Tag Archives: genome

The First Map of the Cannabis Genome

By Aaron G. Biros
2 Comments

Sunrise Genetics, Inc., the parent company for Hempgene and Marigene, announced last week they have successfully mapped the cannabis genome. The genome map was presented at the 26th Annual Plant and Animal Genome Conference in San Diego, CA during the panel “Cannabis Genomics: Advances and Applications.”

According to CJ Schwartz, chief executive officer of Sunrise Genetics, the full genome map will allow breeders to develop strains using DNA sequence information to complement phenotyping. “In this way a breeding program can be guided by the breeder versus blindly as it is for just pheno-hunting,” says Schwartz. “At the DNA level, we can identify what version of a set of genes a plant contains, and make predictions as to the phenotype, without ever growing the plant. As we make more and more gene markers, we have more genes to track, and breeding becomes more rapid, efficient and precise.” Schwartz says this is essential for breeding stable, repeatable plants. “A commercial strain will be grown in different environments, with solid genetics, the phenotype will mostly stay true, a term we call Genetic Penetrance.”

Ancestry-painted chromosomes for marijuana Image: Chris Grassa / Sunrise Genetics

Determining a plant’s DNA can be extremely valuable and completing the map of the genome now makes this more precise. It can serve as a point of proof, according to Schwartz, providing evidence of lineage in a breeding project and confirming the uniqueness and identity of a strain. The genome map can also allow breeders to select specific genes to develop custom strains. And in addition to all that, it provides legal protection. “Knowing your plants DNA code is the first step to being able take action so no one else can protect it,” says Schwartz. “Well documented evidence in the development of a customized strains is essential to maintaining control of your plant and keeping those you distrust (big pharma) away, many of which have minimal interest in the whole plant anyhow.”

CJ Schwartz, chief executive officer of Sunrise Genetics

Schwartz says this project took them roughly 18 months to wrap up. “One of the biggest problems was just finding the right plants to grow,” says Schwartz. “In addition we used some emerging technologies and those had some challenges of their own.” According to Schwartz, a key aspect in all this was finding the right collaborators. They ended up working with CBDRx and the plant biology department at the University of Minnesota, where a DEA-licensed lab has been researching cannabis since 2002. “George Weiblen’s group at UM has been working on Cannabis for over a decade,” says Schwartz. “During that time they did repeated selfing to make highly inbred marijuana and hemp lines. The lines were instrumental in deterring the physical order of the genes.”

Ancestry-painted chromosomes for hemp Image: Chris Grassa / Sunrise Genetics

After finishing up some experiments, they expect to get the genome map published on public domain in less than a year, opening up their research to the general public and allowing breeders and growers to use their data. “This will be a very significant publication,” says Schwartz. “The genome assembly allows for the assimilation of all the currently incompatible Cannabis genome sequence datasets from academia and private companies,” says Schwartz. “Joining datasets from 1000s of strains, and from every continent, will generate an essential public resource for cannabis researchers and aficionados alike.” With a tool like this, we can discover the genes that help produce desirable traits. “This project is a major accomplishment for cannabis, bringing it on par with other important crops, providing a scientific tool to unravel the secrets of this incredibly versatile plant,” says Schwartz.

Sunrise Genetics is assisting cannabis businesses in evaluating strains and developing breeding programs, working with a number of customers currently to develop strains for many different specific traits. “We have the expertise to help select parental strains and guide the selection process at each generation using genotype and phenotype information,” says Schwartz. “Essentially we are bringing all the tools any modern plant breeder would use for improving strawberries to cannabis.”

Researching Cannabis Genetics: A Q&A with CJ Schwartz, Ph.D.

By Aaron G. Biros
3 Comments

Studying cannabis genetics is a convoluted issue. Strain classification, medicinal effects and plant breeding are particular areas in the science of cannabis that still require heavy research. Marigene, a company researching cannabis genetics, is currently working with universities and research institutes to help map the cannabis genome and catalog genetic variation.

cjschwartzmarigene
CJ Schwartz, Ph.D.

According to CJ Schwartz, Ph.D., chief executive officer and founder of Marigene, their mission is to “to classify, certify, and improve cannabis.” After studying genetics and cellular biology at the University of Minnesota, Schwartz received his Ph.D. in biochemistry from the University of Wisconsin. His research in the past decade has focused on genetic variations that control flowering time, discovering the expression of a gene called Flowering Locus T leads to differential flowering time of plants and is dependent on their native locations. We sat down with Schwartz to learn more about his research and collaborative efforts.


Cannabis Industry Journal: Why are you researching mapping the cannabis genome?

CJ Schwartz, Ph.D: We seek to identify the genetic differences among cannabis strains and the genes responsible for these differences. Genetic differences are what cause different strains to have different effects. DNA allows reproducibility, consistency, and transparency for your cannabis strains.

The more information we gather about cannabis genetics, the more tools we have available to create tailored strains. Cannabis is a targeted compound. It interacts with a very specific system in the human body, similar to hormones, such as insulin. Understanding the cannabis genome will help bring legitimacy and integrity to cannabis products, and allow us to better understand how chemicals from cannabis interact with the human brain. Genetic identification can provide a method of certification to more comprehensively describe plant material.

Schwartz doing sample preparation on the lab bench.
Schwartz doing sample preparation on the lab bench.

CIJ: How did you get involved in cannabis research?

Schwartz: My interest in cannabis guided my research career. Cannabis may not be a cure-all, but it has significant and measurable medicinal effects for many patients.

To allow true development of cannabis products, we need more science! Our genetic analysis is required for normalization and acceptance of cannabis products, but also essential for future breeding efforts to develop better and more useful plants.

Our sister company, Hempgene, is applying all of the same technology and techniques for hemp research. One focus of Hempgene is to manipulate flowering time in select hemp cultivars so that they mature at the appropriate time in different environments.

CIJ: What do you hope to accomplish with your research?

Schwartz: We can develop or stabilize a plant that produces a very specific chemical profile for a specific condition, such as seizures, nausea or pain. By breeding plants tailored to a patient’s specific ailment, a patient can receive exactly the medicine that they need and minimize negative side effects.

The current term describing the interaction of cannabis compounds is called the entourage effect. Interactions among compounds can be additive or synergistic. The entourage effect describes synergistic effects, where small amounts of compound A (e.g. Myrcene) vastly increase the effects of compound B (e.g. THC). Instead of flooding one’s body with an excessive amount of chemicals to get a non-specific effect, cannabis plants can be bred to produce a very specific effect.

labmarigene
A view of some of the work stations inside the laboratory at Marigene.

Currently our goal is to catalog the natural genetic variation of cannabis, and to identify DNA changes that affect a trait of interest. Once superior variants of a gene are identified, those variants can be combined, by marker-assisted breeding, to produce new combinations of genes. How different cannabis chemicals interact to produce a desired effect, and how different human genetics influence the efficacy of those chemicals should be the ultimate goal of medical marijuana research.

We are working closely with academic institutions and chemical testing labs to gather data for establishing correlations between specific cannabis strains and desirable chemical profiles. Our closest collaborator, Dr. Nolan Kane at UC-Boulder, is working to complete the Cannabis genomic sequence and generate the first high- resolution cannabis genetic map.

We are currently accepting samples and we produce a report in roughly two to three months. For one sequencing run, we identify 125 million pieces of DNA that are 100 base pairs long. We get so much information so there is a considerable time commitment.