients notify the Label Solutions team to produce their labels according to their Supply Chain portal demand schedules. This, in turn, allows label suppliers to allocate production time and materials more efficiently for your last-minute rush orders.

Smaller companies can take a much more simplified approach (without the SCM tracking) to help their suppliers manage their orders – even if they do not use supply chain management. A simple Excel report of production runs over a 12-month time frame is ideal. If your label provider does not already practice this or similar methodology, it might be time to start looking for a more proactive label provider. If you’re unsure you want to share your information, then you might consider requiring your label provider to sign an NDA (Non-disclosure Agreement).

Mistake #4: Not Accepting Alternative Sizes of the Label to Allow for Better Pricing

If your product needs a label with, for example, a dimension of 5.25 X 6.75 inches, there might be a much better price point offered to you if you’re open to switching to a slightly different dimension label of, say, 5 X 7 inches.  Obviously, you need to make sure the new dimension would fit your product(s) and work with your production line. But, if alternate dimensions are within the scope of the project, a modified SKU could potentially cut down on cost and production time.

Best Method Approach: You might not have the time or ability to change your label if you already market that product in retail stores. But, if you are changing your branding, creating a new style of label, or releasing a completely new product, this is the ideal time to consider implementing better continuity between your products. This could include elements such as matching colors and label/packaging design.

In addition to updating your SKU’s, this might also be an opportunity for your company to consolidate multiple products onto a universal label size. By applying the same sized labels to multiple SKU’s, you can increase efficiency regarding repeated label orders, especially for label printers that use digital printers. Combine this approach with your expected annual quantity estimates and you’ll be positioned for very efficient ordering options as your company grows.


Editor’s Note: We’ll cover the next four most common labeling mistakes in Part Two coming next week. Stay tuned for more!