dSPE cleanups

The Grass Isn’t Always Greener: Removal of Purple Pigmentation from Cannabis

By Danielle Mackowsky
1 Comment
dSPE cleanups
strains
Cannabis strains used (clockwise from top left): Agent Orange, Tahoe OG, Blue Skunk, Grand Daddy and Grape Drink

Cannabis-testing laboratories have the challenge of removing a variety of unwanted matrix components from plant material prior to running extracts on their LC-MS/MS or GC-MS. The complexity of the cannabis plant presents additional analytical challenges that do not need to be accounted for in other agricultural products. Up to a third of the overall mass of cannabis seed, half of usable flower and nearly all extracts can be contributed to essential oils such as terpenes, flavonoids and actual cannabinoid content1. The biodiversity of this plant is exhibited in the over 2,000 unique strains that have been identified, each with their own pigmentation, cannabinoid profile and overall suggested medicinal use2. While novel methods have been developed for the removal of chlorophyll, few, if any, sample preparation methods have been devoted to removal of other colored pigments from cannabis.

QuEChERS
Cannabis samples following QuEChERS extraction

Sample Preparation

Cannabis samples from four strains of plant (Purple Drink, Tahoe OG, Grand Daddy and Agent Orange) were hydrated using deionized water. Following the addition of 10 mL acetonitrile, samples were homogenized using a SPEX Geno/Grinder and stainless steel grinding balls. QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) non-buffered extraction salts were then added and samples were shaken. Following centrifugation, an aliquot of the supernatant was transferred to various blends of dispersive SPE (dSPE) salts packed into centrifugation tubes. All dSPE tubes were vortexed prior to being centrifuged. Resulting supernatant was transferred to clear auto sampler vials for visual analysis. Recoveries of 48 pesticides and four mycotoxins were determined for the two dSPE blends that provided the most pigmentation removal.

Seven dSPE blends were evaluated for their ability to remove both chlorophyll and purple pigmentation from cannabis plant material:

  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg PSA
  • 150 mg MgSO4, 25 mg C18
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18
  • 150 mg MgSO4, 25 mg PSA, 7.5 mg GCB
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg GCB

Based on the coloration of the resulting extracts, blends A, F and G were determined to be the most effective in removing both chlorophyll (all cannabis strains) and purple pigments (Purple Drink and Grand Daddy). Previous research regarding the ability of large quantities of GCB to retain planar pesticides allowed for the exclusion of blend G from further analyte quantitation3. The recoveries of the 48 selected pesticides and four mycotoxins for blends A and F were determined.

dSPE cleanups
Grand Daddy following various dSPE cleanups

Summary

A blend of MgSO4, C18, PSA and Chlorofiltr® allowed for the most sample clean up, without loss of pesticides and mycotoxins, for all cannabis samples tested. Average recovery of the 47 pesticides and five mycotoxins using the selected dSPE blend was 75.6% were as the average recovery when including GCB instead of Chlorofiltr® was 67.6%. Regardless of the sample’s original pigmentation, this blend successfully removed both chlorophyll and purple hues from all strains tested. The other six dSPE blends evaluated were unable to provide the sample clean up needed or had previously demonstrated to be detrimental to the recovery of pesticides routinely analyzed in cannabis.


References

(1)           Recommended methods for the identification and analysis of cannabis and cannabis products, United Nations Office of Drugs and Crime (2009)

(2)            W. Ross, Newsweek, (2016)

(3)            Koesukwiwat, Urairat, et al. “High Throughput Analysis of 150 Pesticides in Fruits and Vegetables Using QuEChERS and Low-Pressure Gas Chromatography Time-of-Flight Mass Spectrometry.” Journal of Chromatography A, vol. 1217, no. 43, 2010, pp. 6692–6703., doi:10.1016/j.chroma.2010.05.012.

From The Lab

QuEChERS 101

By Danielle Mackowsky
No Comments

Sample preparation experts and analytical chemists are quick to suggest QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) to cannabis laboratories that are analyzing both flower and edible material for pesticides, mycotoxins and cannabinoid content. Besides having a quirky name, just what makes QuEChERS a good extraction technique for the complicated matrices of cannabis products? By understanding the chemistry behind the extraction and the methodology’s history, cannabis laboratories can better implement the technology and educate their workforce.

QuEChERS salt blends can be packed into mylar pouches for use with any type of centrifuge tubes
QuEChERS salt blends can be packed into mylar pouches for use with any type of centrifuge tubes

In 2003, a time when only eight states had legalized the use of medical cannabis, a group of four researchers published an article in the Journal of AOAC International that made quite the impact in the residue monitoring industry. Titled Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce, Drs. Michael Anastassiades, Steven Lehotay, Darinka Štajnbaher and Frank Schenck demonstrate how hundreds of pesticides could be extracted from a variety of produce samples through the use of two sequential steps: an initial phase partitioning followed by an additional matrix clean up. In the paper’s conclusion, the term QuEChERS was officially coined. In the fourteen years that have followed, this article has been cited over 2800 times. Subsequent research publications have demonstrated its use in matrices beyond food products such as biological fluids, soil and dietary supplements for a plethora of analytes including phthalates, pharmaceutical compounds and most recently cannabis.

QuEChERS salts can come prepacked into centrifuge tubes
QuEChERS salts can come prepacked into centrifuge tubes

The original QuEChERS extraction method utilized a salt blend of 4 g of magnesium sulfate and 1 g of sodium chloride. A starting sample volume of 10 g and 10 mL of acetonitrile (ACN) were combined with the above-mentioned salt blend in a centrifuge tube. The second step, dispersive solid phase extraction (dSPE) cleanup, included 150 mg of magnesium sulfate and 25 mg of primary secondary amine (PSA). Subsequent extraction techniques, now known as AOAC and European QuEChERS, suggested the use of buffered salts in order to protect any base sensitive analytes that may be critical to one’s analysis. Though the pH of the extraction solvent may differ, all three methods agree that ACN should be used as the starting organic phase. ACN is capable of extracting the broadest range of analytes and is compatible with both LC-MS/MS and GC-MS systems. While ethyl acetate has also been suggested as a starting solvent, it is incompatible with LC-MS/MS and extracts a larger amount of undesirable matrix components in the final aliquot.

All laboratories, including cannabis and food safety settings, are constantly looking for ways to decrease their overhead costs, batch out the most samples possible per day, and keep their employees trained and safe. It is not a stretch to say that QuEChERS revolutionized the analytical industry and made the above goals tangible achievements. In the original publication, Anastassiades et al. established that recoveries of over 85% for pesticides residues were possible at a cost as low as $1 per ten grams of sample. Within forty minutes, up to twelve samples were fully extracted and ready to be analyzed by GC-MS, without the purchase of any specialized equipment. Most importantly, no halogenated solvents were necessary, making this an environmentally conscious concept. Due to the nature of the cannabis industry, laboratories in this field are able to decrease overall solvent usage by a greater amount than what was demonstrated in 2003. The recommended starting sample for cannabis laboratories is only one gram of flower, or a tenth of the starting volume that is commonly utilized in the food safety industry. This reduction in sample volume then leads to a reduction in acetonitrile usage and thus QuEChERS is a very green extraction methodology.

The complexity of the cannabis matrix can cause great extraction difficulties if proper techniques are not used
The complexity of the cannabis matrix can cause great extraction difficulties if proper techniques are not used

As with any analytical method, QuEChERS is not perfect or ideal for every laboratory setting. Challenges remain in the cannabis industry where the polarity of individual pesticides monitored in some states precludes them from being amenable to the QuEChERS approach. For cannabis laboratories looking to improve their pesticide recoveries, decrease their solvent usage and not invest their resources into additional bench top equipment, QuEChERS is an excellent technique to adopt. The commercialization of salt blends specific for cannabis flowers and edibles takes the guesswork out of which products to use. The growth of cannabis technical groups within established analytical organizations has allowed for better communication among scientists when it comes to best practices for this complicated matrix. Overall, it is definitely worth implementing the QuEChERS technique in one’s cannabis laboratory in order to streamline productivity without sacrificing your results.

Automated Solutions for Cannabis Laboratories: Part I

By Danielle Mackowsky
No Comments
rsz_96_well_plate-1-1
Using well plates for dSPE sorbents can help expedite sample clean up.

Sample volume remains to be the primary influence on whether an automated solution is a logical investment for a cannabis testing facility. Due to both the complexity of the material being tested and the extraction approach at hand, it may be difficult to find an automated platform that can fully accommodate your laboratory’s needs. Hamilton Robotics in collaboration with United Chemical Technologies (UCT) has developed a solution that allows for automation of specific sample clean up steps commonly utilized in cannabis pesticide testing schemes. The MPE2 Positive Pressure Extraction/Evaporation Module is a standalone manifold that can also be incorporated into a number of automated liquid handling decks. Used in tandem with dispersive solid phase extraction (dSPE) salts/sorbents packed into a 96 well plate, this combination provides laboratories with high throughput extraction convenience with comparable results to traditional dSPE for the analysis of over forty pesticides.

As states continue to expand testing requirements for pesticides, it is vital that your laboratory is equipped with a method that allows versatility for the addition of new compounds without burdening your extraction team. There are a variety of dSPE salt and sorbent blends readily available that have been optimized for cannabis extractions. This allows for the use of a reliable extraction technique that can be adapted for the automation age. Hamilton is widely recognized throughout both clinical and forensic laboratory settings and the MPE2 platform is an excellent first system for laboratories beginning to automate/semi-automate their processes.

MPE2 Positive Pressure Extraction/Evaporation Module
MPE2 Positive Pressure Extraction/Evaporation Module

Following an initial QuEChERS extraction, additional cleanup is typically recommended for extracts that are being analyzed for pesticide content due to the low detection limits often required. dSPE provides the necessary sample clean up to obtain those thresholds, but often burdens a laboratory staff with additional time consuming preparation steps. Traditionally, dSPE salts are packed into 2 mL centrifugation tubes that require a cumbersome supernatant pipetting step followed by additional vortex, spin and transfer steps. By packing the dSPE sorbents into a well plate format, the user is able to completely automate this above described clean up ultimately saving time and adding convenience without jeopardizing any recovery data.

For most compounds, the recovery was greater than 65% for both methods of dSPE. The mean recoveries for traditional dSPE were 98.0%, 99.2% and 97.9% at pesticide concentrations of 50 ng/mL, 100 ng/mL and 200 ng/mL, respectively. For comparison, the mean recoveries at the same concentrations for well plate dSPE were 85.0%, 88.9% and 89.1%. Therefore, there was typically about a 10-11% absolute difference in recovery between the two methods, which can be corrected for by implementing the use of internal standards. When comparing the recovery differences between the two methods, there are six compounds with noticeably larger discrepancies across all three concentrations, namely: chlorpyrifos, cyprodinil, diazinon, spinetoram, spiromesifen 278 and trifloxystrobin. If these data sets are excluded, then the average absolute differences in recovery between the two methods decrease to 8.8%, 6.4% and 5.8% for concentrations of 50 ng/mL, 100 ng/mL and 200 ng/mL, respectively.rsz_1shutterstock_226135945-1

Overall, laboratories can estimate on saving 40-60 minutes per 96 samples processed using the Hamilton MPE2 in conjunction with a UCT dSPE plate. When a liquid handling robot is also available, this time saving estimation is potentially doubled. Time spent per sample, including the training of laboratory scientists, is an important factor to consider when setting up your laboratory. Automation is in an investment that can greatly reduce a laboratory’s overall labor costs in the long run.

From The Lab

HPLC Column Selection for Cannabis Chromatographers

By Danielle Mackowsky
2 Comments

If your laboratory utilizes an HPLC system for cannabinoid and pesticide analysis, it can be a daunting task to select a stationary phase that is both practical and sufficient for the separation at hand. Typically, when developing a new method, an analyst will either evaluate a column they already have in house or seek out a referenced phase/dimension in the literature before exploring other available alternatives.

Tetrahydrocannabinol (THC)
Chemical structure of Tetrahydrocannabinol (THC)

A C18 phase is an excellent first choice for non-polar or slightly polar compounds. If the analyte in question has a minimum ratio of three carbon atoms for every heteroatom, it will be sufficiently retained on this phase. THC and other relative cannabinoids are prime candidates for separation via C18 due to their non-polar nature and structural components.

In addition to a universal C18 phase, alternative selectivity options do exist for laboratories concerned with the analysis of cannabinoid content. Another prevalent column choice features an aromatic or poly-aromatic stationary phase. Compatible with highly aqueous mobile phases, aromatic and poly-aromatic columns primarily rely on hydrophobic and π-π interactions as their main analyte retention mechanisms. Poly-aromatic phases provide enhanced retention and are more hydrophobic when compared to a single phenyl ring structure. While C18 phases are not ideal for resolving structural isomers, poly-aromatic columns are capable of separating these ring-based compounds. Chromatographers with a background in forensic analysis may be very familiar with this type of HPLC column due to its extensive use in drug testing applications.

Chemical structure of chlormequat, a hazardous polar pesticide commonly banned for use in cannabis cultivation
Chemical structure of chlormequat, a hazardous polar pesticide commonly banned for use in cannabis cultivation

Besides cannabinoid content, many cannabis scientists are equally concerned with accurate quantitation of pesticides within a given sample. Many pesticides that have found themselves on regulatory lists in states such as Massachusetts, Washington or Nevada are extremely polar. In order to increase retention of these compounds, and thus improve your overall chromatographic method, it can be extremely advantageous to select a column that allows you to start your gradient at 100% aqueous mobile phase. An aqueous or polar modified C18 column contains an embedded polar group, polar side chain or polar end-capping to allow for separation of polar compounds, while still retaining and resolving non-polar analytes. For laboratories that necessitate the use of only one analytical column, an aqueous C18 phase will allow for separation of monitored pesticides without compromising the quality of cannabinoid data produced.

One must also take into account column length, pore size and particle size when purchasing a column. For the purposes of any cannabis related analysis, a pore size of 100-120Å will suffice. Larger pore columns are typically reserved for large peptides, proteins and polymers. Depending on the sensitivity and resolution needed within your laboratory, particle size can range from 1.8-5um, with the highest sensitivity and resolution coming from the smaller particle size. Core shell technology is also a popular option for laboratories who want to keep the pressure of their HPLC system low, without sacrificing any quality of their resolution. Column lengths of 50 or 100 mm are common for chromatographers who want to achieve sufficient sample separation while keeping their run times relatively short.UCTcolumns

Regardless of the HPLC phase selected, it is very important that a guard cartridge is also used. Guard cartridges are traditionally the same phase and particle size of the HPLC column choice and help to prolong analytical column life. They provide additional sample clean up and are widely recommended by the majority of chromatography experts. Upon reviewing one’s options for HPLC phases and acquiring the necessary guard column, your cannabis laboratory will be ready to get the most out of your HPLC system for your analysis needs.

UCT-Dspe

Pesticide & Potency Analysis of Street-Grade versus Medicinal Cannabis

By Danielle Mackowsky
2 Comments
UCT-Dspe

In states where cannabis is legalized, some analytical laboratories are tasked with identifying and quantifying pesticide content in plant material. This is a relatively new concept in the study of cannabis as most forensic laboratories that work with seized plant material are only concerned with positively identifying the sample as cannabis. Laboratories of this nature, often associated with police departments, the office of the chief medical examiner or the local department of public health are not required to identify the amount of THC and other cannabinoids in the plant. While data is abundant that compares the average THC content in today’s recreational cannabis to that commonly consumed in the 1960s and 1970s, limited scientific studies can be found that discuss the pesticide content in street-grade cannabis.

cannabis-siezed
Street-grade cannabis that is ground into a fine powder

Using the QuEChERS approach, which is the industry gold-standard in food analysis for pesticides, a comparison study was carried out to analyze the pesticide and cannabinoid content in street-grade cannabis versus medicinal cannabis. For all samples, one gram of plant material was ground into a fine powder prior to hydration with methanol. The sample was then ready to be placed into an extraction tube, along with 10 mL of acetonitrile and one pouch of QuEChERS salts. After a quick vortex, all samples were then shaken for 1 minute using a SPEX Geno/Grinder prior to centrifugation.

Quenchers-analysis
Formation of layers following QuEChERS extraction

For pesticide analysis, a one mL aliquot of the top organic layer was then subjected to additional dispersive solid phase extraction (dSPE) clean-up. The blend of dSPE salts was selected to optimize the removal of chlorophyll and other interfering compounds from the plant material without compromising the recovery of any planar pesticides. Shaken and centrifuged under the same conditions as described above, an aliquot of the organic layer was then transferred to an auto-sampler vial and diluted with deionized water. Cannabinoid analysis required serial dilutions between 200 to 2000 times, depending on the individual sample. Both pesticide and cannabinoid separation was carried out on a UCT Selectra® Aqueous C18 HPLC column and guard column coupled to a Thermo Scientific Dionex UltiMate 3000 LC System/ TSQ VantageTM tandem MS.

UCT-Dspe
Supernatant before and after additional dispersive SPE clean-up using UCT’s Chlorofiltr

Pesticide Results

Due to inconsistent regulations among states that have legalized medicinal or recreational cannabis, a wide panel of commonly encountered pesticides was selected for this application. DEET, recognized by the EPA as not evoking health concerns to the general public when applied topically, was found on all medical cannabis samples tested. An average of 28 ng/g of DEET was found on medicinal samples analyzed. Limited research as to possible side effects, if any, of having this pesticide present within volatilized medical-grade product is available. Street-grade cannabis was found to have a variety of pesticides at concentrations higher than what was observed in the medical-grade product.

Potency Results

Tetrahydrocannabinolic acid A (THCA-A) is the non-psychoactive precursor to THC. Within fresh plant material, up to 90% of available THC is found in this form. Under intense heating such as when cannabis is smoked, THCA-A is progressively decarboxylated to the psychoactive THC form. Due to possible therapeutic qualities of this compound, medical cannabis samples specifically were tested for this analyte in addition to other cannabinoids. On average, 17% of the total weight in each medical cannabis sample came from the presence of THCA-A. In both medical and recreational samples, the percentage of THC contribution ranged from 0.9-1.7.

Summary

A fast and effective method was developed for the determination of pesticide residues and cannabis potency in recreational and medical cannabis samples. Pesticide residues and cannabinoids were extracted using the UCT QuEChERS approach, followed by either additional cleanup using a blend of dSPE sorbents for pesticide analysis, or serial dilutions for cannabinoid potency testing.

gummyquechersdspE

How Potent is Your Product: Getting Educated on Edibles Analysis

By Danielle Mackowsky
No Comments
gummyquechersdspE

As a result of the rapidly developing cannabis industry, many forensic toxicology labs are looking for fast, reliable and cost-effective methods to determine cannabis potency and pesticide residue in edibles. Although the pros and cons of legalization are still heavily debated throughout the country, all scientists agree that uniform testing policies and procedures need to be established as soon as possible.

Within environmental and food testing laboratories, the use of QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) has been practiced widely for the past 15 years. In 2003, Dr.’s Michelangelo Anastassiades and Steven Lehotay published the first QuEChERS application, which detailed the determination of pesticide residues in produce. Since then, QuEChERS has become the gold standard for the testing and analysis of a wide variety of edible matrices. United Chemical Technologies (UCT) was the first company to commercialize the product and it became apparent that the application of this technology to cannabis edibles was a natural solution to pesticide residue testing. All of the data from the QuEChERS cannabis edibles pesticide and potency analyses can be found here.

Sample preparation

mixeddropsUCTarticle
Hard candy before freezer mill grinding

Preparation of a sample for QuEChERS analysis varies depending on the type of edible product being tested. Baked goods, chocolate bars and hard candies should be ground into a fine powder prior to analysis. Although this can be achieved using a product such as a SPEX 6770 freezer mill, a blender can suffice when analyzing typical plant-based samples. Liquid samples, such as sodas or teas, should be degassed prior to analysis, whereas any gummy-based candies should be cut into fine pieces. With the exception of the liquid samples, all other matrices should then be hydrated for one hour within a QuEChERS extraction tube.

UCTarticle
Hard candy after freezer mill grinding

Following sample preparation, acetonitrile is added to all samples along with a proprietary blend of QuEChERS extraction salts. These salts remove water from the organic phase, help to facilitate solvent partitioning and protect base-sensitive analytes from degradation. After shaking and centrifuging the sample, three distinct layers are formed. The top layer, which is the organic phase, can then be aliquoted off for further sample clean-up or dilution.

querchersUCTsample
A mint milk chocolate sample after QuEChERS extraction

For pesticide analysis, an aliquot of the organic layer was subjected to dispersive solid phase extraction (dSPE). This process utilizes an additional blend of proprietary sorbents that remove chlorophyll, sugars, organic acids and fatty compounds from the sample. The resulting extract is free of pigmentation and is ready for analysis on the LC-MS/MS. All samples that were analyzed for cannabinoids did not undergo dSPE; rather, a serial dilution was carried out due to the high concentration of cannabinoids in the original organic layer. The original QuEChERS extract required a dilution of 100-200x in order to have a sample that was ultimately suitable for analysis on LC-MS/MS. A UCT Selectra Aqueous C18 HPLC Column and Guard Column were used in a Thermo Scientific Dionex UltiMate 3000 LC System. An aqueous C18 column was selected due to the extreme polarity of the pesticides being analyzed.

gummyquechersdspE
Comparison of QuEChERS extracts before and after dSPE cleanup (gummy sample)

Summary

This application utilizes the advantages of  UCT’s proprietary QuEChERS combination to extract 35 pesticides and 3 cannabinoids, including tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in edibles, followed by either serial dilutions for cannabis potency analysis, or a dSPE cleanup for pesticide residue analysis. This hybrid method allows QuEChERs, which are extensively used in the food testing industry, to be utilized in a forensic setting.