Tag Archives: analysis

Breeding Cannabis For Unique Therapeutic Benefits

By Cannabis Industry Journal Staff
No Comments

Cannabis Cultivation Virtual Conference: Part 1

Breeding Cannabis For Unique Therapeutic Benefits

By Adam Jacques, Co-Founder of Grower’s Guild Gardens, Sproutly

  • This presentation covers topics related to proper breeding procedures, “hunting” particular phenotypes and developing specific cannabinoids and terpenes.
  • Adam highlights some of the major advancements in breeding and how to use available resources to develop a successful breeding program.

 

A2LA Accredits First Rec Alaska Cannabis Lab

By Aaron G. Biros
No Comments

The American Association for Laboratory Accreditation (A2LA) announced recently the accreditation of The New Frontier Research (TNFR) laboratory to ISO/IEC 17025:2005. TNFR, based in Wasilla, Alaska, was previously evaluated by A2LA for competence and proficiency to perform the minimum tests required by Alaska.

TFNR is now the first recreational cannabis-testing laboratory in Alaska accredited to ISO/IEC 17025 standard. According to Roger Brauninger, A2LA biosafety program manager, this accreditation is a sign of attention to thorough science. “Cannabis testing laboratories that have gained ISO/IEC 17025 accreditation have demonstrated their competence and commitment to rigorous science,” says Brauninger. “In the greatly scrutinized recreational cannabis industry, we are pleased to have granted the first accreditation of its kind in Alaska.”

roger_headshot
Roger Brauninger, A2LA biosafety program manager

According to the press release, the ISO/IEC 17025 accreditation is the most significant third-party lab accreditation an organization can receive. The standard confirms labs have management, quality and technical systems designed for accurate and repeatable analyses, in addition to proper administrative processes for testing.

Jessica Alexander, technical director of the TNFR laboratory, says this is the first step in many to researching the medical properties of cannabis. “By achieving ISO/IEC 17025 accreditation, The New Frontier Research believes that it advances the cannabis industry as a whole so that we can conduct legitimate research to unlock the amazing potential that this plant has for development of more effective medicines to address problems like opioid dependence and pediatric seizures,” says Alexander.

steep-hill-labs-logo

Steep Hill Announces Major International Expansion

By Aaron G. Biros
No Comments
steep-hill-labs-logo

According to a press release, the Steep Hill team announced they are expanding internationally in a big way on Monday. Steep Hill, a well-known cannabis lab-testing and research company with roots in California, announced plans for licensing agreements in Mexico, Germany, Spain, France, Italy, Switzerland and the United Kingdom.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

The Canadian branch of the company, Steep Hill Canada, will lead the expansion efforts into Mexico and the six European Union countries. According to Martin Shefsky, chief executive officer of Steep Hill Worldwide, they are actively looking for other operating partners in new areas as well. “I’m extremely pleased at the opportunity to partner with Steep Hill to bring safe cannabis and scientific integrity to emerging international markets,” says Shefsky. “I anticipate that before long, full legalization will be implemented throughout the European Union and our presence will enable growers, producers, processors, and retailers – to offer standardized tested cannabis for patients and consumers across the European Union, while also enabling us to create a platform to share scientific and technology developments throughout the global cannabis market.”steep-hill-labs-logo

In 2016, Steep Hill announced new licensing agreements to expand into Washington D.C. and Pennsylvania. In August of 2017, they expanded to Hawaii and several months later announced their expansion into Oregon. “It is an exciting time for us and our investors, as we pursue this first-mover advantage in anticipation of new global cannabis import-export markets,” says Jmîchaeĺe Keller, chief executive officer and chairman of the board of Steep Hill, Inc.

“In unregulated markets, we want to be on the ground supporting the legalization and regulatory process, helping regulators avoid making the mistakes that other jurisdictions have made in the past,” Keller says. “We believe that our role as the industry standard, allows us to leverage our world-class scientific knowledge and state of the art technology to help regulators provide confidence in the marketplace that the cannabis patients consume, is both safe and effective. We look forward to collaborating closely with Martin and his group to strive for this gold standard, across all international borders.”

Dr. Richard Kaufman
Soapbox

Replacing Opiates with Cannabis is Finally Becoming a Reality: Where do we go from Here?

By Dr. Richard Kaufman
No Comments
Dr. Richard Kaufman

Opiate abuse is a far-reaching international public health issue, impacting tens of thousands of people every year in the United States alone. As the epidemic continues to spread, the medical community is faced with the immense task of researching and developing safer, non-addictive treatment alternatives for patients of chronic pain and other ailments. The controversial and oft-debated notion of cannabis as an opiate alternative has become increasingly well-researched and gained considerable credibility in recent years. The new challenge lies in advancing the cannabis industry to the point of being a legitimate medicine that can be prescribed and administered by doctors.

Opioids are among the most commonly prescribed medical treatments for severe chronic pain, yet prescription opioid overdoses killed more than 165,000 Americans between 1999 and 2014 according to the Department of Health and Human Services. In fact, the health and social costs of opioids are estimated to be as much as $55 billion a year. As such, it has become more imperative than ever that mainstream medical practitioners take notice of the cannabis plant’s powerful healing properties and shift away from potentially harmful pharmaceutical medications.

Dr. Richard Kaufman
Dr. Richard Kaufman, co-founder and chief science officer of Nanosphere Health Sciences.

The evidence of cannabis’ safety and efficacy is well established. For instance, in a literature review of 38 studies evaluating medical cannabis’ efficacy for treating pain, 71 percent concluded that cannabinoids had empirically demonstrable and statistically significant pain-relieving effects. In addition, a 2015 meta-analysis of 79 studies found a 30 percent or greater reduction of pain with the use of cannabinoids compared to placebos. Further, an analysis of a decade of randomized, double-blind placebo-controlled clinical trials on cannabis for treating pain concluded that cannabis should be a first line treatment for patients with painful neuropathy and other serious and debilitating symptoms, who often do not respond to other available medications.

Not only is cannabis demonstrably safe and effective, but numerous studies also present compelling evidence that the prescription of opiates has dropped sharply in U.S. states and countries that have legalized medical cannabis. For example, a study in the Clinical Journal of Pain followed 176 chronic pain patients in Israel over seven months. Researchers found that 44 percent of participants stopped taking prescription opioids within seven months after starting medical cannabis. Patients cited the following reasons for using cannabis instead of pharmaceutical drugs: 65 percent reported less adverse side effects, 57 percent cited better symptom management and 34 percent found that cannabis had less withdrawal potential than their other medications.The evidence of cannabis’ safety and efficacy is well established.

The tide is quickly turning as many respected doctors are beginning to advocate for the tremendous medical potential of cannabis as a replacement for prescription pills. That said, if the cannabis industry is to help solve the crisis inflicted by modern pharmaceutical painkillers, we must develop next-generation scientifically formulated products and advocate to improve their accessibility.

Inhalation and oral methods of cannabis consumption have no reliable dosage as medicine, rendering them unfit for administration by health professionals. These mainstream consumption methods also have extremely low bioavailability and bioactivity. Bioavailability for ingested cannabis products is only 6 percent and for inhalation methods can be as low as 2 percent. Oral absorption of THC is slow and unpredictable, with peak blood concentration occurring 1–5 hours post dose. Similarly, inhalation methods can take up to two hours to have any effect. The next phase of the medical cannabis industry must focus on fixing problems that prevent cannabis from being a universally recognized health tool. Fortunately, scientists are making major advancements in cannabis delivery technologies, offering novel and innovative administration methods that have proven both effective and reliable.

With products like Evolve’s NanoSerum™ representing a promising solution to help reduce the morbidity and mortality associated with prescription opioid use and abuse, meaningful progress is already underway. It’s been a long and challenging road to arrive at this point, but our efforts are only just beginning. Achieving long-term change on a national and international scale will require professionals from all levels of the cannabis, science and medical communities to push for advanced product offerings that provide consistent, standardized dosing in healthier, smokeless modes of delivery.

Terpene_KAS2
From The Lab

The Other Side of Cannabis: Terpenes

By Dr. Zacariah Hildenbrand, Allegra Leghissa, Dr. Kevin A. Schug
2 Comments
Terpene_KAS2

Have you ever wondered why all beers have that strong, characteristic smell? Or why you could tell the smell of cannabis apart from any other plant? The answer is simple – terpenes.

These 55,000 different molecules are responsible for a majority of the odors and fragrances around us, from a pine forest, to the air diffuser in your house 1–3. They all share the same precursor, isoprene, and because of that, they are all related and have similar molecular structures. Unfortunately, it is this uncanny similarity that makes their analysis so challenging; we still lack a complete list of which terpenes expected to be found in each given plant species 1,2.

Many different methods have been developed in an effort to provide a time-optimized and straightforward analysis. Gas chromatography (GC) is usually center stage due to the volatility of the terpenes. Therefore, there is significant concern with the type of GC detector used 2.

The flame ionization detector (FID) is a good quantitative detector for GC, but qualitatively it does not provide any information, except for retention time; the differentiation between terpene species is achieved solely by use of retention indices (RI), which are based on elution times from a particular GC stationary phase. The best part of the FID is its low cost, reliability, and relatively easy interface, which make it an effective tool for quality control (QC) but less so with respect to research and discovery 2.

The primary choice for a research setting is the mass spectrometer (MS) detector. It is more expensive and complicated than FID, but importantly, it provides both good quantitative capabilities, and it provides mass spectra for each species that elutes from the chromatograph. However, for terpene analysis, it may still not be the best detector choice. Since terpene class molecules share many structural and functional similarities, even their fragmentation and sub-sequential identification by MS may lead to inconsistent results, which need to be confirmed by use of RI. Still, MS is a better qualitative analysis tool than the FID, especially for distinguishing non-isobaric terpenes 2.

Recently, new technology based on vacuum ultraviolet spectroscopy (VUV) has been developed as a new GC detector. The VUV detector enables analysis of virtually all molecules; virtually all chemical compounds absorb light in the range in the 125-240 nm wavelength range probed by the detector, making it an essentially universal detector 4–11. Previously, spectroscopic absorption detectors for GC have lacked sufficient energy to measure absorption of most GC-amenable species. The VUV detector fills a niche, which is complementary to MS detection in terms of the qualitative information it provides.

Terpene_KAS2
Figure 1: A, Section of the chromatographic separation of a terpenes standard mix; B, highlight of the co-eluting terpenes, camphor and (-)-isopulegol; C, differences in the absorbance spectra of camphor and (-)-isopulegol.

With the VUV detector, each compound exhibits its own unique absorbance spectrum. Even isomers and isobars, which are prevalent in terpene mixtures and can be difficult to distinguish different species by their electron ionization mass spectra, can be well differentiated based on their VUV spectra 6,9,10.  Nevertheless, because analytes exhibit different spectra, it is not required to achieve a perfect chromatographic separation of the mixture components. Co-eluting peaks can be separated post-run through the use of library spectra and software inherent to the instrument 4,10. This ability is called “deconvolution”, and it is based on the fact that two co-eluting terpenes will give a peak with an absorbance spectrum equal to the sum of the two single absorbance spectra 4. Figure 1 shows the deconvolution process for two co-eluting terpenes, camphor and (-)-isopulegol. Due to their different absorbance spectra (Figure 1C), it is possible to fully separate the two peaks in post-run, obtaining sharp peaks for both analytes 6.

The deconvolution process has been shown to yield precise and accurate results. Thus, chromatographic resolution can be sacrificed in favor of spectroscopic resolution; this enables the development of methods with faster run times. With the ability to deconvolve unresolved peaks, a long temperature ramp to chromatographically separate all isomeric terpenes is not required 6. Additionally, the presence of coeluting components, which might normally go undetected with some GC detectors, can be easily judged based on comparison of the measured spectra with pure reference spectra contained in the VUV spectral library.

The other issue in terpenes analysis is the extraction process. Terpenes can be extracted with the use of solvents (e.g., methanol, ethanol, hexane, and cyclohexane, among others), but the process is usually time-consuming, costly and not so environmentally-friendly 2. The plant needs to be manually crushed and then aliquots of solvent are used to extract components from the plant, ideally at least 3 times and combined to achieve acceptable results. The problem is that some terpenes may respond better to a certain solvent, making their extraction easier and more optimized than for others 2. The choice of solvent can cause discrimination against the extraction some terpenes, which limits the comprehensiveness of analysis.

Headspace is another technique that can be used for the sample preparation of terpenes. Headspace sampling is based on heating the solid or liquid sample inside a sealed vial, and then analyzing the air above it after sufficient equilibration. In this way, only volatile analytes are extracted from the solid/liquid sample into the gas phase; this allows relatively interference-free sampling 12–14.

How do we know whether our extraction analysis methods are correct and comprehensive for a certain plant sample? Unfortunately, there is not a complete list of available molecules for each plant species, and even if two specimens may smell really similar to our nose, their terpenes profiles may be notably different. When working with a new plant material, it is difficult to predict the extraction efficiency for the vast array of terpenes that may be present. We can only perform it with different extraction and detection methods, and compare the results.

The route for a comprehensive and fast analysis of terpenes is therefore still long; however, their intoxicating aromas and inherent medicinal value has provided a growing impetus for researchers around the world. Considering the evolving importance of Cannabis and the growing body of evidence on the synergistic effects between terpenes and cannabinoids, it is likely that newly improved extraction and analysis methods will be developed, paving the way for a more complete list of terpene species that can be found in different cultivars. The use of new analytical technologies, such as the VUV detector for GC, should aid considerably in this endeavor.


References:

[1]          Breitmaier E., Terpenes: Flavors, Fragrances, Pharmaca, Pheromones. John Wiley & Sons 2006.

[2]          Leghissa A., Hildenbrand Z. L., Schug K. A., A Review of Methods for the Chemical Characterization of Cannabis Natural Products. J. Sep. Sci.2018, 41, 398–415 .

[3]          Benvenuto E., Misra B. B., Stehle F., Andre C. M., Hausman J.-F., Guerriero G., Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci2016, 719, DOI: 10.3389/fpls.2016.00019.

[4]          Schug K. A., Sawicki I., Carlton D. D., Fan H.,Mcnair H. M.,Nimmo J. P., Kroll P.,Smuts J.,Walsh P., Harrison D., Vacuum Ultraviolet Detector for Gas Chromatography. Anal. Chem.2014, 86, 8329–8335 .

[5]          Fan H.,Smuts J., Walsh P.,Harrison D., Schug K. A., Gas chromatography-vacuum ultraviolet spectroscopy for multiclass pesticide identification. J. Chromatogr. A2015, DOI: 10.1016/j.chroma.2015.02.035.

[6]          Qiu C.,Smuts J., Schug K. A., Analysis of terpenes and turpentines using gas chromatography with vacuum ultraviolet detection. J. Sep. Sci.2017, 40, 869–877 .

[7]          Leghissa A., Smuts J., Qiu C., Hildenbrand Z. L., Schug K. A., Detection of cannabinoids and cannabinoid metabolites using gas chromatography-vacuum ultraviolet spectroscopy. Sep. Sci. Plus2018, 1.

[8]          Bai L.,Smuts J., Walsh P., Fan H., Hildenbrand Z., Wong D., Wetz D., Schug K. A., Permanent gas analysis using gas chromatography with vacuum ultraviolet detection. J. Chromatogr. A2015,1388, 244–250 .

[9]          Skultety L., Frycak P., Qiu C.,Smuts J., Shear-Laude L., Lemr K., Mao J. X., Kroll P., Schug K. A., Szewczak A., Vaught C., Lurie I., Havlicek V., Resolution of isomeric new designer stimulants using gas chromatography – Vacuum ultraviolet spectroscopy and theoretical computations. Anal. Chim. Acta2017, 971, 55–67 .

[10]       Bai L., Smuts J., Walsh P., Qiu C., McNair H. M., Schug K. ., Pseudo-absolute quantitative analysis using gas chromatography–vacuum ultraviolet spectroscopy–a tutorial. Anal. Chim. Acta2017, 953, 10–22 .

[11]       Schenk J., Nagy G., Pohl N. L. B., Leghissa A., Smuts J., Schug K. A., Identification and deconvolution of carbohydrates with gas chromatography-vacuum ultraviolet spectroscopy. J. Chromatogr. A2017, 1513, 210–221 .

[12]       Van Opstaele F., De Causmaecker B., Aerts G., De Cooman L., Characterization of novel varietal floral hop aromas by headspace solid phase microextraction and gas chromatography-mass spectrometry/olfactometry. J. Agric. Food Chem.2012, 60, 12270−12281 .

[13]       Hamm S., Bleton J., Connan J., Tchapla A., A chemical investigation by headspace SPME and GC-MS of volatile and semi-volatile terpenes in various olibanum samples. Phytochemistry2005,66, 1499–1514 .

[14]       Aberl A., Coelhan M., Determination of volatile compounds in different hop Varieties by headspace-trap GC/MS-in comparison with conventional hop essential oil analysis. J. Agric. Food Chem.2012, 60, 2785−2792 .

Massachusetts Prepares for Adult-Use

By Aaron G. Biros
No Comments

Last month, the Cannabis Control Commission, the regulatory body overseeing Massachusetts’ newest industry, finalized their regulations for the market. At the beginning of this month, the state began accepting applications for business licenses. Now with the full implementation of adult-use sales on the horizon, businesses, regulators, consumers and local governments are preparing themselves for the legalization of adult-use cannabis. Sales are expected to begin June 1st.

On March 29th, the Cannabis Control Commission announced their finalized rules were filed, published and took effect. Leading up to the filing, the Commission reports they held 10 listening sessions, received roughly 500 public comments and conducted 7 hearings for roughly 150 policy decisions. The license categories that businesses can apply for include cultivator, craft marijuana cooperative, microbusiness, product manufacturer, independent testing laboratory, storefront retailer, third-party transporter, existing licensee transporter, and research facility, according to the press release.

What separates Massachusetts’ rules from other states’ rules are a few of the license categories as well as environmental regulations, as Kris Kane highlights in this Forbes article. Experimental policies, like the microbusiness and craft marijuana co-op licenses, Kane says, are some tactics the Commission hopes may help those affected by the drug war and those who don’t have the capital and funding required for the larger license types.This is a groundbreaking reform previously unseen in states that have legalized cannabis. 

The Commission will also establish a Social Equity Program, as outlined in the final rules (section 17 of 500.105). That program is designed to help those who have been arrested of a cannabis-related crime previously or lived in a neighborhood adversely affected by the drug war. “The committee makes specific recommendations as to the use of community reinvestment funds in the areas of programming, restorative justice, jail diversion, workforce development, industry-specific technical assistance, and mentoring services, in areas of disproportionate impact,” reads one excerpt from the rules (section 500.002) identifying the need for a Citizen Review Committee, which advises on the implementation of that Social Equity Program.

This is a groundbreaking reform previously unseen in states that have legalized cannabis. Massachusetts may very well be the first state to actively help victims of the prohibition of cannabis.Some municipalities are hesitant and skeptical, while others are fully embracing the new industry with open arms.

For environmental rules, Kane notes the Commission is taking unprecedented steps to address energy usage in the cultivation process, pushing the industry to think about environmental sustainability in their bottom line and as part of their routine regulatory compliance. He says the Commission mandates a 36 watts-per-square-foot maximum for indoor cannabis cultivators.

On Monday, April 2nd the state began accepting applications for businesses seeking licensure. Within a few days, nearly 200 businesses have applied. That number is expected to grow significantly over the next few weeks.

While businesses continue applying for licenses, local governments are preparing in their own way. Some municipalities are hesitant and skeptical, while others are fully embracing the new industry with open arms.

A couple weeks ago, the City Council of Springfield, Massachusetts passed a six-month moratorium on cannabis sales, citing the need for more time to draft local regulations for businesses first. “I believe the moratorium is in place to make sure that we get it right the first time,” Councilor Adam Gomez, chairman of the council’s Economic Development Committee told MassLive. “We don’t have a chance to get it right the second time. The residents of Springfield supported this.” There are also talks of a potential temporary ban in Truro, MA.

Meanwhile in the city of Attleboro, ABC6 News reports Mayor Paul Heroux is “working to make his city marijuana friendly as city councilors work to draft regulation ordinances.” In Peabody, two businesses just received approval to begin operating as medical dispensaries.

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 2

By Kathy Knutson, Ph.D.
2 Comments
HACCP

HACCP is a food safety program developed in the 1960s for the food manufacturing industry, mandated for meat, seafood and juice and adopted by foodservice for the safe serving of meals at restaurants. With state requirements for the safe production of cannabis-infused products, namely edibles, facilities may be inspected against HACCP principles. The cannabis industry and state inspectors recognize the need for safe edible manufacture. Lessons can be learned from the food industry, which has advanced beyond HACCP plans to food safety plans, starting with procurement and including the shipment of finished product to customers.

In my work with the food industry, I write HACCP and food safety plans and deliver training on food safety. In Part 1 of this series, I wrote about the identification of hazards, which is the first step in HACCP plan development. Before we continue with the next HACCP step, I will discuss Good Manufacturing Practices (GMPs). GMPs are the foundation on which HACCP is built. In other words, without GMPs in place, the facility will not have a successful HACCP program. GMPs are required in the food, dietary supplement and pharmaceutical industries, all under the enforcement of the federal Food and Drug Administration (FDA). Without federal regulation for cannabis edible manufacture, there may not be state-mandated requirements for GMPs. Let me warn you that any food safety program will not succeed without proper control of GMPs.HACCP

GMPs cover all of your programs and procedures to support food safety without having a direct, instant control. For example, when brownies are baked as edibles, food safety is controlled by the time and temperature of baking. A written recipe and baking procedure are followed for the edible. The time and temperature can be recorded to provide documentation of proper baking. In the food industry, this is called a process preventative control, which is critical to food safety and is part of a HACCP plan. Failure of proper time and temperature of baking not only leads to an unacceptable product in terms of quality, but results in an unsafe product that should not be sold.

Back to GMPs. Now think of everything that was done up to the steps of mixing and baking. Let’s start with personnel. Facilities for edibles have hiring practices. Once an employee is hired, the employee is trained, and training will include food safety procedures. When working at the job after training, the employee measuring ingredients will demonstrate proper grooming and hand washing. Clean aprons, hairnets, beard nets and gloves will be provided by the facility and worn by the employee. The same goes for the employee that bakes and the employee that packages the edible. One category of GMPs is Personnel.

Edibles facilities are not foodservice; they are manufacturing. A second GMP category is cleaning and sanitizing. Food safety is controlled through proper cleaning and sanitizing of food contact surfaces (FCS). The edible facility will have in place the frequency and methods for cleaning all parts of the facility- outside, offices, restrooms, break room and others. GMPs cover the general cleaning procedures and procedures for cleaning receiving, storage; what we would consider processing to include weighing, process steps and packaging; finished product storage and shipping. Management of the facility decides the methods and frequency of cleaning and sanitizing with greater care given to processing. Without proper cleaning and sanitizing, a facility cannot achieve food safety.

I could go on and on about GMPs. Other GMPs include water safety, integrity of the buildings, pest control program, procurement, sewage disposal and waste disposal. Let’s transition back to HACCP. In Part 1 of this series, I explained identification of hazards. Hazards are one of three types: biological, chemical and physical.

At this point, I am not surprised if you are overwhelmed. After reading Part 1 of this series, did you form a food safety team? At each edibles facility, there should be at least one employee who is trained externally in food safety to the standard that foodservice meets. Classes are offered locally and frequently. When the facility is ready, the next step of training is a HACCP workshop for the food industry, not foodservice. Edibles facilities are not foodservice; they are manufacturing. Many colleges and associations provide HACCP training. Finally, at the least, one employee should attend a workshop for Preventive Controls Qualified Individual.

To institute proper GMPs, go to ConnectFood.com for a GMP checklist. Did you draw up a flow diagram after reading Part 1? With a flow diagram that starts at Receiving and ends at Shipping, the software at ConnectFood.com takes you through the writing steps of a HACCP or food safety plan. There are many resources out there for GMPs, so it can get overwhelming. ConnectFood.com is my favorite resource.

The next step in HACCP development after identification of hazards is to identify the exact step where the hazard will be controlled. Strictly speaking, HACCP only covers process preventive controls, which typically start with a weigh step and end with a packaging step. A facility may also have a step where temperature must be controlled for food safety, e.g. cooling. In HACCP, there are commonly two process preventive controls:

  • Biological hazard of Salmonella and Escherichia coli: the heat step
  • Physical hazard of metal: metal detector

Strictly speaking, HACCP does not include cleaning, sanitizing and supplier approval for procurement of ingredients and packaging. I hope you see that HACCP is not enough. There have been hundreds of recalls and outbreaks due to problems in non-processing steps. The FDA requires food manufactures to go beyond HACCP and follow a written food safety plan, which includes hazards controlled at these steps:

  • Biological hazard of Listeria monocytogenes: cleaning and sanitizing of the processing environment and equipment
  • Physical hazards coming in with ingredients: supplier approval
  • Physical hazard of glass and hard plastic: Here I am thinking of glass breaking or plastic pieces flying off buckets. This is an internal hazard and is controlled by following written procedures. The written document is a Standard Operating Procedure (SOP).
  • Chemical hazard of pesticides: supplier approval
  • Chemical hazard of mycotoxins: supplier approval
  • Chemical hazard of allergens: supplier approval, label check at Receiving and product labeling step

Does a cannabis edible facility honestly not care or not control for pesticides in ingredients because this is not part of HACCP? No. There are two ways for procurement of ingredients in which pesticides are controlled. Either the cannabis cultivation is controlled as part of the samebusiness or the facility works with a supplier to confirm the ingredient meets pesticide tolerances. Strictly speaking, this control is not part of HACCP. For this and many other reasons, HACCP is a good place to start the control of food safety when built on a solid foundation of GMPs. In the same way the food industry is required to go beyond HACCP with a food safety plan, the cannabis industry must go beyond HACCP.

My thoughts will be shared in a webinar on May 2nd hosted by CIJ and NEHA. I encourage you to listen in to continue this discussion.Please comment on this blog post below. I love feedback!

Washington Lab Conducts Transparency Study

By Aaron G. Biros
2 Comments

Earlier this week Capitol Analysis Group, a cannabis-testing laboratory based in Lacey, Washington, announced they are conducting a “data-driven Lab Transparency Project, an effort to improve accuracy of cannabis testing results in the state through transparency and a new third-party auditing process,” according to a press release. They plan to look through the state’s traceability data to find patterns of deviations and possible foul play.

The project launch comes after Straightline Analytics, a Washington cannabis industry data company, released a report indicating they found rampant laboratory shopping to be present in the state. Lab shopping is a less-than-ethical business practice where cannabis producers look for the lab that will give them the most favorable results, particularly with respect to higher potency figures and lower contamination fail rates.“Lab shopping shouldn’t exist, because it is a symptom of lab variability,”

According to the press release, their report “shows that businesses that pay for the highest number of lab tests achieve, on average, reported potency levels 2.71% higher than do those that pay for the lowest number of lab tests.” They also found labs that provide higher potency figures tend to have the largest market share.

The Lab Transparency Project logo
The Lab Transparency Project logo

The goal of The Lab Transparency Project is to provide summaries of lab data across the state, shining a light in particular on which labs provide the highest potency results. “Lab shopping shouldn’t exist, because it is a symptom of lab variability,” says Jeff Doughty, president of Capitol Analysis. “We already have standards that should prevent variations in lab results and proficiency testing that shows that the labs are capable of doing the testing.” The other piece to this project is independent third party auditing, where they hope other labs will collaborate in the name of transparency and honesty. “Problems arise when the auditors aren’t looking,” says Doughty. “Therefore, we’re creating the Lab Transparency Project to contribute to honesty and transparency in the testing industry.”

Dr. Jim McRae, founder of Straightline Analytics, and the author of that inflammatory report, has been a vocal critic of the Washington cannabis testing industry for years now. “I applaud Capitol Analysis for committing to this effort,” says McRae. “With the state’s new traceability system up and running following a 4-month breakdown, the time for openness and transparency is now.” Dr. McRae will be contributing to the summaries of lab data as part of the project.

According to Doughty, the project is designed to be a largely collaborative effort with other labs, dedicated to improving lab standards and transparency in the industry.

Steven Burton

3 Ways The Cannabis Industry Can Benefit By Adopting IoT Tech

By Steven Burton
No Comments
Steven Burton

The cannabis industry of the United States is unlike other horticulture markets in the country. It’s younger, less traditional and with roots in a black market, it’s no surprise that its forerunners aren’t afraid to experiment with new approaches and technology.

The rapid adoption of IoT (Internet of Things) technology is one way in particular that this new generation of producers is stepping up, and they’re beginning to reap the rewards. But to better demonstrate how significant the implementation of IoT tech can be, we’ll peek over the fence at other craft-oriented food industries—namely wine and chocolate—to discover how effective they can be long-term for serious players in the cannabis industry.

The results, as you can probably guess, are astounding.

Farm Productivity and Precision is on the Rise

IoT tech isn’t just a cool new thing for experimental growers – it’s as necessary as air in the 21st century. New and veteran farms alike are discovering ways to streamline production and enhance the quality of their crops. One of the most common implementations of IoT tech in agriculture is the installation of smart measurement tools. Remote sensors can monitor soil acidity, humidity, salt concentrations, temperature and a variety of other metrics, automating the collection of data and providing a clear picture of plant health. For many farms, like E. & J. Gallo Winery, this is a game-changer.By installing hundreds of sensors per block and upgrading to a more precise irrigation system, Gallo was able to connect moisture measurements to a central system

Before placing sensors in over 250 acres of their vineyard, Gallo could only make irrigation adjustments at the large block level. Even with careful monitoring of moisture levels, the grape yield was inconsistent in size and flavor. By installing hundreds of sensors per block and upgrading to a more precise irrigation system, Gallo was able to connect moisture measurements to a central system. The system collects the data, considers the weather forecast, and automatically irrigates small areas of the vineyard as needed to ensure all plants are optimally watered. This resulted in a more uniform crop, less water waste and more desirable grapes.

Cannabis farms are starting to pick up on this simple approach as well. Organigram, one of Canada’s leading Cannabis producers, is well aware of the benefits of this kind of automation and data collection. “All our grow rooms are helping us learn all the time,” says Matt Rogers, head of production at Organigram. “With 20 grow rooms going, we can gather as much information about these plants as you would get in a century of summers.”

Automation and precision have enabled by Gallo and Organigram to improve yield and increase precision, which has helped them achieve their well-respected status in the wine and cannabis industries.

The Supply Chain is Becoming More Transparent

As much as we would like the industry to be free of scams and crooks, there’s more than a few producers stretching the truth when it comes to labeling product. MyDx, a cannabis chemical analyzer, recently revealed that the label on the package often does not totally coincide with the product within.Protecting your brand’s reputation is a necessity and IoT tech is helping some pioneering industries do that.

For example, the most frequently tested cannabis strain, “Blue Dream”, averages a 64% difference in chemical makeup from sample to sample. Similarly, “Gorilla Glue” and “Green Crack” show as much as 83% variation from sample to sample—largely because there’s no regulation of these names.

While variation is inevitable from grower to grower, plant to plant, and even between different parts of the same plant, misleading labels and the addition of ‘fillers’ is a growing issue for edible cannabis producers, and the threat it poses to your brand isn’t minor. Protecting your brand’s reputation is a necessity and IoT tech is helping some pioneering industries do that.

Wine in China is a powerful example of how improved traceability can reduce large-scale mislabeling. Brand-name winemakers in the country face a massive problem: 70% of imported wines are counterfeits. To combat this, winemakers are attaching near-field communication (NFC) labels to imported and domestic bottles. It’s a dramatic solution, but one that’s protecting the brand of winemakers dedicated to quality and transparency.

As the legalization of cannabis spreads and coveted strains emerge, so will the availability of counterfeits—or, at the very least, less-than-truthful labeling. This has proven to be true in almost every specialty market, and adopting improved traceability tech will defend your brand and reputation from the consequences of selling a product that’s discovered to be more ‘filler’ than cannabis.

Compliance is Easily Achieved

The conversation of cannabis regulation generally revolves around age restrictions and driving while impaired, but government compliance is far more complicated – especially for facilities that create cannabis-infused food products. And here’s the frustrating part for those who must (and should) maintain a food safety plan: every time a regulation is adjusted (or every time a new variation is added in another state), facilities must be able to document changes in procedures, recipes and hazard controls. It gets complicated quickly, especially if all the documentation is kept manually.

There’s a lot to be gained by connecting your systems and products to the Internet of ThingsA central, connected system is the best way for food manufacturers to streamline and automate a variety of documentation and food safety tasks, which can mean thousands of dollars saved over months or years. Using software like Icicle, facilities can create a comprehensive data environment that’s dynamic and accessible from anywhere. Incoming measurements from connected equipment and employee records are collected and an admin dashboard allows you to see what food safety systems are thriving and which need revisiting. The records – transformed into a compliant food safety plan – can then be pulled up during audits and inspections on the spot, saving the months that companies usually spend preparing documentation.

According to Mitchell Pugh of Chewter’s Chocolates, their system “gives me a great peace of mind in the sense to know we have all our information prepared and anything that an inspector is going to ask for – whether they’re looking for one product, a general system, a certain hazard, or a bill of ingredients or materials or an allergen – is easy for us to search for it, pull it up, and find exactly what they’re looking for.”

Considering that most food manufacturers still record measurements and create food safety plans manually, this is an area where progressive companies can quickly outpace their non-automated rivals.

Whether you’re a grower, dispensary, food producer, or some other kind of cannabis professional, there’s a lot to be gained by connecting your systems and products to the Internet of Things. Which direction will you take?

A2LA Accredits First Cannabis Lab in PA

By Aaron G. Biros
No Comments

According to a press release sent out this morning, the American Association for Laboratory Accreditation (A2LA) accredited their first Pennsylvania cannabis-testing laboratory. Located in Harrisburg, PA, Keystone State Testing finalized their accreditation for ISO/IEC 17025 on February 21, 2018.

KeystoneStateTestinglogoA2LA also accredited the laboratory to two cannabis-testing-specific programs, ISO/IEC 17025 – General Requirements for the Competence of Testing and Calibration Laboratories and A2LA R243 – Specific Requirements – Cannabis Testing Laboratory Accreditation Program. The R243 program is a collaboration with Americans for Safe Access (ASA) that takes some recommendation for regulators from the American Herbal Products Association (AHPA).

KellyGreenland
Dr. Kelly Greenland, owner and operator of Keystone State Testing

Keystone State Testing is now able to perform all of the tests for cannabis products under the state of Pennsylvania’s regulations. According to Dr. Kelly Greenland, owner and operator of Keystone State Testing, getting accredited is about safeguarding patient safety. “Keystone State Testing is proud to be the first Pennsylvania laboratory to earn A2LA ISO/IEC 17025 accreditation as well as ASA’s Patient Focused Certification,” says Dr. Greenland. “We regard these accreditations and certifications as the first steps in ensuring patient safety and will continue to do everything within our power to ensure medical marijuana patient safety.”

A2LA General Manager Adam Gouker says he wants to see more accreditations include the ASA requirements in R243. “A2LA is pleased to see the growing adoption of the combined assessment to include the ASA requirements,” says Gouker. “Our staff has worked tirelessly in conjunction with ASA staff to create this combined program and offer something that no other accreditation body in the world offers. We congratulate Keystone State Testing Labs on leading the charge in the state of Pennsylvania and laying the groundwork for future laboratories to follow.”