Tag Archives: crop

USDA Announces Risk Management Programs for Hemp

By Aaron G. Biros
2 Comments

According to a press release published earlier this month, the U.S. Department of Agriculture (USDA) announced two new programs available for hemp growers to mitigate their risk.

The first is called Multi-Peril Crop Insurance (MPCI), which is a pilot hemp insurance program designed to cover against “loss of yield because of insurable causes of loss for hemp grown for fiber, grain or Cannabidiol (CBD) oil.” The second plan is Noninsured Crop Disaster Assistance Program, which protects against losses from lower-than-normal yields, destroyed crops or “prevented planting” where permanent crop insurance is not available.

Both of the programs are now accepting applications and the deadline to apply is March 16, 2020. “We are pleased to offer these coverages to hemp producers. Hemp offers new economic opportunities for our farmers, and they are anxious for a way to protect their product in the event of a natural disaster,” says Bill Northey, Farm Production and Conservation Undersecretary.

The MCPI program is available for hemp producers in 21 states, according to the press release. Th program is available in certain counties in Alabama, California, Colorado, Illinois, Indiana, Kansas, Kentucky, Maine, Michigan, Minnesota, Montana, New Mexico, New York, North Carolina, North Dakota, Oklahoma, Oregon, Pennsylvania, Tennessee, Virginia and Wisconsin.

There are a handful of requirements to be eligible for that program, such as having one year of growing under their belt and have contracts in place for the sale of their crops. Hemp growers producing CBD must have at least 5 acres and hemp growers producing fiber must have at least 20 acres cultivated.

In 2021, the press release states, “hemp will be insurable under the Nursery crop insurance program and the Nursery Value Select pilot crop insurance program.” With those programs, hemp crops can be insured if grown in containers and in accordance with federal law.

To apply for any of these programs, hemp growers must have a license and must be totally compliant with state, tribal or federal regulations, or be operating under a state or university research plot from the 2014 Farm Bill. Growers need to report their hemp acreage to the Farm Service Agency, a division of the USDA.

The press release also mentions that if the crops have above 0.3% THC, the crop becomes uninsurable and ineligible for any of the programs.

Preventing Mold & Fungus in Cannabis with Data Analytics

By Leighton Wolffe
No Comments

Cannabis legalization has taken the United States by storm, with 33 states approved for medicinal cannabis use — 11 of which are also approved for recreational use for adults aged 21 and over. With new patients and consumers entering the market every day, it’s more important than ever for cannabis cultivators to establish more effective methods for mold and fungal prevention in their crops and to ensure consumer confidence in their brands.

Today, many cultivators address the risk of mold and fungus growth by testing crops for contaminants at the end stage of production. While this helps to catch some infected product before it reaches the market, this method is largely ineffective for mold and fungal prevention during the cultivation process. In fact, recent studies have shown an 80% failure rate in mold and fungal testing in Denver cannabis dispensaries. By relying on late-stage, pass/fail testing, cannabis entrepreneurs also expose themselves to increased risk of lost crops and profits.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

However, emerging sensor technologies exist that can test plants during the grow process, significantly reducing the risks associated with cannabis cultivation while increasing the bottom line for commercial grow operations. By leveraging data from these monitoring sensors along with environmental automation systems that are integrated with data analytics platforms, cannabis professionals can take a proactive approach to achieve the ideal environmental conditions for their crops and prevent against mold and fungal infestation.

Common Causes for Bud Rot in Indoor Growing Systems 

Botrytis cinerea — commonly known as “bud rot” — is a pathogenic fungi species that creates a gray mold infection in cannabis plants. An air-borne contaminant, it is among the most prevalent diseases affecting marijuana crops today and can lead to significant damages, particularly when left untreated during post-harvest storage. Bud rot is one of the most difficult challenges cannabis entrepreneurs face: Once plants have been affected, only 2% can be expected to recover. This is because Botrytis cinerea can use multiple methods for attacking host plants, including using the plant’s natural defenses against it to continue infestation.

While difficult to contain, bud rot is very easy to spot. Plants affected with the fungus will begin yellowing, experience impaired growth, and develop gray fungus around its buds. Overall crop yield will be significantly reduced, leading to decreased profit for cannabis cultivators. The biggest contributing factors to a Botrytis cinerea infestation are as follows:

  • Humidity: Indoor grow facilities that maintain humidity levels in excess of 45% are breeding grounds for mold and fungus. These environments can become perfect conditions for mold and fungal growth.
  • Temperature: Bud rot typically thrives in environments where temperatures fall between 65- and 75-degrees Fahrenheit, which is why greenhouses and grow rooms are often the victim of such infestations.
  • Ventilation: Poor airflow is another contributing factor to Botrytis cinerea Without proper ventilation, excess moisture buildup will eventually result in mold and mildew growth.
  • Strain: Some marijuana strains are better equipped to fend off bud rot infection. In particular, sativa plants have a higher resistance to mold development than their C. indica and C. ruderalis cousins.

Controlling mold and fungal growth in commercial grow facilities is a top priority for cannabis cultivators. Not only detrimental to their profitability and crop yield, infected plants can pose serious health risks to consumers, especially for immunocompromised patients. Consuming cannabis products that have been compromised by bud rot or other mold and fungal infections can cause a wide range of medical concerns, including pneumonitis, bronchitis, and other pulmonary diseases. As a result, growers are required to dispose of all infected plants without the possibility to sell.

Bud rot isn’t the only culprit responsible for cannabis plant destruction. Powdery mildew, Fusarium, sooty molds, and Pythium all contribute to the challenges faced by cannabis professionals. In fact, a recent study conducted by Steep Hill Labs and University of California, Davis – Medical Center found that in 20 randomly-selected samples submitted for testing, all samples showed detectable levels of microbial contamination7. Many of these samples also contained significant pathogenic microorganism contamination. Without proper detection and prevention methods in place, these pesky plant-killers will only continue to terrorize the cannabis cultivation industry.

The Current Cannabis Cultivation Landscape 

The data is clear: Current practices for cannabis cultivation are insufficient for preventing against mold and fungal growth. Sterilization and pass/fail testing do not identify the root cause of harmful infestations in plants, therefore leaving cannabis professionals in the dark about how to better optimize their grow conditions for improved crop reliability and safety. In order to prevent against damages incurred from mold and fungal infestation, marijuana growers must be more diligent in their grow condition monitoring practices.

Many cannabis professionals rely on manual monitoring to identify environmental changes within their indoor grow facilities. While it’s important to collect data on your operation’s essential systems, doing so without the right tools can be time-consuming and ineffective. Manual monitoring often relies on past data and does not illustrate the relationship between different systems and their impact on environmental changes. The goal is to assemble data from all the grow systems and create correlations on actual bio-environmental conditions during the grow process to compare to yield results. This is only available when an information management platform is synthesizing data from all the systems within the grow facility and presenting meaningful information to the growers, facility operators and owners.

Especially as the cannabis industry is expected to grow exponentially in coming years, growers need more robust tools for tracking and manipulating environmental changes within their indoor growing systems.

Leveraging Building Automation Systems & Data Analytics in Cannabis Cultivation 

A powerful approach to prevent environmental conditions that are known to lead to mold and fungus growth exists in leveraging the data produced from your grow facility’s various automation systems. Most commercial cultivation facilities have multiple stand-alone and proprietary systems to control their indoor environment, making it difficult to not only collect all of this valuable data, but also to achieve the level of grow condition monitoring necessary for mold and fungal prevention.

With some data analytics platforms, such as GrowFit Analytics, data is collected across disparate systems that don’t normally communicate with one another, providing access to the key insights necessary for achieving environmental perfection with your cannabis crops. A viable solution collects vital grow facility system data and relevant bio-environmental monitoring data, and delivers this information in one, centralized software interface. The software then will apply analytic algorithms to develop key performance indicators (KPIs) while working to detect system anomalies, faults, and environmental fluctuations. The right analytics solution should also be customizable, allowing you to track the KPIs that are most important to your unique facility, and to achieve the vision of your chief grower. Ultimately, the software should serve up actionable insights that empower facility management and growers.

Sample data visualization dashboard from GrowFit Analytics showing real-time Temperature and Relative Humidity readings and indicating potential Mold Risk as defined by the Grower.

Collecting reliable data from different grow facility systems and environmental sensors can be a complex process and the information collected illustrates more than just what’s working right and what isn’t. By implementing an advanced data analytics solution, cannabis cultivation professionals can now be empowered to track minute details about their indoor grow facility, providing a safer, healthier environment for their crops and avoiding those environmental conditions that lead to mold and fungus altogether.

An ideal data analytics platform won’t simply collect data to be analyzed at a later date, and simple trending of sensor data is not enough. Information — especially in a commercial grow facility — is time-sensitive, which is why growers should select a system that offers real-time analytics capabilities. Some platforms offering real-time analytics utilize cloud computing, allowing for easy access from anywhere while also providing enhanced security to protect sensitive facility data. The most robust data analytics platforms provide detailed historical data for your entire crop’s lifecycle that provide a “digital recipe” to replicate successful crops, and fine-tune the process for continuous improvement.

Data analytics tools can also impact the bottom line by lowering operational costs. GrowFit Analytics, for example, was born out of a software solution designed to lower energy costs for large complex buildings like commercial grow facilities.

The data and insights provided can help identify opportunities for greater energy efficiency, which can lead to significant utility savings. Grow facilities operate 24 hours/day, with energy expenses representing one of the largest operational costs. With data analytics tools at their disposal, facility managers are armed with the information they need to improve system efficiency, increase energy savings, and improve profitability.

Eliminating Mold & Fungus from the Future of Cannabis Cultivation 

By focusing on grow condition monitoring using data analytics tools, cannabis professionals can effectively eliminate the risk of mold and fungus growth in their crops. Leading data analytics tools make tracking environmental changes simple and easy to manage, allowing cannabis professionals to take a proactive approach to mold and fungus prevention. As we look to the future of the cannabis cultivation industry, it’s paramount for professionals to explore the technological advancements available that can help them address their business’ most pressing challenges.

dry cannabis plants

How to Grow Cannabis Plants for Concentrate Production

By Andrew Myers
No Comments
dry cannabis plants

While flower is still the most popular way to consume cannabis, the concentrates market is booming. Some predict concentrates will be nearly as popular as flower by 2022, with an estimated $8.5 billion in retail sales. That’s a lot of concentrates and, chances are, cannabis producers are already feeling the pressure to keep up.

Concentrates refer to products made from processing cannabis – often resulting in much higher THC or CBD percentages. The category includes oils, wax, dabs, shatter, live resin and hash. Consumers are increasingly drawn to these cannabis products for their near-immediate and intense effects. They’re often consumed through vaporization, dabbing or sublingual absorption and are sometimes favored by those who want to avoid smoking. Cannabis growers who have traditionally focused on flower yields may decide to prioritize quality and potency levels in order to tap into these changing consumer tastes.

What Growers Should Focus on to Produce High Quality Concentrates
We’ll let you in on a little secret: making good concentrates starts with good flower. If you’re starting with low-quality flower, it’s impossible to create a high-quality concentrate. Whatever qualities inherent to the flower you’re starting with will be amplified post-processing. So, really, the concentrate-making process starts at the seedling level, requiring the right care and attention to coax out the results you’re looking for.

Tetrahydrocannabinol (THC), just one of hundreds of cannabinoids found in cannabis.

But what makes good flower? While this can be a subjective question, those producing concentrates generally look for flowers with big, abundant trichomes. Trichomes are the small, dewy structures found across the cannabis plant on buds, leaves and even the stem. They’re responsible for producing the plant’s cannabinoids and terpenes – the chemical compounds that give a strain its unique benefits, aroma and taste. Evolutionarily, trichomes attract pollinators, deter hungry herbivores and provide some defense against wind, cold and UV radiation.

Generally, trichomes indicate how potent the flower is. Plus, what we’re most often looking for when making concentrates is higher cannabinoid and terpene profiles, while also ensuring absolute safety.

What measures can growers take to produce crops that are ideal for concentrate production? Start with the following:

Avoiding Contaminants
Just like you would wash your fruits and vegetables before consumption, consumers want to be sure there’s no dangerous residuals in the concentrate they are ingesting. Growers can avoid any post-process residuals by taking a few key steps, including:

  • Photo: Michelle Tribe, Flickr

    Cutting out the pesticides. Any pesticides that are on your flowers before they go through processing will show up in your concentrates, often even more – you guessed it – concentrated. This is a serious health concern for consumers who might be sensitive to certain chemicals or have compromised immune systems. It’s dangerous to healthy consumers, too. Rather than spraying hazardous chemicals, growers could consider integrated pest management techniques, such as releasing predatory insects.

  • Limiting foliar spraying. Some growers will use foliar spraying to address nutrient deficiency or pest-related issues through delivering nutrients straight to the leaves. However, this can also result in contaminated concentrates. If you really need to spray, do it during the vegetative stage or investigate organic options.
  • Taking the time to flush the crop. This is a critical step in reducing potential contaminants in your concentrate, especially if you’re using a non-organic nutrient solution or fertilizer. Flushing simply means only giving your plants water during the final two weeks of flowering before harvest, resulting in a cleaner, non-contaminated flower and therefore a cleaner concentrate.

Perfecting the Indoor Environment
When cultivating cannabis indoors, growers are given ultimate control over their crop. They control how much light the plants receive, the lighting schedule, temperature and humidity levels. Creating the ideal environment for your cannabis crop is the number one way to ensure healthy plants and quality concentrates. There are many factors to consider when maintaining an indoor grow:

  • Temperature regulation. Trichomes are sensitive to temperature changes and start to degrade if they’re too hot or too cold. To maintain the best trichome structure, you’ll want to maintain an ideal temperature – for most strains, this falls between an idyllic 68 and 77 degrees.
  • Adequate light. For plants to perform photosynthesis indoors, they’ll need an appropriate light source – preferably one that is full-spectrum. Full-spectrum LEDs are able to closely replicate the sun and provide ample, uniform light to your crop. Another selling point for LEDs is their low heat output, making it much easier for growers to regulate ambient heat.

    dry cannabis plants
    Rows of cannabis plants drying and curing following harvest
  • CO2. Another necessary ingredient for photosynthesis is CO2. Providing your indoor crops with CO2 can boost plant size and yields and, therefore, provides more surface area for trichomes to develop and thrive.
  • Cold snap prior to harvest. Some growers rely on this age-old tactic for one last push before harvest – lowering their temperature for a few days right at the end of the flower cycle. They believe this puts the plants into a defense mode and will produce more trichomes in order to protect themselves.

Following Best Practices Post-Harvest
You made it to harvest – you’re almost done!

When harvesting and storing your plants, handle them with care to reduce damage to trichomes. If you’re planning on immediately making concentrates, you can move forward to the drying and curing process. If you’re going to wait a few weeks before processing, freeze your plants. This will preserve the cannabinoid and terpene profiles at their peak.

As the cannabis industry continues to expand, more consumers are likely to reach for concentrates at their local dispensaries. It makes sense that businesses want to diversify their offerings to satisfy customers looking for the most effective way to consume cannabis. As with any cannabis-derived product, producers will want to prioritize quality and safety – especially in the concentrate market.

Cannabis Industry Insurance Outlook for 2020

By , T.J. Frost
1 Comment

Cannabis businesses have a lot to look forward to in 2020. After a bipartisan push through the House, the Safe Banking Act currently awaits passage in the Senate and then the president’s signature. If all goes well, the bill will allow the financial sector to finally service cannabis businesses – from banking to investments and insurance.

What else can cannabis business look forward to this year? Check out HUB’s Top 5 cannabis industry predictions for 2020.

  1. Hemp/CBD products go to market in droves. The passage of the Farm Bill and the ease of shipping hemp across state lines has led to a production boom for the crop. With little federal regulation around manufacturing and distribution, hemp/CBD products from edible oils to clothing and anti-inflammatory lotions are extremely profitable. Expect final federal Domestic Hemp Production Program rules on acceptable levels of THC in hemp/CBD products to be published sometime in 2020. These will be based on the current rule draft. There’s a strong push to move industrial hemp into the federal crop insurance program, which is also likely to happen in 2020.
  2. Product liability insurance is no longer a luxury. Thanks to significant vaporizer, battery and contamination claims currently in the courts, cannabis business can expect higher product liability premium rates in 2020. Expect rates to jump as much as 30 to 40%, depending on the resolution of these cases. For this reason, carriers will be more diligent about underwriting and may even ask for certification of insurance from vendors, and additional insureds on third-party policies. Exercising more caution and oversight when selecting vendors is a must for cannabis businesses operating in 2020 under this premise. It’s critical for all organizations to take a hard look at business practices before entering partnerships moving forward.
  3. Phase II industry growing pains surface. Now that the cannabis gold rush is dying down, businesses are poised to enter Phase II of their growth.Those who failed to institute proper hiring processes, including background checks, as well as protocols to promote security and prevent theft are currently facing challenges. Significant industry consolidation is making way for cannabis conglomerates to become multi-state operators. Directors and officers that made poor investments or acquisitions are facing scrutiny at the hands of the SEC or business investors. Without D&O insurance, or adequate limits, directors and officers could find their personal finances drained. Insisting on adequate D&O protection going forward is a best practice for cannabis executives.  
  4. Product and state regulatory testing expands. High-profile manufacturers and distributors of cannabis are standardizing their cannabis, hemp and CBD ingredient labeling. However, many others are taking advantage of the lack of rules currently surrounding cannabis production by falsifying labels and misrepresenting THC content in products. This has led to recent lawsuits and claims. As a result, states will begin to administer product testing and license regulations and enforce carrying time limits, track and trace and bag and tag rules. Get ready for fines, penalties and increased non-compliance liabilities in 2020.
  5. Increased availability of policies and limits. Both the cannabis industry and the number of insurance carriers entering the market continue to grow steadily. Businesses are enjoying higher liability limits as a result – to the tune of $15M on product liability and $60M on property. Coverage for outdoor cannabis crop is now a possibility, and workers’ compensation coverage can function as a blanket policy for businesses across state lines as well. Should the Safe Banking Act pass soon, stay tuned for additional insurance opportunities as well.

2020 Growth and Beyond

The 2020 presidential election will bring the federal legalization of cannabis to the forefront of public discourse. While the law may not change yet, passage of the Safe Banking Act and increased regulatory action at the state level will highlight the successes and failures of the 33 states and the District of Columbia that have legalized cannabis in some capacity. These will serve as a guiding light for federal legalization down the road.

USDA Logo

USDA Announces Hemp Regulations

By Aaron G. Biros
3 Comments
USDA Logo

This morning, U.S. Secretary of Agriculture Sonny Perdue announced the establishment of the U.S. Domestic Hemp Production Program. The program, as stipulated by Congress in the 2018 Farm Bill, will establish a regulatory framework for hemp production in the country.

Secretary Perdue made the announcement in a YouTube video titled “USDA’s Hemp Policy.” Later in the week, an interim final rule formalizing the program will be published in the Federal Register, according to the USDA’s website. “The rule includes provisions for the U.S. Department of Agriculture (USDA) to approve hemp production plans developed by states and Indian tribes including: requirements for maintaining information on the land where hemp is produced; testing the levels of delta-9 tetrahydrocannabinol; disposing of plants not meeting necessary requirements; and licensing requirements,” reads the press release. “It also establishes a federal plan for hemp producers in states or territories of Indian tribes that do not have their own approved hemp production plan.” The interim final rule will go into effect as soon as it is published in the Federal Register, which should be by the end of this week.

You can find a preview of the rule here. The agency has also developed guidelines for sampling and testing procedures, which you can find here. Those documents are meant to provide more information for hemp testing laboratories.

You can watch the YouTube video and read the announcement he made below:

Hello everyone, as I travel across this great country of ours, I hear a lot about a strong interest in a new economic opportunity for America’s farmers: the production of hemp. Which is why today I am pleased to announce the USDA has published the rule establishing the US domestic hemp production program. We said we’d get it done in time for producers to make planning decisions for 2020 and we followed through. We have had teams operating with all hands-on-deck to develop a regulatory framework that meets Congressional intent while seeking to provide a fair, consistent and science-based process for states, tribes, and individual producers who want to participate in this program. As mandated by Congress, our program requires all hemp growers to be licensed and includes testing protocols to ensure that hemp grown under this program is hemp and nothing else. The USDA has also worked to provide licensed growers access to loans and risk management products available for other crops. As the interim final rule, the rule becomes effective immediately upon publication in the federal register. But we still want to hear from you. Help us make sure the regulations meet your needs. That’s why the publication of the interim final rule also includes a public comment period continuing a full and transparent rulemaking process that started with a hemp listening session all the way back in March 2019. At USDA, we are always excited when there are new economic opportunities for our farmers and we hope the ability to grow hemp will pave the way for new products and markets. And I encourage all producers to take the time to fully educate themselves on the processes, requirements and risk that come with any market or product before entering this new frontier. The Agricultural Marketing Service will be providing additional information, resources and educational opportunities on the new program. And I encourage you to visit the USDA hemp website for more information. As always, we thank you for your patience and input during this process.

The Best Way to Remediate Moldy Cannabis is No Remediation at All

By Ingo Mueller
2 Comments

Consumers are largely unaware that most commercial cannabis grown today undergoes some form of decontamination to treat the industry’s growing problem of mold, yeast and other microbial pathogens. As more cannabis brands fail regulatory testing for contaminants, businesses are increasingly turning to radiation, ozone gas, hydrogen peroxide or other damaging remediation methods to ensure compliance and avoid product recalls. It has made cannabis cultivation and extraction more challenging and more expensive than ever, not to mention inflaming the industry’s ongoing supply problem.

The problem is only going to get worse as states like Nevada and California are beginning to implement more regulations including even tougher microbial contamination limits. The technological and economic burdens are becoming too much for some cultivators, driving some of them out of business. It’s also putting an even greater strain on them to meet product demand.

It’s critical that the industry establishes new product standards to reassure consumers that the cannabis products they buy are safe. But it is even more critical that the industry look beyond traditional agricultural remediation methods to solve the microbial problems.

Compounding Risks

Mold and other microbial pathogens are found everywhere in the environment, including the air, food and water that people consume. While there is no consensus yet on the health consequences of consuming these contaminants through cannabis, risks are certainly emerging. According to a 2015 study by the Cannabis Safety Institutei, molds are generally harmless in the environment, but some may present a health threat when inhaled, particularly to immunocompromised individuals. Mycotoxins resulting from molds such as Aspergillus can cause illnesses such as allergic bronchopulmonary aspergillosis. Even when killed with treatment, the dead pathogens could trigger allergies or asthma.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

There is an abundance of pathogens that can affect cannabis cultivation, but the most common types are Botrytis (bud rot, sometimes called gray mold) and Powdery Mildew. They are also among the most devastating blights to cannabis crops. Numerous chemical controls are available to help prevent or stem an outbreak, ranging from fungicides and horticultural oils to bicarbonates and biological controls. While these controls may save an otherwise doomed crop, they introduce their own potential health risks through the overexposure and consumption of chemical residues.

The issue is further compounded by the fact that the states in which cannabis is legal can’t agree on which microbial pathogens to test for, nor how to test. Colorado, for instance, requires only three pathogen tests (for salmonella, E. coli, and mycotoxins from mold), while Massachusetts has exceedingly strict testing regulations for clean products. Massachusetts-based testing lab, ProVerde Laboratories, reports that approximately 30% of the cannabis flowers it tests have some kind of mold or yeast contamination.

If a cannabis product fails required microbial testing and can’t be remedied in a compliant way, the grower will inevitably experience a severe – and potentially crippling – financial hit to a lost crop. Willow Industries, a microbial remediation company, says that cannabis microbial contamination is projected to be a $3 billion problem by 2020ii.

Remediation Falls Short
With the financial stakes so high, the cannabis industry has taken cues from the food industry and adopted a variety of ways to remediate cannabis harvests contaminated with pathogens. Ketch DeGabrielle of Qloris Consulting spent two years studying cannabis microbial remediation methods and summarized their pros and consiii.

He found that some common sterilization approaches like autoclaves, steam and dry heat are impractical for cannabis due the decarboxylation and harsh damage they inflict on the product. Some growers spray or immerse cannabis flowers in hydrogen peroxide, but the resulting moisture can actually cause more spores to germinate, while the chemical reduces the terpene content in the flowers.

Powdery mildew starts with white/grey spots seen on the upper leaves surface

The more favored, technologically advanced remediation approaches include ozone or similar gas treatment, which is relatively inexpensive and treats the entire plant. However, it’s difficult to gas products on a large scale, and gas results in terpene loss. Microwaves can kill pathogens effectively through cellular rupture, but can burn the product. Ionizing radiation kills microbial life by destroying their DNA, but the process can create carcinogenic chemical compounds and harmful free radicals. Radio frequency (which DeGabrielle considers the best method) effectively kills yeast and mold by oscillating the water in them, but it can result in moisture and terpene loss.

The bottom line: no remediation method is perfect. Prevention of microbial contamination is a better approach. But all three conventional approaches to cannabis cultivation – outdoors, greenhouses and indoor grow operations – make it extremely difficult to control contamination. Mold spores can easily gain a foothold both indoors and out through air, water, food and human contact, quickly spreading into an epidemic.

The industry needs to establish new quality standards for product purity and employ new growing practices to meet them. Advanced technologies can help create near perfect growing ecosystems and microclimates for growing cannabis free of mold contamination. Internet of Things sensors combined with AI-driven robotics and automation can dramatically reduce human intervention in the growing process, along with human-induced contamination. Natural sunlight supplemented with new lighting technologies that provide near full-light and UV spectrum can stimulate robust growth more resistant to disease. Computational fluid dynamic models can help growers achieve optimal temperature, humidity, velocity, filtration and sanitation of air flow. And tissue culture micropropagation of plant stock can eliminate virus and pathogen threats, to name just a few of the latest innovations.

Growing legal cannabis today is a risky business that can cost growers millions of dollars if pathogens contaminate a crop. Remediation methods to remove microbial contamination may work to varying degrees, but they introduce another set of problems that can impact consumer health and comprise product quality.


References

i. Holmes M, Vyas JM, Steinbach W, McPartland J. 2015. Microbiological Safety Testing of Cannabis. Cannabis Safety Institute. http://cannabissafetyinstitute.org/wp-content/uploads/2015/06/Microbiological-Safety-Testing-of-Cannabis.pdf

ii. Jill Ellsworth, June 2019, Eliminating Microbials in Marijuana, Willow Industries, https://willowindustries.com/eliminating-microbials-in-marijuana/#

iii. Ketch DeGabrielle, April 2018, Largest U.S. Cannabis Farm Shares Two Years of Mold Remediation Research, Analytical Cannabis, https://www.analyticalcannabis.com/articles/largest-us-cannabis-farm-shares-two-years-of-mold-remediation-research-299842

 

Soapbox

The Stress of a Grower

By Carl Silverberg
2 Comments

Tell me that you can’t relate to this story.

You’re sitting down to dinner at a restaurant about ten minutes from where you work, finally relaxing after a tough day. You’ve set your environmental alerts on your plants; you have that peace of mind that the technology promised and you know that if anything goes wrong you’ll get notified immediately. As you’re looking at the menu, you receive an alert telling you that the temperature in one of your 2,000 square foot grow rooms has gone out of the safe range. Your mind starts to race, “It’s week seven, I’ve got 500 plants one week away from harvest, that’s 200 pounds of cannabis worth about $150,000-$200,000. Oh my God, what am I going to do?”

You’re doing all this at the dinner table and even though you’re not in a state of panic, you are extremely concerned. You need to figure out what’s going on. You check the graphing and see that over the past hour your humidity dropped and your temperature is gradually going up. Within the past ten minutes, the temperature has gone to 90 degrees. Your numbers tell you that the temperature in the room with $200,000 of cannabis is going up about five degrees every three minutes.

adamJgrow
Monitoring a large grow room can be a stressful task.

“I see this trend and can’t figure it out,” the grower relates. “Normally, the HVAC kicks on and I’d begin to see a downward trend on the graphs. I pre-set my trigger for 90 degrees. But, I’m not seeing that. What I AM seeing is the temperature gradually and consistently getting warmer without the bounce-back that I would expect once the HVAC trigger was hit. All I know is I better find out what’s causing all this and I better find out fast or my entire crop is gone.”

You go through the rest of the checklist from LUNA and you see that the lights are still on. Now, you’re starting to sweat because if the temperature in that room hits 130 and stays there for more than twenty minutes, you’re losing your entire crop. You have to walk in your boss’s office the next day and explain why, after all the time and money you put in over the past seven weeks, not only is all that money gone but so is the $200,000 he is counting on to pay salaries, expenses, and bank loans.

This is something you’ve been working on for seven straight weeks and if you don’t make the right decision, really quickly, when that room hits 130 degrees here’s what happens.

“My equipment starts to fail,” our grower continues. “The crop literally burns as the oils dry up and the crop is worthless. At 130 degrees, my grow lights essentially start to melt. All you can think of is that temperature going up five degrees every three minutes and you’re ten minutes from your facility. I need to leave that restaurant right now, immediately, because even if I get there in ten minutes the temperature is going to be almost 120 degrees while I’ve been sitting here trying to figure out what’s wrong.”

You run out to your car and you speed back to the facility. The grow room is now 125 degrees, you have maybe three or four minutes left to figure things out before you flush $200,000 down the drain. The first thing you do is turn off the grow lights because that’s your primary source of heat. Then, you check your HVAC panel and you realize it malfunctioned and shorted out. There’s the problem.

The real toll is the human cost. Once this happens, no grower ever wants to leave and go home or even go to dinner. It’s a horrible toll. It’s the hidden cost we don’t talk about. The grower opens up with his own personal experience.“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” 

“You think about the burden on the person that you bring in to replace you while you’re out of town and then you think about the burden on you if something goes wrong again. And you decide, it’s not worth it. The anxiety, the fear that it will happen again, it’s not worth it. So, you don’t go. I didn’t even see my sister’s new baby for eight months.”

Your desire to see your family, your desire to have a normal life; all of that goes out the window because of your desire to be successful in your job. It outweighs everything.

This is every grower. It’s why many farmers never leave their property. It just becomes a normal way of living. You just repeat it so much that you don’t even think about it. Why go on vacation if your stress level is higher than it is if you’re home. You’re constantly worried about your farm or your facility. The only way to escape it is to not go away at all.

“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” he tells us. “You don’t realize how stressful a lifestyle you live is until you step back and look at it. Or, if you have an alert system that allows you to pull back. That’s when you realize how difficult your life is. Otherwise, it just seems normal.”

As AI technology expands its footprint into agriculture, there will be more tools to help mediate situations like this; more tools to give you a more normal life. It’s one of the reasons we got into the business in the first place.

Fungal Monitoring: An Upstream Approach to Testing Requirements

By Bernie Lorenz, PhD
1 Comment

Mold is ubiquitous in nature and can be found everywhere.1 Cannabis growers know this all too well – the cannabis plant, by nature, is an extremely mold-susceptible crop, and growers battle it constantly.

Of course, managing mold doesn’t mean eradicating mold entirely – that’s impossible. Instead, cultivation professionals must work to minimize the amount of mold to the point where plants can thrive, and finished products are safe for consumption.

Let’s begin with that end in mind – a healthy plant, grown, cured and packaged for sale. In a growing number of states, there’s a hurdle to clear before the product can be sold to consumers – state-mandated testing.

So how do you ensure that the product clears the testing process within guidelines for mold? And what tools can be employed in biological warfare?

Mold: At Home in Cannabis Plants

It helps to first understand how the cannabis plant becomes an optimal environment.

The cannabis flower was designed to capture pollen floating in the air or brought by a pollinating insect.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

Once a mold spore has landed in a flower, the spore will begin to grow. The flower will continue to grow as well, and eventually, encapsulate the mold. Once the mold is growing in the middle of the flower, there is no way to get rid of it without damaging the flower.

A Name with Many Varieties

The types of spores found in or around a plant can make or break whether mold will end with bad product.

Aspergillus for example, is a mold that can produce mycotoxins, which are toxic to humans2. For this reason, California has mandatory testing3for certain aspergillus molds.

Another example, Basidiospores, are found outside, in the air. These are spores released from mushrooms and have no adverse effects on cannabis or a cannabis cultivation facility.

Fungi like powdery mildew and botrytis (PM and Bud Rot) typically release spores in the air before they are physically noticed on plants. Mold spores like these can survive from one harvest to the next – they can be suspended in the air for hours and be viable for years.

How Mold Travels

Different types of spores – the reproductive parts of mold – get released from different types of mold. Similar to plants and animals, mold reproduces when resources are deemed sufficient.

The opposite is also true that if the mold is under enough stress, such as a depleting nutrient source, it can be forced into reproduction to save itself.4

In the end, mold spores are released naturally into the air for many reasons, including physical manipulation of a plant, which, of course, is an unavoidable task in a cultivation facility.5

Trimming Areas: A Grow’s Highest Risk for Mold

Because of the almost-constant physical manipulation of plants that happen inside its walls, a grow’s trimming areas typically have the highest spore counts. Even the cleanest of plants will release spores during trimming.

Best practices include quality control protocols while trimming

These rooms also have the highest risk for cross contamination, since frequently, growers dry flower in the same room as they trim. Plus, because trimming can be labor intensive, with a large number of people entering and leaving the space regularly, spores are brought in and pushed out and into another space.

The Battle Against Mold

The prevalence and ubiquitous nature of mold in a cannabis facility means that the fight against it must be smart, and it must be thorough.

By incorporating an upstream approach to facility biosecurity, cultivators can protect themselves against testing failures and profit losses.

Biosecurity must be all encompassing, including everything from standard operating procedures and proper environmental controls, to fresh air exchange and surface sanitation/disinfection.

One of the most effective tactics in an upstream biosecurity effort is fungal monitoring.

Ways to Monitor Mold

Determining the load or amount of mold that is in a facility is and always will be common practice. This occurs in a few ways.

Post-harvest testing is in place to ensure the safety of consumers, but during the growing process, is typically done using “scouting reports.” A scouting report is a human report: when personnel physically inspect all or a portion of the crop. A human report, unfortunately, can lead to human error, and this often doesn’t give a robust view of the facility mold picture.

Another tool is agar plates. These petri dishes can be opened and set in areas suspected to have mold. Air moves past the plate and the mold spores that are viable land on the dishes. However, this process is time intensive, and still doesn’t give a complete picture.

Alternatively, growers can use spore traps to monitor for mold.

Spore traps draw a known volume of air through a cassette.The inside of the cassette is designed to force the air toward a sticky surface, which is capable of capturing spores and other materials. The cassette is sent to a laboratory for analysis, where they will physically count and identify what was captured using a microscope.

Spore trap results can show the entire picture of a facility’s mold concerns. This tool is also fast, able to be read on your own or sent to a third party for quick and unbiased review. The information yielded is a useful indicator for mold load and which types are prevalent in the facility.

Spore Trap Results: A Story Told

What’s going on inside of a facility has a direct correlation to what’s happening outside, since facility air comes infromthe outside. Thus, spore traps are most effective when you compare a trap inside with one set outside.

When comparing the two, you can see what the plants are doing, view propagating mold, and understand which of the spore types are only found inside.

Similar to its use in homes and businesses for human health purposes, monitoring can indicate the location of mold growth in a particular area within a facility.

These counts can be used to determine the efficacy of cleaning and disinfecting a space, or to find water leaks or areas that are consistently wet (mold will grow quickly and produce spores in these areas).

Using Spore Traps to See Seasonality Changes, Learn CCPs

Utilizing spore traps for regular, facility-wide mold monitoring is advantageous for many reasons.

One example: Traps can help determine critical control points (CCP) for mold.

What does this look like? If the spore count is two times higher than usual, mitigating action needs to take place. Integrated Pest Management (IPM) strategies like cleaning and disinfecting the space, or spraying a fungicide, are needed to bring the spore count down to its baseline.

For example, most facilities will see a spike in spore counts during the times of initial flower production/formation (weeks two to three of the flower cycle).

Seasonal trends can be determined, as well, since summer heat and rain will increase the mold load while winter cold may minimize it.

Using Fungal Monitoring in an IPM Strategy

Fungal monitoring – especially using a spore trap – is a critical upstream step in a successful IPM strategy. But it’s not the only step. In fact, there are five:

  • Identify/Monitor… Using a spore trap.
  • Evaluate…Spore trap results will indicate if an action is needed. Elevated spore counts will be the action threshold, but it can also depend on the type of spores found.
  • Prevention…Avoiding mold on plants using quality disinfection protocols as often as possible.
  • Action…What will be done to remedy the presence of mold? Examples include adding disinfection protocols, applying a fungicide, increasing air exchanges, and adding a HEPA filter.
  • Monitor…Constant monitoring is key. More eyes monitoring is better, and will help find Critical Control Points.

Each step must be followed to succeed in the battle against mold.

Of course, in the battle, there may be losses. If you experience a failed mandatory product testing result, use the data from the failure to fix your facility and improve for the future.

The data can be used to determine efficacy of standard operating procedures, action thresholds, and other appropriate actions. Plus, you can add a spore trap analysis for pre- and post- disinfection protocols, showing whether the space was really cleaned and disinfected after application. This will also tell you whether your products are working.

Leveraging all of the tools available will ensure a safe, clean cannabis product for consumers.


References

  1. ASTM D8219-2019: Standard Guide for Cleaning and Disinfection at a Cannabis Cultivation Center (B. Lorenz): http://www.astm.org/cgi-bin/resolver.cgi?D8219-19
  2. Mycotoxin, Aspergillus: https://www.who.int/news-room/fact-sheets/detail/mycotoxins
  3. State of California Cannabis Regulations: https://cannabis.ca.gov/cannabis-regulations/
  4. Asexual Sporulation in Aspergillus nidulans (Thomas H. Adams,* Jenny K. Wieser, and Jae-Hyuk Yu):  https://pdfs.semanticscholar.org/7eb1/05e73d77ef251f44a2ae91d0595e85c3445e.pdf?_ga=2.38699363.1960083875.1568395121-721294556.1562683339
  5. ASTM standard “Assessment of fungal growth in buildings” Miller, J. D., et al., “Air Sampling Results in Relation to Extent of Fungal Colonization of Building Materials in Some Water Damaged Buildings,” Indoor Air, Vol 10, 2000, pp. 146–151.
  6. Zefon Air O Cell Cassettes: https://www.zefon.com/iaq-sampling-cassettes
Soapbox

Tips to Shrink your Shrinkage

By Carl Silverberg
No Comments

I had dinner last night with a friend who is a senior executive at one of the largest automobile companies in the world. When I explained the industry-accepted rate of 25-30% shrinkage in horticulture he said, “Are you kidding me? Can you imagine the story in the Wall Street Journal if I gave a press conference and said that we were quite content to throw away three out of every ten cars we manufactured?”

Yet, for all growers, operators and investors who complain about shrinkage, it’s an accepted part of the business. What if it wasn’t; what if you could shrink your shrinkage by 60% and get it down to 10% or less? How much more profitable would your business be and how much easier would your life be?

Let’s take the floriculture industry as our first example. You propagate chrysanthemums in February, they get repotted at the end of April and by the end of June, you might start to see some buds. In a very short time span your job changes from being a grower who manages 10,000 square feet of chrysanthemums to being an order taker. Over a period of eight weeks, you have to unload as many of those mums as possible. The sales team at Macy’s has more time to move their holiday merchandise than you do.

If you’re like most operations, your inventory tracking system consists of Excel spreadsheets and notebooks that tell you what happened in previous years so you can accurately predict what will happen this year. The notebooks give you a pretty accurate idea of where in the greenhouses your six cultivars are, how many you planted and which of the five stages they are in. You already have 30 different sets of data to manage before you add on how many you sell of each cultivar and what stage they were in.

The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.Then your first order comes in and out the window goes any firm control of where the mums are, what stage they’re in and how many of each cultivar you have left. A couple of hours after your first order, a second comes in and by the time you get back in touch, check your inventory, call back the buyer and she’s able to connect with you, those 2837 stage 3 orange mums are moving into stage 4. Only she doesn’t want stage 4 mums she only wants stage 3 so now you frantically call around to see who wants stage 4 orange mums very soon to be stage 5 mums.

And, the answer is often no one. What if you didn’t have your inventory count exact and now you have 242 yellow mums that you just found in a different location in your greenhouse and had you known they were there, you could have sold them along with 2463 other mums that you just located in various parts of your greenhouse.

It doesn’t have to be like that. We had a client in a similar situation, and they are on track to reduce their shrinkage to just a shade over 10%. The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.

And don’t think that shrinkage is an issue only in the purview of floriculture. It’s an even bigger problem for cannabis because of the high value of each crop. The numbers don’t sound as bad because unlike floriculture, you don’t have to throw out cannabis that’s not Grade A. You can always sell it for extract. But extract prices are significantly less per pound than flower in the bag.

Here’s how one grower explained it. “Because of the high value of the crop, and the only other crop I’ve worked with that high is truffles, you’re playing a much higher stakes game with shrinkage. Even if you try and salvage a bad crop by using all of the parts of the cannabis plant. Listen, the difference between Grade A and Grade C could be $1,000 for A while a pound of B/C is less than $400. If you produce a standard 180 to 200 pounds in your grow rooms, you’ve really screwed up. No operator is going to keep you if you just cost them $120,000.”

Canopy_Growth_Corporation_logo

From CannTrust To Canopy: Is There A Connection To Current Cannabis Scandals?

By Marguerite Arnold
2 Comments
Canopy_Growth_Corporation_logo

As Europe swooned under record-breaking heat this summer, the cannabis industry also found itself in a rather existential hot seat.

The complete meltdown at CannTrust has yet to reach a conclusion. Yes, a few  jobs have been lost. However, a greater question is in the room as criminal investigatory and financial regulatory agencies on both sides of the US-Canada border (plus in Europe) are getting involved.

As events have shown, there is a great, big, green elephant in the room that is now commanding attention. Beyond CannTrust, how widespread were these problematic practices? And who so far has watched, participated, if not profited, and so far, said nothing?

Who, What, Where?

The first name in the room? Canopy Growth.Canopy_Growth_Corporation_logo

Why the immediate association? Bruce Linton, according to news reports, was fired as CEO by his board the same day, July 3, 2019, that CannTrust received its first cease and desist notice from Health Canada.

Further, there is a remarkable similarity in not only problematic practices, but timing between the two companies. This may also indicate that Canopy’s board believed that Linton’s behaviour was uncomfortably close to executive misdeeds at CannTrust. Not to mention, this was not the first scandal that Linton had been anywhere close to around acquisition time. See the Mettrum pesticide debacle, that also broke right around the time Canopy purchased the company in late 2016 as well as the purchase of MedCann GmbH in Germany.

Reorg also appears to be underway in Europe as well. As of August, Paul Steckler has been brought in as “Managing Director Europe” and is now based in Frankfurt. Given the company’s history of “co-ceo’ing” Linton out the door, is more change to come?

What Went Down At Canopy?

Last year, Canopy announced its listing on the NYSE in May. To put this in context, this was two months after the first German cultivation bid went down to legal challenge. By August 15, 2018 with a new bid in the offing, the company had closed the second of its multi-billion dollar investments from Constellation.

Bruce Linton, former CEO of Canopy Growth
Photo: Youtube, TSX

Yet by late October, after Bruce Linton skipped a public markets conference in Frankfurt where many of the leading Canadian cannabis company execs showed up to lobby Jens Spahn (the health minister of Germany) about the bid if not matters relating to the Deutsche Börse, there were two ugly rumours afoot.

Video showing dead plants at Canopy’s BC facility surfaced. Worse, according to the chatter online at least, this was the second “crop failure” at the facility in British Columbia. Even more apparently damning? This all occurred during the same  time period that the second round of lawsuits against the reconstituted German cultivation bid surfaced.

Canopy in turn issued a statement that this destruction was not caused by company incompetence but rather a delay in licensing procedures from Health Canada. Despite lingering questions of course, about why a company would even start cultivation in an unlicensed space, not once but apparently twice.  And further, what was the real impact of the destruction on the company’s bottom line?

Seen within the context of other events, it certainly poses an interesting question, particularly, in hindsight.

Canopy, which made the finals in the first German cultivation bid, was dropped in the second round – and further, apparently right as the news hit about the BC facility. Further, no matter the real reason behind the same, Canopy clearly had an issue with accounting for crops right as Canadian recreational reform was coming online and right as the second German cultivation bid was delayed by further legal action last fall.

Has Nobody Seen This Coming?

In this case, the answer is that many people have seen the writing on the wall for some time. At least in Germany, the response in general has been caution. To put this in true international perspective, these events occurred against a backdrop of the first increase in product over the border with Holland via a first-of-its kind agreement between the German health ministry and Dutch authorities. Followed just before the CannTrust scandal hit, with the announcement that the amount would be raised a second time.

German health authorities, at least, seem doubtful that Canadian companies can provide enough regulated product. Even by import. The Deutsche Börse has put the entire public Canadian and American cannabis sector under special watch since last summer.

Common Territories

By the turn of 2019, Canopy had announced its expansion into the UK (after entering the Danish market itself early last year) and New York state.

And of course by April, the company unveiled plans to buy Acreage in the U.S.

Yet less than two weeks later, Canopy announced not new cultivation facilities in Europe, but plans to buy Bionorica, the established German manufacturer of dronabinol – the widely despised (at least by those who have only this option) synthetic that is in fact, prescribed to two thirds of Germany’s roughly 50,000 cannabis patients.

By August 2019, right after the Canopy Acreage deal was approved by shareholders, Canopy announced it had lost just over $1 billion in the last three months.

Or, to put this in perspective, 20% of the total investment from Constellation about one year ago.

What Happened At CannTrust And How Do Events Line Up?

The current scandal is not the first at CannTrust either. In November 2017, CannTrust was warned by Health Canada for changing its process for creating cannabis oil without submitting the required paperwork. By March of last year however, the company was able to successfully list on the Toronto stock exchange.

Peter Aceto arrived at CannTrust as the new CEO on October 1 last year along with new board member John Kaken at the end of the month. Several days later the company also announced that it too, like other major cannabis companies including Canopy, was talking to “beverage companies.” It was around this time that illegal growing at CannTrust apparently commenced. Six weeks later, the company announces its intent to also list on the NYSE. Two days later, both the CEO and chair of the board were notified of the grow and chose not to stop it.

Apparently, their decision was even unchanged after the video and resulting online outrage about the same over the destroyed crops at the Canopy facility in BC surfaced online.

On May 10, just over a week after the Bioronica purchase in Germany, the first inklings of a scandal began to hit CannTrust in Canada. A whisteblower inside the company quit after sending a mass email to all employees about his concerns. Four days later, the company announced the successful completion of their next round of financing, and further that they had raised 25.5 million more than they hoped.

Six weeks later, on June 14, Health Canada received its warning about discrepancies at CannTrust. The question is, why did it take so long?

Where Does This Get Interesting?

The strange thing about the comparisons between CannTrust and Canopy, beyond similarities of specific events and failings, is of course their timing. That also seems to have been apparent at least to board members at Canopy – if not a cause for alarm amongst shareholders themselves. One week after Health Canada received its complaint about CannTrust, shareholders voted to approve the Canopy-Acreage merger, on June 21.

Yet eight days after that, as Health Canada issued an order to cease distribution to CannTrust, the Canopy board fired Bruce Linton.

One week after that, the Danish recipient of CannTrust’s product, also announced that they were halting distribution in Europe. By the end of August, Danish authorities were raising alarms about yet another problem – namely that they do not trust CannTrust’s assurances about delivery of pesticide-free product.

Is this coincidence or something else?

If like Danish authorities did in late August 2019, calling for a systematic overhaul of their own budding cannabis ecosystem (where both Canadian companies operate), the patterns and similarities here may prove more than that. Sit tight for at least a fall of more questions, if not investigations.

Beyond one giant cannabis conspiracy theory, in other words, the problems, behaviour and response of top executives at some of the largest companies in the business appear to be generating widespread calls – from not only regulators, but from whistle blowers and management from within the industry itself – for some serious, regulatory and even internal company overhauls. Internationally.

And further on a fairly existential basis.


EDITOR’S NOTE: CIJ reached out to Canopy Growth’s European HQ for comment by email. None was returned.

Correction: This article has been updated to show that the Danish recipient of Canntrust’s product announced they were halting distribution one week after Bruce Linton’s firing, not one day.