Tag Archives: strain

Tissue Culture Cultivation Can Transform the Way We Grow Cannabis

By Max Jones, Dasya Petranova
No Comments

The cannabis industry is approaching a crossroads. While cultivators must ensure they are getting the greatest yield per square foot, an increasingly competitive landscape and sophisticated consumer means growers must also balance the need for volume with quality, consistent and award-winning cannabis strains.

Tissue culture propagation represents a significant leap forward in cannabis cultivation, ultimately benefiting both the grower and the consumer. The proprietary technology behind our sterilization and storage process results in the isolation of premium cannabis genetics in a clean, contaminant-free environment. Since our inception, we’ve been focused on setting a higher standard in medical (and one day adult use) cannabis by growing craft cannabis on a commercial scale through utilization of this cutting-edge cultivation technique. When taken in total, Maitri boasts access to a library of 243 unique cannabis strains, one of the largest collections in the U.S.

Trouble with Traditional Cultivation

Pathogens, insects and cross contamination all threaten the viability and value of cannabis plants. In many ways, current cannabis cultivation techniques compound these issues by promoting grams per square foot above all else and packing plants into warehouse sized grows where issues can quickly spread.

In these close quarters, pests can swiftly move from plant to plant, and even from generation to generation when propagating from clones or growing in close quarters. Similarly, pathogens can leap between susceptible plants, damaging or killing plants and cutting into a cultivator’s bottom line.

Hemp tissue culture samples

Of particular concern is hop latent viroid. Originally identified in hops, a genetic relative of cannabis, this infectious RNA virus has torn through the cannabis industry, endangering genetics, causing sickly plants and reducing yields. Plants cloned using traditional methods from an infected mother are vulnerable to the disease, making hop latent viroid a generational issue.

Minimizing or even eliminating these threats helps to protect the genetic integrity of cannabis strains and ensures they can be enjoyed for years to come. That is where the sterilization stage in tissue culture cultivation stands out.

Like cloning, tissue culture propagation offers faster time to maturity than growing from seed, allowing for a quicker turnaround to maximize utility of space, without overcrowding grow rooms. However, it also boasts a clean, disease-free environment that allows plants to thrive.

Tissue Culture Cultivation

Tissue culture cultivation allows for viable plant tissue to be isolated in a controlled, sterilized environment. Flowering plants can then be grown from these stored genetics, allowing for standardization of quality strains that are free of contamination and disease from the very beginning. Tissue culture cultivation also takes up less room than traditional cloning, freeing up valuable square footage.

A large tissue culture facility run in the Sacramento area that produces millions of nut and fruit trees clones a year.

This propagation process begins with plants grown to just before flowering and harvested for their branch tips. These branch tips undergo a sterilization process to remove any environmental contamination. This living plant material (known as explants) gets fully screened and tested for potential contaminants.

If it passes, the sample is stabilized and becomes part of the Maitri genetic library for future cultivation. If any contamination is discovered, the plant is selected for meristem isolation, an intensive isolation technique at the near cellular level.

Once sterilized and verified to be clean, the samples — often just an inch tall — are isolated into individual test tubes in our proprietary nutrient-rich medium for storage indefinitely. The cuttings are held in these ideal conditions until tapped for cultivation. This process allows Maitri to maintain an extensive library of clean, disease-free cannabis genetics ready to be grown.

Benefits for Medical Cannabis Patients

Tissue culture creates exact genetic replicas of the source plant

One of the chief benefits of tissue culture propagation is that it creates exact genetic replicas of the source plant. This allows growers like Maitri to standardize cannabis plants, and thus the cannabis experience. That means patients can expect the same characteristics from Maitri grown strains every time, including effects, potency and even taste and smell. Keeping reliable, top quality strains in steady rotation ensures patients have access to the medicine they need.

Preserving Plant Genetics

Beyond the benefits that tissue culture cultivation provides for the patient, this approach to testing, storing and growing cannabis plants also goes a long way towards protecting cannabis genetics into the future.

Cannabis strains are constantly under assault from pests and disease, potentially destroying the genetics that make these strains so special. Over-breeding and a dwindling demand for heirloom strains also threatens the loss of some individual plant genetics. Having a collection of genetics readily available means we can quickly cultivate strains to best meet consumer demand. Additionally, maintaining a rich seed bank that features both legacy and boutique strains allows us to have options for future tissue culture cultivation or for future new strain development.

Advancing Cannabis Research

Due to federal prohibition, researching cannabis, especially at the university level, can be extremely difficult. Additionally, the cannabis material that researchers have access to is largely considered to be subpar and wildly inconsistent, placing another barrier to researching the physiological effects of the plant. Clean, safe and uniform cannabis is a necessity to generate reliable research data. Utilizing tissue culture cultivation is a smart way to ensure researchers have access to the resources they need to drive our understanding of the cannabis plant.

Lab Shopping: Highlighting the Need for Checks and Balances in Cannabis

By Josh Swider
No Comments

Cannabis, we have a problem. Legalizing adult use cannabis in California caused the demand for high-potency cannabis to increase dramatically over the last several years. Today, many dispensary buyers enforce THC minimums for the products that they sell. If smokeable flower products don’t have COAs proving the THC levels are above 20% or more, there is a good chance many dispensaries won’t carry them on their shelves. Unfortunately, these kinds of demands only put undue pressure on the industry and mislead the consumer.

Lab Shopping: Where the Problems Lie

Lab shopping for potency analysis isn’t new, but it has become more prevalent with the increasing demand for high-potency flower over the last couple of years. Sadly, many producers submit valid, certified COAs to the California Bureau of Cannabis Control (BCC), which show two to three times the actual potency value.

At InfiniteCAL, we’ve purchased products from dispensary shelves and found significant discrepancies between the analysis we perform and the report submitted to the BCC by the producer. So, how can this happen? Several factors are creating the perfect storm in cannabis testing.

Problems with Potency

Many consumers still don’t understand that THC potency is not the only factor in determining quality cannabis, and they are unwittingly contributing to the demand for testing and analysis fraud. It is alarming for cultivation pioneers and ethical labs to see producers and profit-hungry testing facilities falsifying data to make it more appealing to the unaware consumer.

Basically, what’s happening is growers are contacting labs and asking, “I get 30% THC at this lab; what can you do?” When they see our COA reporting their flower tested lower than anticipated, they will go to another lab to get higher test results. Unfortunately, there are all too many labs that are willing to comply.

I recently saw a compliant COA that claimed that this particular flower was testing at 54% THC. Understanding cannabis genetics, we know this isn’t possible. Another product I reviewed claimed that after diluting an 88% THC distillate with 10-15% terpenes, the final potency test was 92% THC. You cannot cut a product and expect the potency to increase. Finally, a third product we reviewed claimed 98% total cannabinoids (while only looking at seven cannabinoids) with 10% terpenes for a total of 108% of the product.

These labs only make themselves look foolish to professionals, mislead laymen consumers and skirt under the radar of the BCC with basic mathematical errors.

The Pesticide Predicament

Frighteningly, inflating potency numbers isn’t the most nefarious testing fraud happening in the cannabis industry. If a manufacturer has 1000 liters of cannabis oil fail pesticide testing, they could lose millions of dollars – or have it retested by a less scrupulous lab.

Photo: Michelle Tribe, Flickr

As the industry continues to expand and new labs pop up left and right, cultivators and manufacturers have learned which labs are “easy graders” and which ones aren’t. Certain labs can miss up to ten times the action level of a pesticide and still report it as non-detectable. So, if the producer fails for a pesticide at one lab, they know four others won’t see it.

In fact, I’ve had labs send my clients promotional materials guaranteeing compliant lab results without ever receiving a sample for testing. So now, these companies aren’t just tricking the consumer; they are potentially harming them.

An Easy Fix

Cannabis testing is missing just one critical factor that could quickly fix these problems – checks and balances. The BCC only needs to do one of two things:

Verifying Lab Accuracy

InfiniteCAL also operates in Michigan, where the Marijuana Regulatory Agency (MRA) has already implemented a system to ensure labs are maintaining the highest testing standards. The MRA will automatically flag all COAs which test above a certain percentage and require the product to be retested by multiple labs.

labsphotoLabs are required to keep a back stock of material. So, when test results come back abnormally high from Lab A, then Labs B, C and D are commissioned to retest the material to compare data. If Lab A reports 40% THC, but the other labs all report 18%, then it’s easy to see Lab A has made an error.

Secret Shopping

By simply buying products off the shelves and having them blind-tested by other labs, it would be simple for the BCC to determine if the existing COA is correct. They already have all the data in Metrc, so this would be a quick and easy fix that could potentially solve the problem overnight.

For example, at InfiniteCAL, we once purchased 30 samples of Blue Dream flower from different cultivators ranging in certified COA potencies from 16% to 38%. Genetically, we know the Blue Dream cultivar doesn’t produce high levels of THC. When we tested the samples we purchased, nearly every sample came back in the mid-teens to low 20% range.

Labs Aren’t Supposed to Be Profit Centers

At InfiniteCAL, we’ve contacted labs in California where we’ve uncovered discrepancies to help find and flush out the errors in testing. All too often, we hear the excuses:

  • “If I fix my problem, I’ll lose my clients.”
  • “I’m just a businessman who owns a lab; I don’t know chemistry.”
  • “My chemist messed up; it’s their fault!”

If you own a lab, you are responsible for quality control. We are not here to get rich; we are here to act as public safety agents who ensure these products are safe for the consumer and provide detailed information about what they choose to put in their bodies. Be professional, and remember you’re testing for the consumer, not the producer.

Designing Precision Cannabis Facilities: A Case Study

By Phil Gibson
No Comments

With data forecasting expert BDSA predicting that the global cannabis market will reach $56B by 2026, there is no time to waste. Whether it’s Oklahoma, New York or even Macedonia, the frenzy is on. Investment decisions are immediate, and you have to be correct out of the box. This is where an expert like Andrew Lange and his company, Ascendant Management, come in. Andrew has designed more than 1.5 million square feet of cannabis facilities and moved them into profitable production in North America and Europe. One of his active customers is Onyx Agronomics in Washington. Bailee Syrek is the director of operations at Onyx and this is the story of the key points in designing a precision cannabis facility with state-of-the-art efficiency.

Background

Andrew Lange, a navy veteran, runs a global cannabis consulting business based in Washington. With a “prove it to me” approach, he regularly tests the best new technologies in the facilities he designs. He integrates his knowledge of what works in practice into his subsequent facilities. One of his previous projects, Onyx Agronomics in Washington, started in 2014 and moved quickly into production in a retrofitted warehouse. Many of his best ideas started with Onyx, including some new innovations in the latest expansion there this month. Onyx is a tier 3 cannabis cultivator.

Bailee Syrek’s operation at Onyx currently produces 9,000 lbs. of dry trim bud per year in 8,000 square feet of canopy. She operates the state-of-the-art, clean room style, indoor grow facility around the clock, delivering 2.7 grams/watt from every square foot of canopy in her building. She runs a highly efficient facility.

Onyx has had an ongoing relationship with Ascendant Management and chose to leverage them again with their current expansion to increase their capacity further. Onyx uses a range of advanced technologies including aeroponic cultivation equipment and control software from AEssenseGrows to hit their metrics.

Precision, Quality & Consistency

“I look for ways that my clients can differentiate themselves,” says Lange. Maybe it’s his military background, but Andrew demands precision, quality and consistency in the operations he designs. “Cannabis is a just a plant really so we look for the highest performance grow methodology. I find that to be AEssenseGrows aeroponics,” says Lange. “The AEtrium Systems provides a good foundation to manipulate for grow recipes and business process. I add teamwork, communications, and operations procedures to that foundation.”

At Onyx, Bailee Syrek works closely with her channels. She invites her customers in regularly to review the Onyx cultivars and to cover their ideal requirements. These can range from bud size for their packaging to THC or terpene profiles (Yes, channels do want both higher and lower THC content for different consumers and price points). Based on that feedback, Bailee and Andrew work together to dial in the ideal grow recipe in the AEssenseGrows Guardian Grow Manager central control software. They push their target strains to optimize the results in the direction requested by their customers. For example, “How do you get the highest possible THC out of 9lb Hammer?” You’ll have to ask Andrew and Ascendant Management.

Driven by customer requests, Onyx is adding new strains to build on their innovative brand. Bailee expects to reach new levels of terpene bundles with Cheeseburger Jones, Koffee Breath, Shangri-La and OK Boomer. Utilizing Andrew’s expert knowledge, they can take typical sub-20% cannabinoid bundles and improve them using aeroponics and better controls, into standout aeroponic 30% packages.

The Onyx Vision

Andrew Lange, Ascendant Management

Bailee Syrek believes this is the most exciting time yet for Onyx. Delivering premium grade cannabis as a white label flower supplier for years, Onyx is a profitable and successful business. But even with doubling capacity every year, they are still having trouble keeping up with customer demand. Bailee wants to get to the point where she can always say yes and accept an order from their white label customers. With this objective, she again engaged Ascendant and Andrew to get beyond 15,000 lbs. of output in 2021 to make her customers happier. Beyond that basic expansion, she is also ambitious and is preparing plans for additional lines of revenue with their own proprietary flower, oil and derivative products.

“This expansion will be a new challenge,” says Syrek. “Flower production is in our wheelhouse. We have tighter operations, with the most consistent bud size, terpenes and test results in our state. These new products will require that same quality but now in new areas.”

Her Path to Leadership

Bailee started with Onyx in a compliance position that grew out of the constant demands for government licensing and reporting. In that compliance role, she had the opportunity to work a bit in every department, giving her a good understanding of all of the facility operations and workflows. All of that experience led her to eventually take over the operations leadership role. She instills care and effort to maintain the cleanest and most efficient operations possible. “With aeroponics, we don’t have to lug soil from room to room or in and out of the facility. This saves us a ton of work that we can redirect to plant health and maintenance,” says Syrek. “Medical precision and GMP quality is a given. Each room on average is 105 lights and one room manager and one cultivation technician take the room from clone/veg transfer to harvest as a two-person team.”

Bailee Syrek, director of operations at Onyx Agronomics

Bailee prides herself with results. “Medical grade precision is normal for us. We use medical grade SOPs for every aspect of our production.” Bailee has designed these guides into their control system that runs on the Guardian Grow Manager software. From sensor tracking, to performance graphs to time cards; everything is integrated in her performance monitoring.

A quality focus is very apparent in every Onyx flower room. Every watt of light energy is transferred to the pristinely manicured canopy. Naked stems feed nutrients up to the fat buds at the trained canopy surface. Fan leaves are removed and all possible energy turns into bud weight and potency. The room technician has a passion for plant health, table care and plant maintenance all the way through to the harvest bonanza.

What is the biggest challenge for Bailee as she drives the operation? Even at 105-110 grams per square foot per harvest, they are sold out. “Every customer wants to buy beyond our capacity. It is a good problem to have,” Bailee says. “Customers want our quality and love the consistency. This is the most exciting thing about our expansion. We will finally be able to make additional channels happy with high quality supply.”

This is where Andrew credits Onyx’s performance. “Most well running operations deliver 1.1-1.8 grams of dry trim bud per watt of electricity used in powering a grow room,” says Andrew. The Onyx grow formula results leave this in the dust. Running Fluence SPYDR 2i grow lights and the AEtrium System aeroponics, Onyx plants are delivering just shy of 4 lbs. per light with every harvest cycle. At 630 watts max output, that delivers ~2.7 grams/Watt, the most efficient operation he has seen. The Onyx process and execution works.

“Bailee is a great example as a professional. She builds a motivated team that executes better than her competition,” says Andrew.

At the same time, Onyx runs a highly space efficient nursery with just enough mother plants feeding energetic cuttings into the 4-layer stacked AEtrium-2.1 SmartFarms in their environmentally controlled clone room. They produce more than enough healthy clones to jump from veg to flower in the span of a week. Grow time, harvest turn time and no veg space, results in very efficient use of power in the complete operation.

Mirroring Onyx for Medical Grade Cannabis in Europe

Andrew Lange’s current passion is a green-field project in Portugal. Self-funded, Andrew says that this facility will be one of the first that is pure enough in operations to supply non-irradiated clean-room-level-quality cannabis beyond the precise standards required by European regulators. Current importers have not been able to clear the European standards for cleanliness without irradiating their buds. Other companies like Aurora have abandoned efforts to access the market due to the precision requirements. Typical methods used for fruit imports use gamma radiation to get bacterial counts down. This was tried with cannabis to sterilize buds, but the problem with cannabis is this degrades the quality of the flower.

Andrew’s Portugal facility will be using a sterile perimeter surrounding his grow space (mothers, clones/veg, flower rooms) and harvest and processing areas (dry, trim, packaging). Andrew creates a safe environment for healthy production. A steady harvest cleaning regimen is built into his operational designs from the beginning. All operators are trained in procedures to exclude pathogens and limit all possible transmission (airborne, physical/mechanical touching, or water carried). Every area is cleaned during and between harvests. Andrew is confident he will reach a consistent level of accuracy and purity beyond European requirements because it is routine in all of his designs.

Certified Efficiency is the Message

Good Manufacturing Practices (GMP) and Good Agricultural and Collection Practices (GACP) are required for certification and access to European markets. Andrew always builds tight operations, but in this case, his Portugal facility is designed with the fit and finish to be GMP and GACP compliant from day one with advanced air filtration and air management throughout.

Automated aeroponics is a foundation technology that Andrew recommends for his facility designs. The automatic data logging, report generation, cloud access and storage make this a foundational technology. Andrew does get some resistance from cultivators that are used to the classic soil media approaches but he explains that software configurable grow recipes, precision controls, zero soil/no pests and hyper-fast growth makes aeroponics the foundation of competitive advantage. Precisely controlled medical quality precision operations are built on top of this foundation.

The initial phase of the Portugal facility is 630 lights and this facility is Andrew’s latest personal investment. From secure perimeters to modular grow rooms and highly automated equipment, this location will be state-of-the-art in terms of grams/watt yields and renewable energy with an output of 6 metric tons per year. Solar powered electricity from a 4-megawatt farm will use Tesla megapacks for storage and be grid independent.

Technology & Innovation, Onyx & Ascendant

From his first experience with AEssenseGrows aeroponics, Andrew has been able to design complete grow recipes in the Guardian Grow Manager software with very tight precision on dosage. This makes it possible to create ideal recipes for each strain (nutrition, irrigation cycles, lighting and environmental management). This frees up the operations teams to focus on plant health and execution. The nutrients, pH, CO2, temperature and humidity, follow the Guardian directions that he sets.

Working with Bailee at Onyx, Andrew is now consulting on the post-harvesting side of operations (drying, trimming, extracts and packaging). In parallel with his efforts, Bailee is optimizing THC & terpene production on the cultivation side with UV lighting (considering far-right red frequency light recipe enhancements).

That is the Ascendant Management approach to innovation. Trial, test constantly, perfect ideas in practice. Optimize the results for consistent, high-quality results. Even while driving for the personal craft touch, use automation to increase efficiency of mundane, but important tasks. With these methods, Andrew believes that the Onyx labor cost is one third of typical soil media grow operations. Zero soil aeroponics offers many benefits. Bailee’s team is able to give each plant more attention and delivery better quality. Automation is a win-win for them.

Bailee finds that constant testing is useful for two things: one, great results, and two, surface the best talent with their hand’s-on approach.

Always Finish with People

Bailee says that her staff works incredibly hard. “We are a different grow, with better ergonomics on the job, aeroponics for precision and yields, and advanced technology at the leading edge in every part of our grow. No dirt up and down stairs. People are proud to work here. We are not your dad’s grow operation.”

“We promote from within. Everyone starts as a room tech and has the opportunity to move up. Teams are isolated by rooms so there is no contamination between rooms or humans. Put in the work, and you will get promoted with expansions, and grow with the company as we take a bigger share in the market.” Female employees make up almost half of the current staff, and Bailee encourages employees to refer their friends. “Good people invite good people,” she says.

Her training program introduces the technical aspects of their unique operation, the positive expectations and career path for every new employee. The social environment is friendly with good pay and regular raises. Each new employee fills a range of roles during their 1-month training circuit and are assigned to a cultivation space under a lead as an official cultivation tech at the end of 30 days. “One thing that we do more than at other grows is constant cleaning,” says Bailee. “This is an ever-present mantra for the staff.”

Charlotte’s Web Poised for Canadian Expansion

By Cannabis Industry Journal Staff
No Comments

Charlotte’s Web Holdings, the company that just about launched the entire CBD industry, announced this week that they have just been approved for registration on Health Canada’s list of approved cultivars (LOAC) for 2021. Three of their proprietary hemp cultivars have made the cut, gaining the company access to the Canadian market.

Jared Stanley, co-founder and chief cultivation officer at Charlotte’s Web, says they plan to lead the market in Canadian hemp-derived CBD products. “The majority of approved cultivars on the LOAC to date have been for industrial hemp grown to produce food, fiber, and animal feed,” says Stanley. “Now our approved cultivars are paving the way for full-spectrum hemp CBD demand in Canada and most importantly, will provide access to Charlotte’s Web products in Canada.”

Largely due to the difference in regulatory approaches between Canada and the U.S., the CBD product market in Canada is somewhat small. Health Canada currently regulates CBD products the same as products containing more than 0.3% THC. In the U.S., a checkerboard of state laws, the 2018 Farm Bill and the subsequent state hemp programs led to massive growth for the CBD product marketplace.

Charlotte’s Web is one of the leading hemp-derived CBD companies operating in the United States. With the soon-to-be expansion into Canada, the company hopes to develop a global footprint, says Deanie Elsner, president and CEO of Charlotte’s Web. “Today, Charlotte’s Web is the leading hemp wellness company in the U.S. with the most recognized and trusted hemp CBD extract,” says Elsner. “We aspire to be the world’s leading botanicals wellness company, entering countries with an asset light model where federal laws permit hemp extracts for health and wellness. Israel and Canada are included in the first steps of our international expansion.”

Smart Plants: A Q&A with Jonathan Vaught, CEO and Co-Founder of Front Range Biosciences

By Aaron Green
No Comments

Plant genetics are an important consideration for cultivators planning to grow cannabis crops. Genetics can affect how well a plant grows in a particular environment under various conditions and have a major impact on the production of cannabinoids, terpenes as well as other molecules and traits expressed by the plant.

Front Range Biosciences is a hemp and cannabis genetics platform company, leveraging proprietary next generation breeding and Clean Stock® tissue culture nursery technologies to develop new varieties for a broad range of product applications in the hemp and cannabis industries. FRB has global reach through facilities in Colorado, California and Wisconsin, and a partnership with the Center for Research in Agricultural Genomics in Barcelona, Spain. FRB is headquartered in Lafayette, Colorado.

We spoke with Jonathan Vaught, Ph.D., CEO and co-founder of Front Range Biosciences. Jonathan co-founded Front Range in 2015 after a successful career in the diagnostics and food testing industries.

Aaron Green: Jon, thank you for taking the time today. I saw in the news you recently sent tissue cultures to the International Space Station? I’d love to learn more about that!

Hemp tissue culture samples like these sat in an incubator aboard the ISS

Jonathan Vaught: This was a collaborative project between the BioServe group at the University of Colorado Boulder, which is a part of their aerospace engineering program. They do research on the International Space Station, and they have for quite some time. We partnered with them and another company, Space Technology Holdings, a group that’s working on applications of space travel and space research. We teamed up to send tissue culture samples to the space station and let them sit in zero gravity at the space station for about a month, and then go through the reentry process and come back to Earth. We brought them back in the lab to perform some genomic analyses and try to understand if there’s any underlying genetic changes in terms of the plants being in that environment. We wanted to know if there was anything interesting that we could learn by putting these plant stem cells and tissue cultures in an extreme environment to look for stress response, and some other possible changes that might occur to the plants by going through those conditions.

Aaron: That’s an interesting project! Are there any trends that you’re following in the industry?

Jon: We’re excited to see ongoing legalization efforts around the world. We’ve seen continued progress here in the United States. We still have a long way to go, but we’re excited to see the additional markets coming onboard and regulations moving in the right direction. Also, we’re excited to see some of the restorative justice programs that have come out.

Aaron: How did you get involved at Front Range Biosciences?

Jon: It really starts with my background and what I was doing before Front Range Biosciences. I’ve spent more than 15 years developing commercializing technologies in human diagnostics, food safety and now agriculture.

Jonathan Vaught, Ph.D., CEO and co-founder of Front Range Biosciences

I started my career during graduate school in biotech at the University of Colorado at Boulder, where I helped develop some of the core technology for a human diagnostic startup company called Somalogic here in Colorado. I went to work for them after finishing my dissertation work and spent about six years there helping them grow that company. We ended up building the world’s largest protein biomarker discovery platform primarily serving pharmaceutical companies, hospitals and doctors, with personalized medicine and lab tests for things like early detection of chronic illness, cancer, heart disease and inflammation.

I then went to another startup company called Beacon Biotech, that was interested in food safety. There I helped develop some similar technologies for detecting food-borne illness — things like salmonella, listeria and E. coli. That was my introduction to big food and big agriculture. From there, I went to help start another company called Velocity Science that was also in the human diagnostic space.

Along the way, I started a 501(c)3 nonprofit called Mountain Flower Goat Dairy, a dairy and educational non-profit that had a community milk-share, which included summer camps and workshops for people to learn about local and sustainable agriculture. I became more and more interested in agriculture and decided to take my career in that path and that’s really what set me up to start Front Range Biosciences.

Aaron: Do you have any co-founders?

Jon: I have two other co-founders. They both played various roles over the last four years. One was another scientist, Chris Zalewski, PhD. He currently works in the R&D department and helps oversee several different parts of the company including pathology and product development. My other co-founder, Nick Hofmeister served as chief strategic officer for the last few years, and has helped raise the majority of our funding. We’ve raised over $45 million dollars, and he played a big role in that.

Aaron: What makes you different from other cannabis seed companies?

John: We’ve built the first true cannabis genetics platform. What I mean by that is we built a platform that allows us to develop and produce new plant varieties that support both the hemp and the cannabis markets. To us, it’s all cannabis. Hemp and cannabis are scientifically the same plant. They just have different regulatory environments, different products and different markets, but we stay focused on the plant. Our platform is built on several different pillars. Genetics are one of the core pieces, and by genetics I mean, everything from molecular based breeding to marker assisted breeding to large germplasm collections. We collect different varieties of germplasm, or seed, from all over the world and use those to mix and match and breed for specific traits. We also have large nursery programs. Another one of our pillars of the platform includes greenhouse nursery production — everything from flowering cannabis plants to producing cannabis seeds to cloning and producing mother plants and rooted cuttings or clones.

Then tissue culture is another part of the platform, it’s basically the laboratory version of a greenhouse nursery. It’s housed in a sterile environment and allows us to produce plants that are clean and healthy. It’s a much more effective, modern way to manage the nursery. It’s part of our clean stock program, where we start clean, stay clean, and you can finish clean. It’s really built on all of those different pieces.

We also have capabilities in analytical chemistry and pathology, that allow us to better understand what drives performance and the plants, and both different regions as well as different cannabinoid products or terpene products. All of the science and capabilities of the platform are what allow us to create new varieties faster, better, stronger.

Aaron: It sounds like you’re vertically integrated on the front-end of cannabis cultivation.

Jon: Absolutely, that’s a great way to think about it.

The last piece I’d say is that we have areas of research and development that cover the full span of multiple product lines. We think about it from an ingredient perspective. Cannabinoids and terpenes are certainly what drive a large part of the cannabis market in terms of edibles, smokable flower, vapes and extracts and the different effects and flavors that you get. We also are looking at other ingredients, like plant-based protein and hemp as a viable protein source and the ability for hemp to produce valuable fiber for textiles, as well as industrial building materials and applications.

Lastly, there are additional small molecules that we’re working on as well from a food ingredients perspective. There are all kinds of interesting compounds. Everybody talks about the cannabinoids and terpenes, but there are also things like flavonoids, and some other very interesting chemistries that we’re working on as well.

Aaron: What geographies are you currently in?

Jon: Colorado and California primarily and we have a small R&D partnership in Barcelona.

Hemp clones and seeds is a big part of the Front Range Biosciences business

Aaron: Do you have plans for expansion beyond that?

Jon: Our current headquarters are out of Colorado, and most of our Colorado operations right now are all hemp. Our hemp business is national and international.

We work with a licensed cannabis nursery partner in California which is our primary focus for that market, but we will be expanding the cannabis genetics and nursery program into Colorado next year. From a regulated cannabis perspective, that’s the first move. Beyond that, we’re in conversations with some of the multi-state operators and cannabis brands that are emerging to talk about how to leverage our technology and our genetics platform across some of the other markets.

Aaron: How do you think about genetics in your products?

Jon: Genetics means a lot of things to different folks depending on your vantage point and where you sit in the supply chain. Our business model is based on selling plants and seeds. At the end of the day, we don’t develop oils, extracts and products specifically, but we develop the genetics behind those products.

For us, it’s not only about developing genetics that have the unique qualities or ingredients that a product company might want like CBD, or other minor cannabinoids like THCV for example, but also about making sure that those plants can be produced efficiently and effectively. The first step is to introduce the ingredient to the product. Then the second step is to make sure that growers can grow and produce the plant. That way they can stabilize their supply chain for their product line. Whether it’s for a smokable flower product, or a vape product, or an edible product, it’s really important to make sure that they can reproduce it. That’s really how we think about genetics.

Aaron: What is a smart plant? That’s something I saw on your website.

Jon: It’s really about plants that perform under specific growing regions, or growing conditions. For example, in hemp, it’s one thing to produce CBD or CBG. It’s another thing to be able to produce it efficiently in five different microclimates around the U.S. Growing hemp in Florida or Alabama down on the Gulf Coast versus growing on the Pacific Northwest coast of Washington, or Oregon are two very different growing conditions that require smart plants. Meaning they can grow and thrive in each of those conditions and still produce the intended product. Generally, the different regions don’t overlap. The genetics that you would grow in Pacific Northwest are not going to do as well as some better selected varieties for the South East.

It’s not only different outdoor growing regions, but it’s different production styles too. When you think about regulated cannabis the difference between outdoor and indoor greenhouse is mixed light production. Even with hydroponic type growing methods, there are lots of different ways to grow and produce this plant and it’s not a one size fits all. It’s really about plants that perform well, whether it’s different regions in the United States in outdoor production or different indoor greenhouses with mixed lights and production methods.

Aaron: You market CBG hemp as a product line. What made you start with CBG? Is that a pull from the market or something you guys see trending?

Jon: So I think it’s a little bit of both. We offer CBD dominant varieties and CBG dominant varieties of hemp. We also now have other cannabinoids in the pipeline that we’ll be putting out in different varieties next year. Things like CBC as well as varins, or propyl cannabinoids. Also things like CBDV, CBCV, or CBGV, which are the propylcannabinoid versions of the more familiar compounds.

Their nursery services include breeding, propagation and production of cannabis

There was a lot of market demand for CBG. It was a fairly easy cannabinoid to produce as a single dominant cannabinoid similar to CBD or THC. There’s a lot of up-and-coming demand for some of the other minor cannabinoids. Up until a few years ago, CBD was considered a minor cannabinoid. It wasn’t until Charlotte’s Web in the Sanjay Gupta story that it became a major cannabinoid. So I think we see some level of market pull across the category.

On the flip side of that, we have one of the world’s largest R&D teams and consolidated expertise in terms of cannabis. We see the potential for minor cannabinoids, and even terpenes and other compounds like flavonoids to have wide ranging implications in human health. Everything from wellness products, to active pharmaceutical ingredients, to recreational products. From our perspective, that’s the reason why we’re pushing these ingredients. We believe that there are a lot of good products that come out of this work and the genetics that produce these minor cannabinoids.

Aaron: Okay, great. And then last question, is there anything you’re interested in learning more about?

Jon: I think the most exciting thing for me, given my background in clinical diagnostics and human health, is to see more data around how all of these different compounds of the plant can support improved wellness, health and nutrition. I think we’ve only scratched the tip of the iceberg. This type of research and data collection takes years, even decades, especially to see outcomes over time of people using these products. I’m really excited to see more of that and also hopefully be able to make stronger conclusions about some of the benefits that can be had from this plant.

Aaron: That’s the end of the interview, thanks Jon!

Large Scale Cultivation Planning: 4 Important Factors to Consider

By David Perkins
2 Comments

Before you begin any large-scale cultivation project, you must necessarily consider the four factors highlighted below, among many others, to ensure your cultivation is successful. Failure to do so will cost you greatly in both time and money, and ultimately could lead to failure. While the four areas highlighted below may be the most important considerations to address, you should hire a cultivation advisor to determine the numerous other considerations you must deal with before you begin.

1. Genetics

Genetics will play a huge role in your cultivation plan, as they can ultimately make or break the success of your business. Access to quality, verified genetics will greatly affect your profits. All cannabis genetics grow differently and may require different conditions and nutrients. Further, consumers in today’s regulated market have greater awareness; they are much more knowledgeable about genetics and able to discern between quality cannabis versus commercially produced cannabis.

Market trends will dictate whether or not you’ll ultimately be able to sell your harvest at market rate. You need to project out at least one year in advance the genetics you will be growing. But often it is impossible to predict what consumers will be purchasing a year in advance so this part of your cultivation plan should be well thought out. Further compounding this difficulty is the fact that it may take six months to ramp up production of any given variety.

Genetics that are popular now may still be popular next year, but that also means there will be more competition for shelf space, as more competitors will also likely be growing these same genetics. Therefore, don’t rely on only one trendy variety as the bulk of your selection for the year, no matter how popular it is at the moment. Producing a single variety as the bulk of your crop is always risky, unless you have a contract with a sales outlet, in advance, for a set quantity of that one particular variety. Diversity in your genetics is beneficial, when chosen correctly.

Making proprietary genetics from your own seed collection can give you a big advantage in today’s competitive market. Having a variety with a distinct, unique and desirable smell, taste, effect or cannabinoid profile will allow you to distinguish your brand amongst others. Entire brands have been built off of a single variety: Cookies and Lemontree are two examples of companies that have done this. All it takes is one really good variety to attract a lot of attention to your brand. Having your own breeding project on site will allow you to look for and identify varieties that work for you and your business model, and ultimately will help to distinguish your brand apart from others.

Only buy seeds from reputable breeders! Any new varieties that you are going to be cultivating should be tested out at least three times, on a small scale, before being moved into a full production model. If you are growing from seed there is always the potential for your crop to get pollinated by male plants or hermaphrodites that went unnoticed, and therefore, they could be a potential risk to your entire harvest. Treat them accordingly, i.e. by cultivating them on a small scale in a separate, enclosed area.

Buying clones from a commercial nursery can be risky. Genetics are passed from one grower to another haphazardly, and names are changed far too easily. This can create a lot of confusion as to what variety you are actually purchasing and whether you are getting the best version of the genetics. Just because a clone is called “sour diesel” doesn’t mean you’re actually getting the real, authentic sour diesel. And to further complicate things, the same clone grown in different environments can produce a noticeable difference in flavor, smell and effect depending on your cultivation method. Always try your best to verify the authenticity of the genetics you purchase. Ask about the history and origin of the particular genetics you are purchasing. Better yet, ask for pictures, physical samples, and most importantly, certificates of analysis from a laboratory, indicating the potency. In many states anything under 20% THC is going to be hard to sell, while anything over 30% will easily sell and command the highest price. It’s a good idea to have a laboratory test the terpene profile in order to verify a variety is actually what the seller purports it to be.

Knowing the source of your genetics is imperative. It will help ensure that you actually have the variety that you were intending to grow, and therefore, allow you to achieve your intended results. Knowing what varieties you are going to cultivate, before you grow them, will also give you a better idea of the ideal growing conditions for that specific variety, as well as what nutrients will be required to achieve optimum output.

2. Automated Watering Systems

Installing an automated watering system, during build out, will by far be the most cost-effective use of your money, and will save you the most amount of time in labor. An automated watering system, commonly referred to as a “drip system” or “drip irrigation,” is necessary regardless of whether you are cultivating indoors or outdoors; it will allow you to water multiple different areas at once, or only water a few specific areas of the garden at one time. Hand watering a 22,000 square-foot cultivation site will take one person eight hours every single day, on average, to maintain. However, a properly designed drip system can water an entire large-scale garden in a couple of hours, without any employees, record all the relevant data and notify you if there is a problem. This enables you more time to spend closely inspecting the plants to ensure there are no bugs or other problems present, and that your plants are healthy and thriving. This attention to detail is necessary if you want to have consistent success.

Larger scale cultivation requires bigger and more expensive equipment.

Automated watering systems not only save a great deal of time but also eliminate the possibility of human error, like over watering, which can kill an entire crop quickly. There aresoil moisture sensors  that can be placed in the soil to regulate the supply of water to the plants in a precise manner. Without an extremely skilled, experienced work force, damage to plants due to over watering is very common. A drip system will reduce the threat of human error by ensuring delivery of precisely the correct amount of water and nutrients to each plant every single time they are watered.

Not all drip systems are created equally. There are different types of automated watering systems. Designing the right drip system for your cultivation site(s) can be complicated. Make sure you do your research, or better yet, work with a cultivation advisor who has experience with automated irrigation systems in conjunction with a licensed plumber, to ensure you are installing the best system for your particular set up.

Adding a fertilizer injector to your drip system can further increase the efficiency of your operation and save you money on nutrients by using only what you need and ensuring correct application. Again, automating this process will save you time and money, and reduce the threat of human error.

3. Nutrients

The types of nutrients you use and the amount of nutrients you use, are going to directly affect the quality of your cannabis flower. Conventional agriculture and Dutch hydroponic cannabis cultivation have always used salt-based fertilizers. However, they can be toxic for the plant in high amounts. While cheap and easy to use, salt- based nutrients are made in big factories using chemical processes to manufacture. They are not good for the environment, and overall, they produce an inferior product. The highest quality cannabis, is grown with organic living soil. Although seemingly contrary to popular knowledge, when done properly, cultivating in organic living soil is more cost effective than using powdered or liquid salt-based fertilizers.

Yield and quality depend on the skills of the cultivator, more than the method they are using. Having healthy plants from the start, will always yield better results, no matter what way they were grown. In my 20 years of experience I have seen plants grown in balanced living soil yield just as much as plants grown with synthetic nutrients. Further, the quality is not comparable.

Controlling your clone supply can ensure they are healthy

Always remember, it is the quality of your flower that will determine the price it is sold for, not the yield. Even if you produce more overall weight of chemically grown cannabis, if nobody wants to purchase that product, then you are going to yield far less profit than another company growing in the same amount of space using organic practices that yield a higher quality product.

The difference in quality between plants grown in balanced living soil versus any other method of cultivation is undeniable. It is really easy to post a pretty picture of a flower on Instagram but that picture doesn’t tell you anything about what went into producing it. When flower is produced using chemical nutrients, it is likely going to be harsh and not enjoyable to smoke. Lesson learned: don’t judge a bud by an Instagram photo! There is a stark difference between cannabis grown using synthetic nutrients versus cannabis grown in living soil. Once you’ve experienced the difference you will never want to consume cannabis that is grown any other way.

4. Plant Propagation

Having the ability to propagate your own clones, from mother plants that you have cultivated, can save you a staggering amount of money. In some states, having a cultivation license allows you to produce your own clones for your cultivation, while having a nursery permit will allow you to sell clones for commercial sales to other companies. The average price of a wholesale clone is around eight dollars. If you require 5000 plants for every harvest, that’s a $40,000 expense you must bear, every grow cycle. This can obviously add up quickly. And as previously mentioned there’s the risk of purchasing inferior genetics or unhealthy plants, both of which greatly affect your profit margins.

On the other hand, the cost of materials and labor to produce a healthy clone can be as low as one dollar when using advanced cloning techniques. Controlling your clone supply can ensure they are healthy and allow you to know exactly what you are growing each time. Further, it doesn’t take a lot of space to propagate your own cuttings. In a 400 square-foot space one could produce between 5,000 to 10,000 clones per month, all of which could be maintained by one person depending on your situation.

And last but definitely not least, the most important thing you can do to ensure the success of your cultivation, is hire an experienced knowledgeable grower who is passionate about cannabis. The success of your company depends on it. You need someone with the knowledge, experience, and skills to make your cultivation dreams a reality. You need someone who can plan your build-out and cultivation to ensure success from the start. And you need someone with the skills to handle the multitude of inevitable problems that will arise in a cost effective and efficient way.

These are just some of the many considerations you must account for when planning a large scale grow in the regulated market. An experienced cultivation advisor can help you with these, and many other considerations you will need to contend with before you begin your grow. Creating a well thought out plan at the outset can end up saving you thousands, if not hundreds of thousands of dollars down the road.

dry cannabis plants

Moisture Matters: Why Humidity Can Make or Break a Cannabis Cultivator’s Bottom Line

By Sean Knutsen
1 Comment
dry cannabis plants

Vintners have known for centuries that every step in the winemaking process—from cultivation and harvest techniques to fermentation, aging and bottling—has immense impact on the quality and value of the final product.

And that same level of scrutiny is now being applied to cannabis production.

As someone who has worked in the consumer-packaged goods (CPG) space for decades, I’ve been interested in finding out how post-harvest storage and packaging affect the quality and value of cannabis flower. After digging into the issue some more, storage conditions and humidity levels have indeed come into focus as major factors, beyond just the challenges of preventing mold.

Weighty Matters

I enlisted my research team at Boveda, which has studied moisture control in all manner of manufactured and natural CPG products, to look closer at what’s happening with cannabis once it leaves the cultivation room. There’s not a lot of research on cannabis storage—we checked—and so we explored this aspect further. We were frankly surprised by what a big effect evaporation has on quality and how this is playing out on the retail level.

We suspected moisture loss could affect the bottom line too, and so we did some number-crunching.

It’s well understood that the weight of cannabis flower directly correlates with its profitability—the heavier the yield, the higher the market value. Here’s what our analysis found: A mere 5% dip below the optimal relative humidity (RH) storage environment eliminates six pounds per every 1,000 pounds of cannabis flower. At $5 per gram wholesale, that works out to upwards of $13,500 in lost revenue—and that’s with just a 5% drop in RH below the target range of 55-65% established by ASTM International, an independent industry standards organization.

We also purchased flower at retailers in multiple state markets and commissioned a lab to test the samples, which revealed that most strains sold today are well below the optimal RH range (55-65%). Regardless of fluctuating wholesale prices, when you do the math it’s clear that tens of thousands of dollars in revenue are simply evaporating into thin air.

Why So Dry?

Historically, cultivators, processors and packagers have emphasized keeping flower below a particular humidity “ceiling” for a reason: Flower that’s too moist is prone to hazardous mold and microbial growth, so it’s understandable that many operators err on the side of being overly dry.

The misconception that cannabis flower can be “rehydrated” is another cause of dryness damage. But this method irrevocably damages the quality of the flower through trichome damage.

trichome close up
The fine outgrowths, referred to as trichomes, house the majority of the plant’s resin

Those delicate plant structures that house the all-important cannabinoids and terpenes become brittle and fragile when stored in an overly dry environment, and are prone to breaking off from the flower; they cannot not be recovered even if the flower is later rehydrated.

When trichomes are compromised, terpenes responsible for the aroma, taste and scent of cannabis also can evaporate. Overly dried-out cannabis doesn’t just lose weight and efficacy—it loses shelf appeal, which is particularly risky in today’s market.

Today’s consumers have an appreciation for how premium flower should look, smell and taste. Rehydration cannot put terpenes back in the flower, nor can it re-attach trichomes to the flower, which is why preservation of these elements is so key.

Cannabis Humidity Control

Cured cannabis flower can remain in storage potentially for months prior to sale or consumption. By the time it reaches the end consumer, much of the cannabis sold in regulated environments in the U.S. and Canada has suffered from dry damage.

dry cannabis plants
Rows of cannabis plants drying and curing following harvest

There are various humidity controls available for cannabis cultivators: desiccants that absorb water vapor; mechanical equipment that alters RH on a larger scale; or two-way humidity-control packets designed for storage containers.

In the CPG sector, with other moisture-sensitive products such as foods and electronics, we’ve seen that employing humidity controls will preserve quality, and cannabis flower is no different.

Saltwater-based humidity control solutions with two-way vapor-phase osmosis technology automatically add or remove water vapor as needed to maintain a constant, predetermined RH level and ensures a consistent level of moisture weight inside the cannabis flower.

Here’s one more notable finding we discovered in our storage research: Third-party lab tests commissioned by Boveda showed cannabis stored with humidity control had terpene and cannabinoid levels that were 15% higher than cannabis stored without.

Cannabis stored within the optimal humidity range maximizes all the qualities that attract and retain customers. Similar to wine-making, when cannabis cultivators focus on quality control they need to look beyond the harvest.

Who’s Afraid of Biotech Institute LLC?

By Brett Schuman, Daniel Mello, Nicholas Costanza, Olivia Uitto
No Comments

While cannabis patenting activity is still in its infancy, relatively speaking, a lot has been written already about the cannabis patenting activity of an entity called Biotech Institute LLC (BI) of Westlake Village, California.1 BI is building a sizable portfolio of utility and plant patents covering various aspects of the cannabis plant. According to some commentators, BI’s patents have “many in the cannabis industry concerned.”2

But how concerned should members of the cannabis industry really be about BI’s patents? Generally, patents are susceptible to numerous challenges in multiple fora. From 2012-2016, approximately 80% of challenged patents were invalidated by the Patent Trial and Appeal Board (PTAB) each year.3 The PTAB was created in 2011 by the Leahy-Smith America Invents Act, 35 U.S.C. § 6, to create a process for eliminating improvidently issued patents. And the statistics suggest that the process may be working as intended by Congress.

BI may be building its portfolio by taking advantage of some unique challenges in the cannabis patenting area. First, even though cannabis has been cultivated and consumed by humans for thousands of years, there is a relative lack of published prior art available to patentees and patent examiners examining patent applications.4 Second, patent examiners are not as familiar with cannabis patent applications as they may be with other types of patent applications.

So, we examined carefully BI’s earliest and arguably broadest utility patent, U.S. Patent No. 9,095,554, and concluded that maybe the cannabis industry need not be so concerned about this and some of BI’s other utility patents. Although the ’554 patent is lengthy – 247 columns of text and over an inch thick when printed in hardcopy – there appears to be little if any novelty to the claimed invention. Alternatively, the patent appears to be obvious in light of the available prior art.

In a patent, the claims define the metes and bounds of the patentee’s intellectual property. Claim 1 of the ’554 patent recites:

  1. A hybrid cannabis plant, or an asexual clone of said hybrid cannabis plant, or a plant part, tissue, or cell thereof, which produces a female inflorescence, said inflorescence comprising:
  1. a BT/BD genotype;
  2. a terpene profile in which myrcene is not the dominant terpene;
  3. a terpene oil content greater than about 1.0% by weight; and
  4. a CBD content greater than 3%;
  5. wherein the terpene profile is defined as terpinolene, alpha phelladrene, beta ocimene, careen, limonene, gamma terpinene, alpha pinene, alpha terpinene, beta pinene, fenchol, camphene, alpha terpineol, alpha humulene, beta caryophyllene, linalool, cary oxide, and myrcene, and wherein the terpene oil content is determined by the additive content of the terpenes in the terpene profile; and wherein the terpene contents and CBD content are measured by gas chromatography-flame ionization detection (GC-FID) and calculated based on dry weight of the inflorescence; wherein a representative sample of seed producing said plants has been deposited under NCIMB Nos. 42246, 42247, 42248, 42249, 42250, and 42254.

While claim elements define the metes and bounds of the invention, typically only certain claim elements are intended to distinguish the claimed invention from the prior art. Other claim elements merely help to describe the invention. For example, the preamble in the ‘554 patent, or the part of the claim before subpart (a), describes the flowering part of the cannabis plant. This is not intended to describe anything novel about the claimed invention, but rather it simply describes the part of the cannabis plant that is relevant to the invention.

The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

Before the priority date of the ’554 patent, it was known in the prior art that BT/Bgenotypes produce nearly equal amounts of THC and CBD (both are dominant; one is not recessive).5 Thus, it is not unexpected to have a CBD content greater than 3% in a genotype that can produce large amounts of CBD (known references state as high as 21% in CBD-dominant strains and 3%-15% in BT/Bgenotypes).6 Further, it was known in the prior art that terpenes generally constitute more than 1.0% percent by weight (usually between 2-4%) of the flower.7

As these databases continue to grow and studies of cannabis are publicly disclosed, cannabis patents like BI’s ’554 patent will become more and more susceptible to patent challenges and invalidation.Claim element (b), reciting a terpene profile in which myrcene is not the dominant terpene, appears to be one of – if not the only – claimed element of novelty of the BI invention. Terpenes are aromatic compounds produced in plants, and the cannabis plant has more than 100 different terpenes. Claim element (e) simply lists the most abundant terpenes in the cannabis plant. A majority of cannabis strains express high levels of myrcene; however, there are known prior art strains that express high levels of other terpenes, such as caryophyllene, limonene, pinene, etc. Additionally, it is well known in the art that terpenes have different therapeutic effects. For example, pinene and linalool are known to have antidepressant activity.8 Thus, a prior disclosure of a BT/Bgenotype that has a terpene profile where myrcene is not the dominate terpene very likely invalidates this claim. And even assuming there is any novelty to a high-CBD strain where myrcene is not the dominant terpene, there is a motivation to breed for a dominant terpene besides myrcene.

Because cannabis has been and remains a Schedule I drug under the Controlled Substances Act, previously known and used strains generally have not been chemically characterized, studied, researched, and the subject of publications that can be used as prior art for purposes of challenging cannabis patents. But that is changing. For example, the Open Cannabis Project (OCP) attempted to characterize and publish chemical details of cannabis plants. Even though OCP closed as of May 31, 2019, is database is still publicly available. Another example is CANNA, a non-profit initiative of the CANNA Espana Fertilizantes SL company, which carries out studies and conducts research on cannabis and its active compounds.9 In one study,10 CANNA found that some strains have terpene profiles where myrcene is not the dominant terpene, which could be relevant to a novelty-based or obviousness challenge to claim 1 of the ‘554 patent. As these databases continue to grow and studies of cannabis are publicly disclosed, cannabis patents like BI’s ’554 patent will become more and more susceptible to patent challenges and invalidation.


References

  1. See, e.g.,Amanda Chicago Lewis, The Great Pot Monopoly Mystery, GQ (August 23, 2017), https://www.gq.com/story/the-great-pot-monopoly-mystery;  Brian Wroblewski, Utility Patents on Marijuana? Who is BioTech Institute LLC?, The National Marijuana News, https://thenationalmarijuananews.com/utility-patents-marijuana-biotech-institute-llc/; Eric Sandy, Biotech Institute Has Applied for Patents on 8 Individual Cannabis Cultivars, Cannabis Business Times(June 24, 2019), https://www.cannabisbusinesstimes.com/article/biotech-institute-cannabis-patent-applications/.
  2. Nicole Grimm, George Lyons III, and Brett Scott, Biotech Institute’s Growing Patent Portfolio — U.S. Patent No. 9,095,554 and the Path Forward, JD Supra (November 17, 2017), https://www.jdsupra.com/legalnews/biotech-institute-s-growing-patent-17433/.
  3. World Intellectual Property Organization, An overview of patent litigation systems across jurisdictions,World Intellectual Property Indicators 2018, https://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2018-chapter1.pdf.
  4. Brett Schuman et al., Emerging Patent Issues In The Cannabis Industry, Law360(February 20, 2018), https://www.goodwinlaw.com/-/media/files/publications/emerging-patent-issues-in-the-cannabis-industry.pdf.
  5. Chandra, et al. Cannabis sativa L. – Botany and Biotechnology, pages 142-144, Springer, 2017 (citing de Meijer, Genetics163: 225-346 (2003)). See alsoMolecular Breeding (2006) 17:257-268, doi/10.1007/s11032-005-5681-x. 
  6. American Journal of Botany 91(6): 966:975 (2004). doi.org/10.3732/ajb.91.6.966; See e.g., Jikomes, Peak THC: The Limits on THC and CBD Levels for Cannabis Strainshttps://www.leafly.com/news/science-tech/peak-thc-cbd-levels-for-cannabis-strains.
  7. PLoS One. 2017; 12(3): e0173911. doi: 10.1371/journal.pone.0173911.  See also, Fischedick J. T., Hazekamp A., Erkelens T., Choi Y. H., Verpoorte R. (2010). Phytochemistry712058–2073 (2010). 10.1016/j.phytochem.2010.10.001
  8. J Ethnopharmacol. 2012 Sep 28;143(2):673-9. doi: 10.1016/j.jep.2012.07.026. Epub 2012 Jul 31.
  9. Retrieved from https://www.fundacion-canna.es/en/about-us, on August 6, 2019.
  10. Retrieved from https://www.fundacion-canna.es/en/variations-terpene-profiles-different-strains-cannabis-sativa-l, on August 6, 2019.
USDA Logo

Hemp: A Growing Market Ripe for Protection

By David Holt, Whitt Steineker
No Comments
USDA Logo

With recent changes in federal and state law, and growing consumer awareness, the long-dormant hemp industry may finally be able to take heed of George Washington’s advice, “Make the most you can of [India Hemp] … The Hemp may be sown anywhere.”1

Hemp has a long and varied history in the United States. Throughout his lifetime, George Washington cultivated hemp at his Mount Vernon Estate, and, for a time, Washington even considered replacing tobacco with hemp as the Estate’s primary cash crop.2 Like Washington, Thomas Jefferson grew hemp at Monticello and his lesser-known Poplar Forest plantation.3 Both Founding Fathers primarily used the hemp cultivated on their property for making household items like clothing, rope, and fishing nets.

From the colonial era until 1970, hemp was routinely cultivated across the United States for industrial use. But, with the passage of the Controlled Substances Act (“CSA”) in 1970, U.S. hemp production ceased.4 The CSA banned cannabis of any kind, eliminating any distinction between hemp and other types of cannabis. As a result, hemp production became illegal in the United States.

A wide variety of hemp products can be found throughout the Untied States markets. Image courtesy of Direct Cannabis Network

More recently, the U.S. government finally began to ease restrictions on hemp cultivation and production. The 2014 Farm Bill introduced the USDA Hemp Production Program.5 Under the Program, universities and state departments of agriculture are allowed to cultivate hemp if:

  1. The industrial hemp is grown or cultivated for purposes of research conducted under an agricultural pilot program or other agricultural or academic research; and
  2. The growing or cultivating of industrial hemp is allowed under the laws of the state in which such institution of higher education or state department of agriculture is located and such research occurs.

The 2014 Farm Bill did not remove hemp from the auspices of the CSA, nor did it address the continuing application of federal drug control statutes to the growth, cultivation, manufacture, and distribution of hemp products.

The 2018 Farm Bill built upon the deregulation that began in 2014.6 Although both the 2014 and 2018 bills define hemp as the plant Cannabis sativa L. and any part of that plant that has a delta-9 THC concentration of 0.3% or less by dry weight,7 the 2018 Farm Bill took the additional step of removing hemp from the federal list of controlled substances and categorized it as an agricultural product. As a result, the production of hemp is now subject to USDA licensure and regulation. However, until the USDA completes its rulemaking process for implementing hemp regulation, hemp production remains illegal unless done in compliance with the terms of the earlier 2014 bill.8 For the time being, legal cultivation of hemp still must occur in a state that has authorized hemp research9 and the researcher must be either an institute of higher education or a state department of agriculture (or its designee).

With the increasingly favorable changes to federal and state law allowing for the expanded cultivation and production of hemp in the United States, the market is expected to grow significantly in the coming years. In 2014, the U.S. industrial hemp market was estimated at approximately $504 million.10 In only one year after the passage of the 2014 Farm Bill, the industrial hemp market was estimated to have increased by over $95 million to almost $600 million. By 2017, the worldwide market for industrial hemp was estimated to be $3.9 billion and growing at a compound annual growth rate (CAGR) of 14%.

In addition to favorable changes in U.S. law, the hemp market is benefiting from growing consumer awareness and demand for hemp-based food products.11 High in omega-3 and omega-6, amino acids and protein, hemp is growing in popularity as a cooking oil, dairy substitute, flour source and bakery ingredient. Among other things, hemp is considered by some to provide positive health effects for those seeking help with insulin balance, cardiac function, mood stability, and skin and joint health.

Although hemp cultivation is now allowed in the U.S.—at least for research purposes—and the market is forecasted to rise steadily under growing demand for hemp-based products, broad access to viable, legal seeds continues to present a challenge for researchers and commercial growers. In order to legally implement authorized cultivation programs and take economic advantage of a swiftly growing market, farmers must have access to seeds that can be guaranteed to consistently produce plants that fall under the legal definition of hemp. In an attempt to alleviate the problem, several states, including California, Indiana, Maine and Oregon, have implemented programs to license or certify compliant seed distributors and producers.

The importance of hemp seed availability and development has also been recognized on the federal level. On April 24, 2019, the USDA Agricultural Marketing Service published a Notice to Trade announcing that the USDA’s Plant Variety Protection Office (“PVPO”) is now accepting applications of seed-propagated hemp for protection under the Plant Variety Protection Act (“PVPA”). Among other things, the PVPA provides intellectual property protection to breeders who have developed new varieties of seed-propagated plants. Under the new guidance, breeders of new hemp varieties can now secure protection pursuant to the PVPA. Those holding a certificate of protection from the PVPO can exclude others from marketing or selling a registered hemp variety and manage how other breeders and growers use their protected variety.

The process for requesting protection under the PVPA is fairly straightforward. Breeders, or their attorneys, must complete all application forms, pay the required fees,12 submit a distinct plant variety name, and provide a deposit of at least 3,000 viable and untreated seeds of the variety (or 3,000 seeds of each parent variety for a hybrid). One required form for a completed PVPA application is the Objective Description of Variety form.13 This form provides a series of questions that identify the distinct aspects of the variety in question, including, among other things, plant and leaf characteristics, seed properties and anticipated uses. Upon receipt of the completed application and fees, the PVPO examines the application to determine whether the listed plant variety is new, distinct, uniform, and stable. If the PVPO determines that the requirements are satisfied, it will issue a certificate of protection granting the owner exclusive rights to the registered variety for a period of 20 years.Now is the time for farmers, researchers, and hobbyists alike to take advantage of the expanded opportunities available for protecting intellectual property for proprietary hemp varieties.

Although hemp has traditionally been used in the textile and fiber industries, the estimated 17.1% CAGR in the hemp seed segment is being driven by the increase in demand for hemp oil, seedcakes, and other food and nutraceutical products. These products are primarily derived from the hemp seed as opposed to its fibers. Presently, hemp seeds contain approximately 30-35% oil, of which approximately 80% is essential fatty acids, and 25% crude protein.14 Under the new PVPA guidelines, if a breeder is able to cultivate a sustainable plant that increases the plant’s production of the desirable compounds, he or she could achieve a significant position in the growing market.

The protection provided by the newly expanded PVPA builds upon other avenues of intellectual property protection now available to hemp breeders and growers. In addition to the PVPA, plants meeting certain criteria may also be protectable under a plant patent or a utility patent, both of which are administered by the U.S. Patent and Trademark office. Generally speaking, PVPA protection may be available for seeds and tubers, plant patent protection applies to asexually propagated plants, and utility patent protection may be available for genes, traits, methods, plant parts and varieties.15

With a market that is expected to grow substantially in the near future, and with the passing of increasingly friendly federal and state legislation, the hemp industry is on the cusp of significant expansion. Now is the time for farmers, researchers, and hobbyists alike to take advantage of the expanded opportunities available for protecting intellectual property for proprietary hemp varieties.


  1. George Washington to William Pearce, 24 February 1794.
  2. George Washington and Agriculture, https://www.mountvernon.org/library/digitalhistory/digital-encyclopedia/article/george-washington-and-agriculture, last visited May 14, 2019.
  3. Hemp, Thomas Jefferson Encyclopedia, https://www.monticello.org/site/research-and-collections/hemp, last visited May 14, 2019.
  4. Controlled Substances Act, Pub.L. 91-513, 84 Stat. 1236.
  5. Agricultural Act of 2014, Pub.L. 113-79.
  6. Agriculture Improvement Act of 2018, Pub.L. 115-334.
  7. Any plant having a THC content in excess of 0.3% is considered marijuana and remains illegal as a controlled substance under the CSA.
  8. See, e.g., https://www.ams.usda.gov/rules-regulations/farmbill-hemp.
  9. To date, at least 41 states have passed legislation authorizing hemp cultivation and production programs consistent with federal law. As of the date of this article, those states that have not enacted legislation allowing the cultivation of hemp for commercial, research, or pilot purposes include: Connecticut, Georgia, Idaho, Iowa, Louisiana, Mississippi, Ohio, South Dakota, Texas, and the District of Columbia.
  10. Industrial Hemp Market – Market Estimates and Forecasts to 2025, Grand View Research, https://www.grandviewresearch.com/industry-analysis/industrial-hemp-market, last visited May 14, 2019.
  11. Currently, the Food and Drug Administration prohibits hemp-based CBD in food and beverages. However, the FDA has set a public hearing to discussing the legalization of CBD in food and beverages for May 31, 2019.
  12. The PVPA application fee is currently $4,382 with an additional fee of $768 due upon issuance of a certificate of registration.
  13. The Objective Description of Variety form for Hemp (Cannabis sativa L.) can be found at https://www.ams.usda.gov/sites/default/files/media/113HempST470.pdf.
  14. Hemp Seed (Cannabis sativa L.) Proteins: Composition, Structure, Enzymatic Modification, and Functional or Bioactive Properties,Sustainable Protein Sources (Ch. 7), R.E. Aluko (2017).
  15. Regulations are currently under consideration that could expand or otherwise modify the scope of protection available under each of the enumerated intellectual property protection schemes. Consult a licensed attorney for questions regarding the specific program that may apply to a particular set of circumstances.
Kelly O'Connor
Soapbox

Dishonest Potency Testing In Oregon Remains A Problem

By Kelly O’Connor
9 Comments
Kelly O'Connor

Oregon, we have a problem.

Anyone with a search engine can piece together how much THC certain strains produce and what their characteristics are. Oh wait- there’s an app for that… or dozens, I lose count these days.

Nefarious lab results are rampant in our communityLet’s take one of my favorites, Dutch Treat; relaxing, piney and sweet with a standard production of 18-25% THC, according to three different reviews online. So, did I raise an eyebrow when I saw Dutch Treat on Oregon shelves labeled at 30% THC? Did I take it in to an independent, accredited lab and have it tested for accuracy? You bet your inflated potency results I did! The results? Disappointing.

Nefarious lab results are rampant in our community; it is hurting every participant in our industry affected by the trade, commerce and consumption of recreational cannabis.

“I have had labs ask me what I want my potency numbers to look like and make an offer,” says David Todd, owner and operations manager of Glasco Farms, a craft cannabis producer in central Oregon. “It’s insane- I want to stand behind my product and show through scientific fact that I produce a superior flower.”

But without enforcement of lab practice standards, producers are being pressured to play dirty. In her third year cultivating at a two-tier recreational cannabis farm, a producer who wished to remain anonymous sent me an email about the pressures she is up against to produce high THC strains:

“The only sure way to get my product on the shelf at a profitable price is with THC 25% or above. Not a lot of strains have that potential, but the market has plenty with 28% to 32% floating around so I have to go with the same labs as the rest of the independent farmers to get the best numbers I can. The lab I use … return(s) good numbers.”

Those “good numbers,” aka high THC %, are the driving force of sales. A strain tests at 20% THC and it sells for $1,000/lb. Then it tests at 25% THC, and sells for $1300/lb. You produce cannabis for sale- this is your business. And labs are telling you that they can manipulate samples and reports to make you more money. Everyone else is doing it. If you don’t, your product isn’t “good enough” to sell. What do you do?Labs should operate ethically.

It’s a vicious cycle perpetuated by lies, lack of enforcement resources, coercion and undereducation. We are all responsible. Yet, ask who the source of the problem is and everyone points fingers across the circle.

The consumers are uneducated about cannabis and only focus on THC. The dispensaries and budtenders should be educating them. Producers should take a stand and use an honest lab. Labs should operate ethically.

I repeat: Oregon, we have a problem.

It’s time to stop living in a land where Dutch Treat is hitting 30% THC. It’s time for everyone to demand auditing and ethics.

Laws have been set forth on how to sample, prep, test and report analyses for cannabis to ensure fair commerce, consumer health and public safety. But there’s a clear need to blind test the different labs, and for unbiased, third-party research and development.

As federal eyes turn to the Oregon to investigate black market activity, regulatory bodies are tightening their grip on licensees to maintain legal validity and avoid shut down.

The time to demand change and integrity is now.The crack-down began on August 23, 2018, when the OLCC investigated several prominent producers’ practices. Black market distribution incurred the harshest penalty; the OLCC revoked their wholesale license due to multiple violations.

“We want good compliant, law-abiding partners as OLCC marijuana licensees,” says Paul Rosenbaum, OLCC Commission Chair. “We know the cannabis industry is watching what we’re doing, and believe me, we’ve taken notice. We’re going to find a way to strengthen our action against rule breakers, using what we already have on the books, and if need be working with the legislature to tighten things up further.”

Trends in METRC data lay the foundation for truth, and it’s time to put it to use. “The Cannabis Tracking System worked as it should enabling us to uncover this suspicious activity,” says Steven Marks, OLCC Executive Director. “When we detect possible illegal activity, we need to take immediate steps …”

Potency fraud might not be at the top of the list for investigation, but labs and producers are breaking the law, and there will be consequences. ORELAP and OLCC have the right to investigate and revoke licenses of labs that are falsifying data and consumers can file claims with the Department of Justice.

The time to demand change and integrity is now.