Tag Archives: hazard

The Path Forward to a Safer Cannabis Industry

By Roshan Sebastian
1 Comment

Two decades ago, California became the first state to legalize the medical use of cannabis. In 2021, medical use of cannabis is legal is 36 US states, and 17 states allow adult (‘recreational’) use. This trend of rapid legalization of the cannabis industry, while encouraging for industry growth, attracts more attention from federal regulatory bodies such as the Occupational Safety and Health Administration (OSHA). Following a number of incidents and near misses, cannabis facilities have been increasingly frequented by OSHA visits, leading to a spike in citations and fines. A review of past OSHA citations reveals that the most common citations in the cannabis industry pertains to the employer’s lack of awareness about the hazardous nature of some operations and materials handled in the facility. This leads to an absence of a formal fire prevention plan, lack of proper hazardous chemical training, deficiency in proper documentation related to workplace injury and limited evaluation of required personal protective equipment (PPE).1

Cannabis industry data suggests that as of today, an incident is often followed by an OSHA inspection.  This naturally leads to the facility asking, ‘How do we prepare for an OSHA inspection and prevent future citations?’ The answer is a combination of identifying and mitigating risks in advance to avoid incidents and developing management systems that support the identification and risk mitigation efforts. Recent collaboration between cannabis business owners and organizations that write codes and standards have provided a framework in which to address the industry’s unique safety challenges to help reduce inherent risk to a facility. These codes and standards typically impact building construction/safety features and operation of the facility, however, additional risk mitigation can be drawn from the best practices already in place in process industries with similar hazards. These process industries have embraced process safety management (PSM) programs, which are built around principles flexible enough to be successfully implemented in the cannabis industry. Adopting such programs will serve the dual purpose of improving the overall safety record of the cannabis industry while enhancing company sustainability2 and help avoid events that lead to OSHA citations.

Figure 1. Risk Based Process Safety Management System

The risk-based process safety (RBPS) approach developed by the Center for Chemical Process Safety (CCPS)3 may prove to be the most effective framework to implement PSM programs in the cannabis industry. Unlike the prescriptive regulatory approach provided by OSHA 29 CFR 1910.119, the RBPS methodology recognizes that not all hazards and risks are equal. By assessing risk, an organization can develop an effective management system that will prioritize allocation of limited resources to address the highest risks. Figure 1 shows the four foundational blocks (pillars) of RBPS and the various elements that make up each pillar.

If a cannabis business owner were to develop programs on each of the pillars presented in Figure 1, a comprehensive safety program would be in place that delivers sustainable risk reduction and mitigation.  However, as with any industry, the elements can be prioritized and tackled over time, starting with the elements having the most influence on the overall safety of a given facility. For example, a given facility may have great procedures and practices, but may not consistently train or instill employee knowledge or competency. Conversely, a facility may have personnel with great knowledge of hazards and risks, but are less developed with regard to documenting procedures, safe practices or training for new hires. Focusing available resources on the less developed elements will lead to an overall improvement in facility risk, leading to a lower likelihood of an incident and OSHA inspection.

Figure 2. Still image from surveillance video of an explosion at New MexiCann Natural Medicine in July 2015.

As with any industry, positive and negative public perception is driven by the media, which tends to focus on attention-grabbing headlines. The majority of past incidents reported in the news for the cannabis industry were explosions that occurred during the extraction process. One such extraction explosion, shown in Figure 2, occurred in July 2015 at the New MexiCann Natural Medicine facility in Santa Fe, New Mexico. With a focus on the ‘hazard identification and risk analysis’ pillar of RBPS, future such events may be mitigated.

Of the twenty RBPS elements, hazard identification and risk analysis (HIRA) stands out as having the highest potential for immediate impact on the cannabis industry’s safety profile.

HIRA is a collection of activities carried out through the life cycle of a facility to ensure that the risks to employees and the public are constantly monitored to be within an organization’s risk tolerance. The four major areas to analyze are:

  • Hazards – What are the possible deviations from the design intent?
  • Consequences – What are the worst possible consequences (or severity) if any deviation occurs?
  • Safeguards – Are there safeguards in the system to reduce the likelihood of this event?
  • Risk – Is the risk within the tolerable level? If not, what steps are needed to reduce the risk? (Severity X Likelihood = Risk)
Figure 3. A simplified HIRA flow chart for an Extraction Process

Let us consider an example case where the extraction process utilizes propane or butane as the extracting solvent. Figure 3 shows a simplified HIRA flow chart for the extraction process.

This systematic approach helps to understand the hazards and evaluate the associated risk. In addition, this approach highlights operator training as a crucial safeguard that can be credited to lower the overall risk of the extraction facility. Remember, lack of proper safety training (another element!) is one of the most cited OSHA violations in the cannabis industry. Another advantage to the HIRA methodology is that other safeguards that may be present can be identified, their effectiveness evaluated and additional risk reduction measures may be recognized. This will help business owners allocate their limited resources on the critical safeguards that provide the greatest risk reduction. Identifying, analyzing and solving for potential hazards is a key step in safe operation of a facility and avoiding OSHA citations.

While this article discusses only a single RBPS element, this example demonstrates how best practices from process industries can become a powerful tool for use in the cannabis industry. The “hazard identification and risk analysis” element of the RBPS approach is pertinent not only for the extraction process as discussed above, but also directly applicable to other aspects of the industry (e.g., dust explosions in harvesting and processing facilities, toxic impacts from fertilizers, hazards from the CO2 enrichment process in growing facilities, etc.).


References

  1. Top 5 OSHA Infractions for Cannabis Businesses
  2. The Business Case for Process Safety; 4th Edition; Center for Chemical Process Safety; 2018
  3. Guidelines for Risk Based Process Safety; Center for Chemical Process Safety: An AICHE Technology Alliance; published March 2007
  4. Video: Explosion rips through medical marijuana facility

2021 Cannabis Extraction Virtual Conference

By Cannabis Industry Journal Staff
No Comments

2021 Cannabis Extraction Virtual Conference

Click here to watch the recording

Agenda

Hazards and Controls of Extraction with Liquified Petroleum Gases (LPG)

  • Alex Hearding, Chief Risk Management Officer, NCRMA

This presentation delves into how to identify the common hazards of extracting with LPG (butane and propane), understanding the where to find guidelines and standards for safe extraction practices and an introduction to best practices for: selecting equipment, extraction room construction, and filling LPG extraction equipment.

TechTalk: Environmental Monitoring in Cannabis Production and Processing

  • Tim Cser, Senior Technology Specialist, MilliporeSigma

Slow is Smooth & Smooth is Fast! Understanding the Kinetics & Thermodynamics of Cannabis Extraction

  • Dr. Markus Roggen, Founder & CEO, Complex Biotech Discovery Ventures (CBDV)

In this session, Dr. Roggen discusses how his lab undertook extensive experimental studies on the extraction behavior of various solvents. They analyzed thousands of real-world extractions, from various producers and for different instruments to build a machine learning algorithm that can optimize extraction processes autonomously.

TechTalk: A New Tool for Operational Compliance in the Cannabis Industry

  • Tony Martinez, Senior Vice President & General Manager, AuditPro

The Quest to Discover the Limits of CO2 Extraction

  • Jeremy Diehl, Co-Founder & CTO, Green Mill Supercritical

Learn why cannabis and hemp extraction is as much art as science, and how modifying and manipulating extraction methodologies and conditions can result in more refined products and significant cost savings.

TechTalk: Breaking the Limits with Solvent Recovery

  • Jürgen Heyder, Business Development Manager for Rotary Evaporation, Heidolph Instruments

The Future of Cannabis Concentrates: Developments in Hydrocarbon Extraction & Manufacturing

  • Michelle Sprawls, Laboratory Director, CULTA

Learn what closed loop hydrocarbon extraction is, what products you can make with this type of extraction method and what the advancements are for manufacturing and new techniques

Process Scale UP in the Cannabis/Hemp Industry

  • Darwin Millard, Committee Vice Chair, ASTM International

Darwin Millard provides real-world examples of the consequences of improper process scale up and the significance of equipment specifications, certifications and inspections, and the importance of vendor qualifications and the true cost of improper design specifications.

Click here to watch the recording

Cannabis Industry Journal

Cannabis Property Coverage: Understanding Risk Management & Communication

By Bradley Rutt
No Comments
Cannabis Industry Journal

For cannabis companies, property coverage can cost as much as seven to 10 times what traditional manufacturing and retail outlets pay. That is, of course, because of the inherent hazards involved in manufacturing and selling cannabis, in a difficult insurance market.

For landlords and building owners, taking in a cannabis tenant can be tricky as well. Because of the higher theft and manufacturing risks, many underwriters are unwilling to offer coverage. And, failure by a landlord to disclose a cannabis tenant is likely to result in a denied claim. Keeping property coverage in check by implementing risk management best practices and working to expand coverage and reduce premium costs can propel a cannabis business even further.  

Moreover, some landlords and building owners will require businesses to maintain occurrence-based liability coverage, which is harder to secure when running a cannabis operation. An occurrence-based liability policy is one that covers the renter for an accident occurring during the policy period, regardless of when a claim is made.

Instead, some insurance companies will only cover cannabis business’ high risks with a claims-made policy, or one in which claims must be made during the policy period only. Landlords will often stipulate their requirement for an occurrence-based policy in their lease. That means that cannabis businesses with a claims-made policy could unknowingly be in violation of their lease.

These issues and others have allowed landlords to command premium rent from cannabis business owners who find obtaining the right property coverage difficult.

To calm the rising tide of rent and property coverage costs, cannabis business owners and operators can engage in the following risk management considerations.

 Risk Management Considerations for Facilities with a Cannabis Operation 

Carriers are more likely to provide a policy to cannabis businesses that are doing what they can to minimize their risk. Here are six ways cannabis businesses can reduce their costs, minimize exclusions and obtain broader property coverage.

  1. If you are a retailer, have a plan to prevent or respond in the event of a robbery.
  2. Install and know how to use vaults and safes properly.
  3. Install central station alarms, cameras and other safeguards. Have them tied to your phone for easy access.
  4. Depending on the nature of the operations, install and regularly test fire sprinklers on site to make sure they are in working order.
  5. Consider hiring a third party, properly-insured, armed guard to safeguard your storefront on a regular basis.
  6. Institute industry-known best practices for high-risk manufacturing processes, like oil extraction.

Insurance Considerations for Facilities with a Cannabis Operation 

Risk management is critical to controlling risk, and insurance considerations can help your cannabis business obtain broader coverage and reduce premium costs.

  1. Communicate with your insurance broker.If you’re a landlord and you want to rent to a cannabis tenant, have a conversation with your insurance carrier at least 30 days before the lease begins. Even if you do, there’s a good chance that your carrier will issue a notice of cancellation (NOC) because they don’t want to engage with cannabis risk. On the other hand, if you don’t disclose the new tenant risk, should a claim be filed, it will could be denied, and the non-disclosure could cost you your policy.
  2. Engage a broker/carrier that specializes in cannabis.In such a volatile market, it is important to work with a broker and carrier that specialize in cannabis. This will enable hidden exclusions to be removed and help you procure the best policy and pricing possible for your organization.
  3. Tell your insurance “story.”Let the carrier understand your business and its risks by telling them your “story.” Tell them what your business does well, including current risk management practices and how you’ve been able to reduce claims. This will go a long way toward potentially minimizing premium costs and exclusions and obtaining broader coverage.
  4. Get another set of eyes. Most carriers will require a lengthy application from cannabis businesses in which the carrier may require the business to comply with certain requirements like having an approved safe or vault room. Your business will be held to the requirements stipulated in the application should you sign and submit it. Ask your broker or a reliable attorney to review the contract for anything you may have missed. Some carriers will incorporate the submitted application into the policy. Any changes between policy inception and a claim could cause coverage issues.

The fast-growing nature of the cannabis industry has ushered in a new set of challenges for business owners and operators. Keeping property coverage in check by implementing risk management best practices and working to expand coverage and reduce premium costs can propel a cannabis business even further.

Product Safety Hazards: Looking Beyond Food Safety in Cannabis

By Radojka Barycki
No Comments

I think that we need to start changing the terminology around the hazards associated with cannabis from food safety hazards to product safety hazards. These hazards have not only been associated with harmful effects for those that ingest cannabis infused products, but also for those that consume the cannabis products in other ways such as inhalation (vaping or smoking). So, when we refer to these hazards as food safety hazards, the immediate thought is edibles, which misleads cultivators, manufacturers and consumers to have a false sense of security around the safety of products that are consumed in other ways.

Food processing and sanitation
By standardizing and documenting safety procedures, manufacturers mitigate the risk of cannabis-specific concerns

There are several product safety hazards that have been associated with cannabis. These hazards can become a public health problem if not controlled as they could harm the consumer, regardless of the method of consumption.

Let’s take a look at the different types of hazards associated cannabis:

Biological Hazards refer to those microorganisms that can cause illness to the consumer of a product that contain them. They are not visible to the naked eye and are very dangerous when their metabolic by-products (toxins) are ingested or their spores are inhaled. The symptoms for illnesses caused by these microorganisms will vary. Consumers may experience gastrointestinal discomfort (vomiting, diarrhea), headaches, fever and other symptoms. The ingestion of these pathogens, allergens or their by-products may lead to death, if the illness is not treated on time or if the consumer of the product is immunocompromised. In addition, the inhalation of mold spores when smoking cannabis products, can lead to lung disease and death. Some of the biological hazards associated with cannabis are: Salmonella sp., E. coli, Clostridium botulinum, Aspergillus sp. and Penicillium sp.

Chemical Hazards refer to those chemicals that can be present in the plant or finished product due to human applications (pesticides), operational processes (extraction solvents and cleaning chemicals), soil properties (heavy metals), environmental contamination (radiological chemicals) or as a result of occurring naturally (mycotoxins and allergens). Consuming high concentrations of cleaning chemicals in a product can lead to a wide range of symptoms from mild rash, burning sensation in the oral-respiratory system, gastrointestinal discomfort or death. In addition, long term exposure to chemicals such as pesticides, heavy metals, radiological contaminants and mycotoxins may lead to the development of cancers.

Physical Hazards refer to those foreign materials that may be present in the plant or finished product. Foreign materials such as rocks, plastics or metals can cause harm to the consumer by chipping teeth or laceration of the mouth membranes (lips, inner cheeks, tong, esophagus, etc.) In the worst-case scenario, physical hazards may lead to choking, which can cause death due to asphyxiation.

These hazards can be prevented, eliminated or reduced to an acceptable level when foundational programs (Good Agricultural/Cultivation Practices, Good Manufacturing Practices, Allergen Management Program, Pest Control, etc.) are combined with a Food [Product] Safety Plan. These lead to a Food [Product] Safety Management System that is designed to keep consumers safe, regardless of the method of consumption.

Canadian Cannabis 2.0: Going Beyond GPP

By Lindsay Glass
No Comments

One year after Canadian recreational cannabis’s historic date of October 17th, 2018, in comes Cannabis 2.0, which will see edibles containing cannabis and cannabis concentrates enter the legal recreational market. As of October 17th, 2019, there are seven classes of legal cannabis products in the marketplace, making Canada an innovative leader in this evolving industry.

The launch of cannabis edibles and concentrates into the legal market has also led to changes in the regulatory framework and the introduction of new best practices in terms of Good Production Practices (GPP). This should not come as a surprise, as these products are introducing the inclusion of cannabis and food products.

Since Oct 17th, 2019, we have seen a significant amendment to the Cannabis Regulations through the addition of sections 88.93 and 88.94, stating that holders of a license to process cannabis edibles or extracts must identify and analyze all potential hazards and have control measures in place to prevent, eliminate or reduce these hazards from occurring. Any license holder that conducts activities related to cannabis edibles, extracts or produces an ingredient used in an edible or extract must also prepare, retain, maintain and implement a preventive control plan (PCP). To indicate that cannabis edibles and extracts regulations resemble other regulated food commodities, would not be an understatement.

By having license holders establish food safety practices similar to the ones being used by federally regulated food commodities, it is allowing cannabis producers to implement a preventive approach by focusing on safety and reducing hazards in their operation.

According to the Cannabis Regulations a license holder’s PCP must include the following:

  • Identify all of the biological, chemical and physical hazards that could contaminate or could be at risk of contaminating any cannabis product or anything that could be used as an ingredient in producing a cannabis product. Once all of the hazards have been identified, you need to determine the likelihood of that hazard occurring
  • The measures to be taken to control each identified hazard. Each control measure must then describe the task involved, how the monitoring task is carried out, who will be performing the monitoring task and how often the monitoring task is carried out
  • A description of the critical control points, which are the steps in the process where a control measure is applied and is essential to eliminating a hazard. Next are the measures to be taken to monitor a critical control point
  • A description of each cannabis product produced or ingredient that will be used in a cannabis product, including extract contents, permitted & prohibited ingredients, exceptions, naturally occurring substances and uniform distribution
  • A description of corrective action procedures for every critical control point
  • A description of verification procedures

What else comes with the collaboration of these two commodities in a regulatory environment? The need for industry to adapt and move beyond the basic GPP and pharmaceutical requirements and start thinking in terms of preventative controls and food safety. By encompassing the GPP requirements, traceability, employee training and now a complete hazard analysis and preventive control plan, you have the makings of a full food safety plan. However, food safety plans can be comprehensive and difficult to manage by utilizing a manual system.

HACCPCompanies that are serious about the integration of cannabis edibles and extracts into their operations, will need to implement compliance and traceability technology that will facilitate an automated system. In return, you will streamline all monitoring processes throughout the production, packaging and storage stages of the system. This is crucial to a preventive control plan. An automated solution will also help with record keeping, document management and corrective actions, as license holders deal with failures in real time to avoid negative impacts on their products.

There are many compliance software platforms available in the industry and choosing the right one for your operation is a task in itself, as not all software platforms for the cannabis industry are created equally. Although many seed-to-sale platforms handle regulatory requirements and some document management, these platforms do not see cannabis as food products, and therefore, are leaving companies with a void in this aspect of their operation. When looking for a software platform that will encompass all of your regulatory needs, pay particular attention to systems that are designed for the food industry but have adapted to cannabis. These systems will be the most dynamic when it comes to implementing preventive control plans, handling in-depth traceability with recall plans and the ability to become completely digital.

For more information on how to automate your food safety plan for cannabis edibles and extracts, please contact Iron Apple QMS to learn about our online Cannabis QMS.

Steven Burton

Standardization: A Guide Through the Minefield

By Steven Burton
No Comments
Steven Burton

Now that cannabis edibles have been legalized nationally in Canada, many existing and aspiring license holders have been surprised to discover that they must comply with food safety regulations. This became crystal clear when Health Canada published their Good Production Practices Guide For Cannabis in August 2019.

With this development, it should be obvious to everyone that Good Manufacturing Practices (GMP) certifications are simply not enough.

Hazard Analysis and Critical Control Point (HACCP) based preventative control programs are now the absolute minimum and higher levels of certification (GFSI) should be on everyone’s wish list.

HACCP is a methodology that is all about identifying biological, chemical and physical hazards and determining how they will be controlled to mitigate the risk of injury to humans. Recently, bio-terrorism and food fraud hazards have been added to the list and it is a good idea to address quality hazards as well.

The process of developing a HACCP program involves identifying these hazards with respect to ingredients, materials, packaging, processes and cross-contamination points (explicitly required in Canada only). However, it is a specific ingredient hazard that I’d like to talk about here.

HACCPAs this market has emerged, I’ve met with many cannabis companies as the onerous levels of knowledge and effort required to build and maintain an effective HACCP program manually has dawned upon the industry. Many are looking for technological solutions to quickly solve this problem. During these discussions, a curious fact has emerged that set off the food safety alarm klaxons around here.

Most people alive today are too young to remember this but, with few exceptions, the standardization of ingredients is a relatively modern phenomenon. It used to be that the fat content of your milk varied from season to season and cow to cow. Over time, the food industry standardized so that, amazingly, you can now choose between milks with either 1% or 2% fat, a level of precision that would border on miraculous to someone born in the early 20th century.

The standardization of ingredients is important in terms of both quality and safety. Take alcohol for example. We know that a shot of spirits generally contains 40% alcohol. Different products may vary from this standard but, if I pour a shot of my favourite Bowmore No.1 single malt in Canada or Tasmania, this year or 10 years from now, I can expect a consistent effect from the 40% alcohol content of the quantity I’ve imbibed.

Imagine a world in which this was not the case, where one shot would be 40% but the next might be 80%. Things could get out of control quite easily at the 80% level so, to avoid this, distillers monitor and blend their product to ensure they achieve the 40% target, which is called the “standardization marker”.

With respect to cannabis, the obvious standardization marker is THC. During the manufacturing process, edibles manufacturers do not normally add cannabis flower directly into their products but instead add a THC concentrate produced during previous production steps. However, we’ve found that the wisdom of standardizing these concentrates has not yet dawned upon many in the industry, which is alarming at best and dangerous at worst.

The reason for this is that, since cannabis is inherently a heterogeneous plant, one cannot precisely achieve a particular marker value so the outcome of the concentration process is variable. The food industry long ago overcame this problem by blending or diluting to achieve a consistent marker concentration, but the cannabis industry has not yet adopted this advance.

The cannabis edibles industry is still immature and it will take time to bring all the necessary risk mitigation processes into place but one excellent place to start is to seriously consider standardizing concentrates to a THC marker.Instead, manufacturers simply keep track of the strength of each batch of concentrate and then adjust the quantity added to their recipes to achieve the desired THC content. This seems logical on the surface but presents a serious risk from the HACCP perspective, namely a chemical hazard, “Excessive psychoactive compound concentrations due to human error at levels that may be injurious to human health”.

The reality is that workers make mistakes, which is why it is imperative to mitigate the risk of human error insomuch as possible. One of the best ways to do this is to standardize to avoid the scenario where a worker, faced with a row of identical containers that are differentiated only by a tiny bit of text, accidentally grabs the wrong bottle. The error isn’t caught until the product has been shipped, consumed, and reports of hospital visits start coming in after the authorities trace the problem back to you. You must bear the costs of the recall, your reputation has been decimated and your company is floundering on the financial rocks.

US-based Drip More, LP recently found this out the hard way after consumers complained that their product tasted bad, bitter and/or harsh. An investigation determined that excessive nicotine content was the source of the problem and a voluntary recall was initiated. Affected product that had already been sold in 26 states. The costs of this recall have not been tallied but they will be staggering.

The cannabis edibles industry is still immature and it will take time to bring all the necessary risk mitigation processes into place but one excellent place to start is to seriously consider standardizing concentrates to a THC marker. This strategy is cheap, easy and you’ll never be sorry.

Rapid Pathogen Detection for the 21st Century: A Look at PathogenDx

By Aaron G. Biros
No Comments

In 1887, Julius Petri invented a couple of glass dishes, designed to grow bacteria in a reproducible, consistent environment. The Petri dish, as it came to be known, birthed the scientific practice of agar cultures, allowing scientists to study bacteria and viruses. The field of microbiology was able to flourish with this handy new tool. The Petri dish, along with advancements in our understanding of microbiology, later developed into the modern field of microbial testing, allowing scientists to understand and measure microbial colonies to detect harmful pathogens in our food and water, like E. coli and Salmonella, for example.

The global food supply chain moves much faster today than it did in the late 19th century. According to Milan Patel, CEO of PathogenDx, this calls for something a little quicker. “Traditional microbial testing is tedious and lengthy,” says Patel. “We need 21st century pathogen detection solutions.”

Milan Patel first joined the parent company of PathogenDx back in 2012, when they were more focused on clinical diagnostics. “The company was predominantly built on grant funding [a $12 million grant from the National Institute of Health] and focused on a niche market that was very specialized and small in terms of market size and opportunity,” says Patel. “I realized that the technology had a much greater opportunity in a larger market.”

Milan Patel, CEO of PathogenDx
Photo: Michael Chansley

He thought that other markets could benefit from that technology greatly, so the parent company licensed the technology and that is how PathogenDx was formed. Him and his team wanted to bring the product to market without having to obtain FDA regulatory approval, so they looked to the cannabis market. “What we realized was we were solving a ‘massive’ bottleneck issue where the microbial test was the ‘longest test’ out of all the tests required in that industry, taking 3-6 days,” says Patel. “We ultimately realized that this challenge was endemic in every market – food, agriculture, water, etc. – and that the world was using a 140-year-old solution in the form of petri dish testing for microbial organisms to address challenges of industries and markets demanding faster turnaround of results, better accuracy, and lower cost- and that is the technology PathogenDx has invented and developed.”

While originally a spinoff technology designed for clinical diagnostics, they deployed the technology in cannabis testing labs early on. The purpose was to simplify the process of testing in an easy approach, with an ultra-low cost and higher throughput. Their technology delivers microbial results in less than 6 hours compared to 24-36 hours for next best option.

The PathogenDx Microarray

Out of all the tests performed in a licensed cannabis testing laboratory, microbial tests are the longest, sometimes taking up to a few days. “Other tests in the laboratory can usually be done in 2-4 hours, so growers would never get their microbial testing results on time,” says Patel. “We developed this technology that gets results in 6 hours. The FDA has never seen something like this. It is a very disruptive technology.”

When it comes to microbial contamination, timing is everything. “By the time Petri dish results are in, the supply chain is already in motion and products are moving downstream to distributors and retailers,” Patel says. “With a 6-hour turnaround time, we can identify where exactly in the supply chain contaminant is occurring and spreading.”

The technology is easy to use for a lab technician, which allows for a standard process on one platform that is accurate, consistent and reproduceable. The technology can deliver results with essentially just 12 steps:

  1. Take 1 gram of cannabis flower or non-flower sample. Or take environmental swab
  2. Drop sample in solution. Swab should already be in solution
  3. Vortex
  4. Transfer 1ml of solution into 1.5ml tube

    A look at how the sample is added to the microarray
  5. Conduct two 3-minute centrifugation steps to separate leaf material, free-floating DNA and create a small pellet with live cells
  6. Conduct cell lysis by adding digestion buffer to sample on heat blocks for 1 hour
  7. Conduct Loci enhancement PCR of sample for 1 hour
  8. Conduct Labelling PCR which essentially attaches a fluorescent tag on the analyte DNA for 1 hour
  9. Pipette into the Multiplex microarray well where hybridization of sample to probes for 30 minutes
  10. Conduct wash cycle for 15 minutes
  11. Dry and image the slide in imager
  12. The imager will create a TIFF file where software will analyze and deliver results and a report

Their DetectX product can test for a number of pathogens in parallel in the same sample at the same time down to 1 colony forming unit (CFU) per gram. For bacteria, the bacterial kit can detect E. coli, E. coli/Shigella spp., Salmonella enterica, Listeria and Staph aureus, Stec 1 and Stec 2 E.coli. For yeast and mold, the fungal kit can test for Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus.

Their QuantX is the world’s first and only multiplex quantification microarray product that can quantify the microbial contamination load for key organisms such as total aerobic bacteria, total yeast & mold, bile tolerant gram negative, total coliform and total Enterobacteriaceae over a dynamic range from 100 CFU/mL up to 1,000,000 CFU/mL.

Not all of the PathogenDx technology is designed for just microbial testing of cannabis or food products. Their EnviroX technology is designed to help growers, processors or producers across any industry identify areas of microbial contamination, being used as a tool for quality assurance and hazard analysis. They conducted industry-wide surveys of the pathogens that are creating problems for cultivators and came up with a list of more than 50 bacterial and fungal pathogens that the EnviroX assay can test for to help growers identify contamination hotspots in their facilities.

Using the EnviroX assay, growers can swab surfaces like vents, fans, racks, workbenches and other potential areas of contamination where plants come in contact. This helps growers identify potential areas of contamination and remediate those locations. Patel says the tool could help growers employ more efficient standard operating procedures with sanitation and sterilization, reducing the facility’s incidence of pathogens winding up on crops, as well as reduction in use of pesticides and fungicides on the product.

Deploying this technology in the cannabis industry allowed Milan Patel and the PathogenDx team to bring something new to the world of microbial testing. Their products are now in more than 90 laboratories throughout the country. The success of this technology provides another shining example of how the cannabis market produces innovative and disruptive ideas that have a major impact on the world, far beyond cannabis itself.

Clearing Up the Haze Surrounding Cannabis Product Liability Risks

By Susan Preston, T.J. Frost
1 Comment

When a thriving cultivator purchased additional cannabis from a wholesale grower to meet the 5,000 pounds he was short, he was left holding the bag. A customer complained of a strong sulfur taste, and soon it was discovered that the wholesaler had applied the wrong pesticide concentration, rendering the cannabis unusable. The cultivator had to pull contaminated cannabis product from the shelves, a move that cost the company $3.5 million.

This story is not unique. When running short on product, cannabis businesses will often turn to other suppliers and partners to help them fulfill their orders. Unfortunately, improper vetting and a lack of understanding and compliance with state regulations and other requirements may lead to a loss of product integrity and costly product liabilities. Product liability can include more than just the cannabis itself, such as the equipment – vape cartridges, batteries, and lighters. This can quickly inflate the risk and, of course, the cost of a product liability claim. It is possible to transfer some of these cannabis risks to product liability insurance.

Top Three Product Liability Exposures Facing Cannabis Cultivators and Distributors

Three key areas of product liability exposure face cannabis business owners. It’s important to understand how each will affect your business.

  1. Product contamination.When cannabis is sold in an edible form, business owners could face claims of food poisoning or illness. If the product is smoked, there are exposures to contamination, product mislabeling or misrepresentation, and possible health hazard claims related to long-term exposure to potential contaminants.
  2. First party claims. Claims made in the event of an accident, injury or loss, whether caused by the business owner or someone else, will create another set of exposures, including manufacturing defects, failure to warn users on potential product usage hazards, improper labeling, or any product-related defect such as mold or odor.
  3. Third party claims. Cannabis business owners could be liable for claims stemming from the use of their cannabis product that result in a DUI, property damage, loss of wages, medical expenses and bodily injury.

It is possible to transfer some of these cannabis risks to product liability insurance. While there are multiple lines of product liability insurance, you’ll want to make sure you choose one designed specifically for the cannabis industry. These policies may provide coverage for the following exposures:

  • Product contamination
  • Bodily injury damages
  • Fines and penalties for non-compliance with state regulation
  • Bodily or property injury caused to others by product misuse, or by a third party
  • Manufacturing or product-related defects

While product liability insurance covers a number of cannabis risks, it doesn’t cover them all. Cannabis operations require a variety of coverage – property, crime, general liability, worker’s compensationand crop insurance. Insurance carriers will differ in definitions, policy exclusions and coverage language for each policy.

Because designated cannabis product liability and business operations coverage is fairly new and the marketplace features a wide range of options, make sure to work with a broker who understands the fine print of your policies, and your unique needs. The right broker can provide advice and loss control to help you reduce product liability exposures, make product and risk management recommendations that best mitigate your exposures to prevent loss, and ensure the proper coverage to address potential claims.

Disposable Gloves: The Unregulated Cannabis Threat

By Lynda Ronaldson
No Comments

Today in the states where medical and recreational cannabis is legal, cannabis products purchased from licensed facilities are required to have undergone testing by accredited labs. The compliance testing verifies advertised potency levels and checks for microbial contamination, herbicides, pesticides, fungicides and the presence of mold and mildew, among other potential contaminants.

Until recently, little attention has been given to disposable gloves and their possible involvement in the contamination of the products they handle.  What factors should you consider when purchasing gloves?

Disposable Gloves Facts

Disposable gloves, like cannabis products, are not made of equal quality. There are several different types of disposable gloves on the market, and huge variations in glove quality and chemical compositions exist between and within each glove type.

Recent scientific studies have revealed how gloves produced in factories with poor manufacturing standards and raw material ingredients can contaminate the products they handle. High-level toxins in disposable gloves were found to affect lab results, toxins in gloves contaminated the food they touched, and pathogen contamination of unused disposable gloves has been proven. Should the cannabis industry take more interest in the disposable gloves they are using? With so much at stake if compliance test results are compromised, we think so!

Glove Procurement: Factors to Consider

What factors should you consider when purchasing gloves?

  1. Industrial grade gloves- There is no such thing as an industrial grade glove certification, although it does give an incorrect impression that gloves are strong and resilient. Industrial grade means they have not been subjected to inspection nor have passed any specific testing requirements.
  2. Food contact gloves are certified under FDA Title 21 CFR Part 177, which states the components of the glove comply with the FDA regulations and the gloves consist of “substances generally recognized as safe for use in food or food packaging.” Few controls exist for glove manufacturing relating to the reliability of raw materials and manufacturing processes, and costs can be reduced with the use of cheap, toxic materials.
  3. Medical grade gloves have to pass a series of technical tests in order to meet the safety requirements specified by the FDA. Gloves are tested for puncture and abrasion resistance, must meet tension and elongation tests and are also tested for chemical substance resistance. Manufacturers of these gloves must receive 510k certification. As this study shows, even medical gloves can contain high levels of toxic ingredients, affecting laboratory test results.
  4. The Acceptable Quality Level (AQL) refers to a quality standard for measuring pinhole defects- the lower the AQL, the less defects the gloves have. There are no AQL requirements for food grade or industrial grade gloves, meaning there are no guidelines for the number of failures per box. Medical grade gloves must have an AQL of 2.5 or less, meaning 2.5 failed gloves per 100 gloves is an acceptable level.
  5. For Californian cannabis companies, are your disposable gloves Prop. 65 compliant? Accelerator chemicals, such as 2-Mercaptobenzothiazole (MBT) found in some nitrile gloves, have recently been added to the Prop. 65 chemicals known to cause cancer.

How Gloves Can Contaminate Products

Physical, chemical and microbiological hazards have been identified in disposable glove supply chains. Gloves of any grade are not tested for cleanliness (microbial and bioburden levels), raw material toxicity and chemical composition, or pathogen contamination.

100% of glove factories supplying the United States are based in Southeast Asia. These factories are generally self­-regulated, with FDA compliance required for a rough outline of the ingredients of the gloves rather than the final product. Few controls are required for glove manufacturing relating to the reliability of raw materials, manufacturing processes and factory compliance or conditions. A clear opportunity exists for accidental or intentional contamination within the glove-making process, especially to reduce costs.

In order to safeguard their customers from product contamination, a selection of tests and certifications, some of which are unique within the glove industry, are being implemented by glove supplier Eagle Protect. These tests make sure Eagle’s gloves coming into the United States are made in clean, well run factories, free of any type of contamination and are consistent in material makeup to original food safe specifications. This glove Fingerprint testing program, consists of a number of proprietary risk reduction steps and targeted third-party testing methods, includes gas chromatography combined with mass spectroscopy (GC/MS); surface free energy determination; in vitro cytotoxicity analysis; and microbial viability-linked metagenomic analysis.

With a great deal of faith placed on a glove supplier’s ability to deliver disposable gloves sight unseen, we believe these tests are essential to further reduce risks or pathogen contamination associated with them, keeping your cannabis products safe.

HACCP

Implementing a HACCP Plan to Address Audit Concerns in the Infused Market

By Daniel Erickson
1 Comment
HACCP

The increasing appeal and public acceptance of medical and recreational cannabis has increased the focus on the possible food safety hazards of cannabis-infused products. Foodborne illnesses from edible consumption have become more commonplace, causing auditors to focus on the various stages of the supply chain to ensure that companies are identifying and mitigating risks throughout their operations. Hazard Analysis and Critical Control Points (HACCP) plans developed and monitored within a cannabis ERP software solution play an essential role in reducing common hazards in a market currently lacking federal regulation.

What are cannabis-infused products?

Cannabis infusions come in a variety of forms including edibles (food and beverages), tinctures (drops applied in the mouth), sprays (applied under the tongue), powders (dissolved into liquids) and inhalers. Manufacturing of these products resembles farm-to-fork manufacturing processes common in the food and beverage industry, in which best practices for compliance with food safety regulations have been established. Anticipated regulations in the seed-to-sale marketplace and consumer expectations are driving cannabis infused product manufacturers to adopt safety initiatives to address audit concerns.

What are auditors targeting in the cannabis space?

The cannabis auditing landscape encompasses several areas of focus to ensure companies have standard operating procedures (SOP’s) in place. These areas include:

  • Regulatory compliance – meeting state and local jurisdictional requirements
  • Storage and product release – identifying, storing and securing products properly
  • Seed-to-sale traceability –  lot numbers and plant identifiers
  • Product development – including risk analysis and release
  • Accurate labeling –  allergen statements and potency
  • Product sampling – pathogenic indicator and heavy metal testing
  • Water and air quality –  accounting for residual solvents, yeasts and mold
  • Pest control – pesticides and contamination

In addition, auditors commonly access the reliability of suppliers, quality of ingredients, sanitary handling of materials, cleanliness of facilities, product testing and cross-contamination concerns in the food and beverage industry, making these also important in cannabis manufacturers’ safety plans.

How a HACCP plan can help

HACCPWhether you are cultivating, harvesting, extracting or infusing cannabis into edible products, it is important to engage in proactive measures in hazard management, which include a HACCP plan developed by a company’s safety team. A HACCP plan provides effective procedures that protect consumers from hazards inherent in the production and distribution of cannabis-infused products – including biological, chemical and physical dangers. With the lack of federal regulation in the marketplace, it is recommended that companies adopt these best practices to reduce the severity and likelihood of compromised food safety.

Automating processes and documenting critical control points within an ERP solution prevents hazards before food safety is compromised. Parameters determined within the ERP system are utilized for identification of potential hazards before further contamination can occur. Applying best practices historically used by food and beverage manufacturers provides an enhanced level of food safety protocols to ensure quality, consistency and safety of consumables.

Hazards of cannabis products by life-cycle and production stage

Since the identification of hazards is the first step in HACCP plan development, it is important to identify potential issues at each stage. For cannabis-infused products, these include cultivation, harvesting, extraction and edibles production. Auditors expect detailed documentation of HACCP steps taken to mitigate hazards through the entire seed-to-sale process, taking into account transactions of cannabis co-products and finished goods at any stage.

Cultivation– In this stage, pesticides, pest contamination and heavy metals are of concern and should be adequately addressed. Listeria, E. coli, Salmonella and other bacteria can also be introduced during the grow cycle requiring that pathogenic indicator testing be conducted to ensure a bacteria-free environment.

Harvesting– Yeast and mold (aflatoxins) are possible during the drying and curing processes. Due to the fact that a minimal amount of moisture is optimal for prevention, testing for water activity is essential during harvesting.

Extraction – Residual solvents such as butane and ethanol are hazards to be addressed during extraction, as they are byproducts of the process and can be harmful. Each state has different allowable limits and effective testing is a necessity to prevent consumer exposure to dangerous chemical residues.

Edibles– Hazards in cannabis-infused manufacturing are similar to other food and beverage products and should be treated as such. A risk assessment should be completed for every ingredient (i.e. flour, eggs, etc.), with inherent hazards or allergens identified and a plan for addressing approved supplier lists, obtaining quality ingredients, sanitary handling of materials and cross-contamination.

GMPFollowing and documenting the HACCP plan through all of the stages is essential, including a sampling testing plan that represents the beginning, middle and end of each cannabis infused product. As the last and most important step before products are introduced to the market, finished goods testing is conducted to ensure goods are safe for consumption. All information is recorded efficiently within a streamlined ERP solution that provides real-time data to stakeholders across the organization.

Besides hazards that are specific to each stage in the manufacturing of cannabis-infused products, there are recurring common procedures throughout the seed-to-sale process that can be addressed using current Good Manufacturing Practices (cGMP’s).  cGMPs provide preventative measures for clean work environments, training, establishing SOPs, detecting product deviations and maintaining reliable testing. Ensuring that employees are knowledgeable of potential hazards throughout the stages is essential.Lacking, inadequate or undocumented training in these areas are red flags for auditors who subscribe to the philosophy of “if it isn’t documented, it didn’t happen.” Training, re-training (if necessary) and documented information contained within cannabis ERP ensures that companies are audit-ready. 

Labeling

The importance of proper labeling in the cannabis space cannot be understated as it is a key issue related to product inconsistency in the marketplace. Similar to the food and beverage industry, accurate package labeling, including ingredient and allergen statements, should reflect the product’s contents. Adequate labeling to identify cannabis products and detailed dosing information is essential as unintentional ingestion is a reportable foodborne illness. Integrating an ERP solution with quality control checks and following best practices ensures product labeling remains compliant and transparent in the marketplace.

Due to the inherent hazards of cannabis-infused products, it’s necessary for savvy cannabis companies to employ the proper tools to keep their products and consumers safe. Utilizing an ERP solution that effectively manages HACCP plans meets auditing requirements and helps to keep cannabis operations one step ahead of the competition.