Tag Archives: flow

HACCP

HACCP for Cannabis: A Guide for Developing a Plan

By Radojka Barycki
1 Comment
HACCP

Hazard Analysis and Critical Control Points (HACCP) is a systematic approach that evaluates hazards that may potentially be present in food products that can harm the consumer. The process used to manufacture the product is evaluated from raw material procurement, receiving and handling, to manufacturing, distribution and consumption of the finished product1. The documented process is what is known as HACCP plan. Although HACCP was designed to evaluate hazards in foods, it can be used to assess or evaluate hazards that may potentially be present in cannabis consumable products (edibles and vaping) that can cause harm to the consumer.

HACCP plan development requires a systematic approach that covers 5 preliminary steps and 7 principles. A systematic approach means that each step must be followed as outlined. Skipping a step will result in a HACCP plan that most likely will be ineffective to control potential hazards in the product.

The 5 preliminary steps are:

  1. Establish a HACCP team
  2. Describe the product
  3. Establish the intended use of the product
  4. Develop a flow diagram
  5. Verify the flow diagram

The 7 Principles are:HACCP

  1. Conduct a hazard analysis
  2. Identify the critical control points (CCPs)
  3. Establish critical limits (CL)
  4. Establish monitoring procedures
  5. Establish corrective actions
  6. Establish verification procedures
  7. Establish records and record keeping procedures1,2

It is important to mention that HACCP plans are supported by programs and procedures that establish the minimum operational and sanitary conditions to manufacture safe products. These programs and procedures are known as pre-requisite programs (PRP) or preventative controls1,2.

Figure 1. Flow Diagram

A multidisciplinary team must be established in order to ensure that all inputs of the product manufacturing process are considered during the hazards analysis discussions. The description of the product and its intended use provides detail information on ingredients, primary packaging material, methods of distribution, chemical characteristics, labeling and if any consumer might be vulnerable to the consumption of the product. A verified flow diagram is an accurate representation of the different steps followed during the product manufacturing process and will be used to conduct a hazard analysis. An inaccurate flow diagram will set the stage for an inadequate HACCP plan. Therefore, it is important that the HACCP team members verify the flow diagram. Figure 1 is a flow diagram for a fictional infused apple juice manufacturing plan that I will be using as an example.

The hazard analysis is the backbone of the HACCP plan. There are two elements that must be considered when conducting the hazard analysis:

  • Identification of the hazard associated with the ingredient(s) and/or the product manufacturing steps. These hazards have been categorized as: Biological, chemical (including radiological) and physical. Biological, chemical and physical hazards should be considered for each ingredient, primary packaging and process step. Also, it is important that the team is specific as to what hazard they are referring to. I often find that biological hazards are identified as “pathogens” for example. The team has to be specific on which pathogen is of concern. For example, if you are processing apple juice, the pathogens of concern are pathogenic coli and Salmonella sp. However, if you are processing carrot juice, you need to add Clostridium botulinum as a biological hazard also. If the choice of method to eliminate the hazards is pasteurization for example, the processing temperature-time combinations will differ greatly when manufacturing the apple juice vs. the carrot juice as C. botulinum is an organism that can sporulate and, therefore, is harder to kill.
  • Characterization of the hazard. This implies determining the significance of the potential hazard based on the severity of the consequence if it is consumed and the likelihood of occurrence in the ingredient or process step. Only steps in the process that has significant hazards should be considered further.
Table 1. Ingredient Hazard Analysis

In my professional experience, the hazard analysis is one of the most difficult steps to achieve because it requires the expertise of the multidisciplinary team and a lot of discussion to get to the conclusion of which hazard is significant. I find that a lot of teams get overwhelmed during this process because they consider that everything in the process may represent a hazard. So, when I am working with clients or providing training, I remind everyone that, in the bigger scheme of things, we can get stricken by a lighting in the middle of a thunderstorm. However, what will increase our chances would be whether we are close or not to a body of water for example. If I am swimming in the middle of a lake, I increase my chances to get stricken by the lighting. In comparison, if I am just sitting in my living room drinking a cup of coffee during the thunderstorm, the likelihood of being stricken by a lighting is a lot less. The same rationale should be applied when conducting the hazard analysis for manufactured products. You may have a hazard that will cause illness or death (high on the severity chart) but you also may have a program that mitigates the likelihood of introducing or having the hazard. The program will reduce the significance of the hazard to a level that may not need a critical control point to minimize or eliminate it.

Table 2. Process Hazard Analysis (1)

Clear as mud, right? So, how would this look like on the infused apple juice example? Table 1 shows the hazard analysis for the ingredients. Tables 2 and 3 show the hazard analysis for the part of the process. In addition, I have identified the CCPs: Patulin testing and pasteurization. There is a tool called the CCP decision tree that is often used to determine the CCPs in the process.

Once we have the CCPs, we need to establish the critical limits to ensure that the hazard is controlled. These limits must be validated. In the case of Patulin, the FDA has done several studies and has established 50 ppm as the maximum limit. In the case of pasteurization, a validation study can be conducted in the juice by a 3rd party laboratory. These studies typically are called thermal death studies (TDS) and provide the temperature and time combination to achieve the reduction of the pathogen(s) of concern to an acceptable level that they do not cause harm. In juice, the regulatory requirement is a 5-log reduction. So, let’s say that the TDS conducted in the infused apple juice determined that 165°F for 5 seconds is the critical limit for pasteurization. Note that the 5 seconds will be provided by the flow of the product through the holding tube of the pasteurizer. This is measured based on flow in gallons per minute.

Table 3. Process Hazard Analysis (2)

Monitoring is essential to ensure that the critical limits are met. A monitoring plan that outlines what, how, when and who is responsible for the monitoring is required.

Ideally, the system should not fail. However, in a manufacturing environment, failures can happen. Therefore, it is important to pre-establish steps that will be taken to ensure that the product is not out of the control of the facility in the event of a deviation from the HACCP plan. These steps are called corrective actions and must be verified once they are completed. Corrective actions procedures must address the control of the product, investigation of the event, corrective actions taken so the deviation doesn’t reoccur and product disposition.

Table 4. HACCP Plan Summary

Verification activities ensure that the HACCP plan is being followed as written. Typically, verification is done by reviewing the records associated with the plan. These records include but are not limited to monitoring records, calibration records, corrective action records, and preventive maintenance records for equipment associated with the CCPs. Record review must be done within 7 working days of the record being produced.

Finally, establishing records and record keeping procedures is the last step on developing HACCP plans. Records must be kept in a dry and secure location.

Table 4 show the summary of the HACCP plan for the infused apple juice example.

For more information on how to develop a HACCP plan for your facility, read the resources below:

  1. HACCP Principles and Application Guidelines – The National Advisory Committee on Microbiological Criteria for Foods (NACMCF)
  2. ASTM D8250-19: Standard Practice for Applying a Hazard Analysis Critical Control Points (HACCP) Systems for Cannabis Consumable Products

Water Policy in California: Six Key Takeaways from the State Water Board’s New Cannabis Cultivation Policy

By Amy Steinfeld
No Comments

Cannabis is the most highly regulated crop in California, and the state just added another layer of regulation. This article breaks down the State Water Resources Control Board’s (SWRCB) recently updated Cannabis Cultivation Policy – Principles and Guidelines for Cannabis Cultivation (“Policy”) into six key takeaways.1 These guidelines impose new rules on cannabis cultivation activities that have the potential to impact a watercourse (stream, creek, river or lake). Most of these rules apply to cultivation of sun-grown cannabis, which is currently allowed in some form in 12 counties. Compliance with these new requirements will be implemented through the CalCannabis Cultivation Licensing Program.

  1. When developing farmland, hillsides should be avoided and erosion must be controlled.

The Policy provides specific rules for growing pot on undisturbed land. To prevent erosion, numerous limitations are placed on earthmoving and activities in sensitive areas, and cultivators are not allowed to grade hillsides that exceed a 50% slope.2

Cultivation prepping activities must minimize grading, dust, soil disturbance, erosion, and impacts on habitat, especially during the winter season.3 No vehicles or heavy equipment may be used within a riparian setback4 or watercourse,5 and cultivators must avoid damaging native riparian vegetation6 and oak woodlands.7 All farm equipment, fuel, and hazardous materials must be carefully stored away from creeks and sensitive habitat.8 The Policy also governs road construction.9

  1. Cultivators should avoid work in or near a surface waterbody.10

If a cultivator’s activities impact a river, stream, or lake, they must consult with the California Department of Fish and Wildlife (CDFW).11 Cultivators must maintain minimum riparian setbacks for all cannabis activities, including grading and ancillary farm facilities. Before grading land, a biologist must identify any sensitive flora or fauna, and if any is located, consult with CDFW and provide a report to the Regional Board.12 No irrigation runoff, tailwater, chemicals or plant waste can be discharged to a waterbody.13 Diversion facilities for the irrigation of cannabis may not block fish passage, upstream or downstream, and must be fitted with a CDFW-approved fish screen; new facilities are subject to all applicable permits and approvals.

  1. During the dry season, cultivators may not use surface water.

The use of surface water supplies in California requires a valid water right and the use of water for cannabis cultivation is no different.14 Anyone seeking to appropriate “water flowing in a known and defined channel” or from a watercourse must apply to the SWRCB and obtain a permit or license.15 Alternatively, a landowner whose property is adjacent to a watercourse may have a riparian right to divert the water for use on her land. Riparian users do not need permission from the SWRCB to divert water, but they must report water use annually.16

The biggest obstacle that growers face under this Policy is that they cannot divert anysurface water during the dry season—the growing season (April 1 through Oct. 31). It should be noted:

  • The seasonal prohibition of surface water diversion applies regardless of the nature of the water right or what has been historically used to irrigate other crops.
  • During the dry period, cultivators may only irrigate using stored water (see no. 5 below) or groundwater.
  • It remains to be seen whether a legal challenge will be brought against the state for their draconian prohibitions on irrigating cannabis during the six-month growing season. Because this prohibition applies to all watersheds in California, singles out one low-water use crop, and ignores established water rights, it is overly broad and may constitute a constitutional “taking” of property rights.
  1. During the wet season, surface water diversions must be monitored closely.

Cannabis-specific restrictions also apply during the wet season. From Nov. 1 to March 31, cultivators must comply with instream flow requirements and check in with the state daily. All surface water diversions for cannabis are subject to “Numeric and Narrative Instream Flow Requirements,” to protect flows needed for fish migration and spawning. To ensure diversions do not adversely impact fish flows, cultivators must also “maintain a minimum bypass of at least 50% of the streamflow.”17,18

While valid appropriative right holders may divert more than 10 gal./min. for cannabis irrigation during the wet season, riparian right holders are not allowed to exceed that diversion rate.19 All cultivators (including small diverters <10 acre-feet (“AF”)/yr) are required to employ water-saving irrigation methods, install measuring devices to track diversions daily, and maintain records on-site for at least five years.20 Cultivators must inspect and repair their water delivery system for leaks monthly,21 and inspect sprinklers and mainlines weekly to prevent runoff.22

  1. Cannabis cultivators may obtain a new water storage right for use during the dry season.

To address dry season irrigation limitations, cultivators are urged to store water offstream during the wet season, including rainwater, for dry season use. Growers may not rely on onstreamstorage reservoirs, except if they have an existing permitted reservoir in place prior to Oct. 31, 2017.23 Alternatively, small growers (storage is capped at 6.6 AF/yr) may benefit from the new Cannabis SIUR Program, an expedited process for cultivators who divert from a surface water source to develop and install storage offstream. Only diverters with a valid water right that allows for diversion to storage between Nov. 1 and March 31 qualify.

  1. Groundwater is less regulated, but cultivators should avoid drilling or using wells near waterbodies.

Groundwater is generally the recommended water supply for cannabis because, unlike surface water, it may be used during the dry season and is not subject to many of the restrictions listed above. It should be noted however:

  • Many groundwater basins are now governed by California’s Sustainable Groundwater Management Act (“SGMA”), which requires water agencies to halt overdraft and restore balanced levels of groundwater pumping from certain basins. Thus, SGMA may result in future pumping cutbacks or pumping assessments.
  • In some counties, moratoriums and restrictions on drilling new wells are on the rise.
  • Under this Policy, the state may step in to restrict groundwater pumping in the dry season in watersheds where there are large numbers of cannabis groundwater, wells located close to streams, and areas of high surface water-groundwater connectivity.24

In short, groundwater pumpers are at risk of cutback if the state deems it necessary to maintain nearby creek flows.Noncompliance can bring lofty fines, revocation of a grower’s cultivation license, or prosecution

Final Takeaways

This cannabis policy presents one of California’s most complex regulatory schemes to date. Before investing in a property, one must understand this Policy and have a robust understanding of the water rights and hydrology associated with the cultivation site. Growers looking to reduce permitting time and costs should invest in relatively flat, historically cultivated land with existing wells and ample groundwater supplies, or alternatively, grow indoors.

This article attempts to synthesize the maze of water supply and water quality regulations that make compliance exceedingly difficult; more detailed information can be found here. Noncompliance can bring lofty fines, revocation of a grower’s cultivation license, or prosecution. Growers are encouraged to contact a hydrologist and water lawyer before making major investments and to designate a water compliance officer to monitor and track all water diversions and water used for irrigation. Growers should also consult with their local jurisdiction regarding water use restrictions and stream setbacks before moving any dirt or planting cannabis.


References

  1. The Policy is available at: https://www.waterboards.ca.gov/water_issues/programs/cannabis/cannabis_policy.html (will go into effect on or before April 16, 2019.)
  2. Policy, Appendix A, Section 2, Term 4. The Policy defines “Qualified Professional” as a: California-Licensed Professional Geologist, including Certified Hydrogeologist and Certified Engineering Geologist, California-Licensed Geotechnical Engineer, and Professional Hydrologist. (Policy, Definition 72, p. 11.)
  3. Policy, Appendix A, Section 2, Terms 4 and 10.
  4. Policy, Appendix A, Section 2, Term 3.
  5. Policy, Appendix A, Section 2, Term 40.
  6. Policy, Appendix A, Section 2, Term 33.
  7. Policy, Appendix A, Section 2, Term 34.
  8. Policy, Appendix A, Section 2, Term 7.
  9. Policy, Appendix A, Section 2, Terms 15 to 29.
  10. Policy, Appendix A, Section 1, Term No. 41.
  11. Policy, Appendix A, Section 1, Term No. 3; see also 1602.
  12. Policy, Appendix A, Section 1, Term No. 10.
  13. Policy, Appendix A, Section 1, Term No. 326.
  14. Policy, Appendix A, Section 2, Term 69.
  15. Wat. Code §1225; See alsoWat. Code §1201 [providing that the state shall have jurisdiction over, “[a]ll water flowing in any natural channel” except water that is appropriated or being used for beneficial purpose upon land riparian to the channel.”]
  16. Wat. Code §§ 5100–02.
  17. Policy, p. 12.
  18. Policy, Attachment A, pp. 60, 63.
  19. Policy, Section 2, Term 78.
  20. Policy, Section 2, Term 82.
  21. Policy, Section 2, Term 95.
  22. Policy, Section 2, Term 99.
  23. Policy, Section 2, Term 79.
  24. Policy, p. 11.