Tag Archives: analytical

Growing the Seed of Sale: Integrating Security with Business Opportunity

By Ryan Schonfeld
No Comments

Anyone in the cannabis industry is well aware that theft of crops can economically devastate a grower. Security is critical, and thankfully, growers and dispensaries have many tools available to protect their investment. There is simply no excuse for not having a solid security posture to keep your business in compliance, from public-private partnerships to advanced security tools – in fact, it’s required in most jurisdictions.

In 2020, nationwide cannabis sales increased 67%, and support for legal marijuana reached an all-time high of 68%. New Frontier Data found that U.S. legal cannabis market is projected to double to $41.5 billion by 2025.

The industry’s advancement impacts numerous areas such as job and tax revenue creation and providing a wide variety of valuable opportunities. For cannabis facilities to keep up with the market expansion and experience success, they must face two significant challenges: achieving adequate security and efficient business operations. Though both can be seen as separate concerns, growers and producers must merge processes and solutions to tackle the issue as a whole.

Dispensaries are prime targets for burglary. Defending your storefront requires a comprehensive security plan

Along with rapid growth, dispensaries face traditional security risks, such as workplace violence and retail theft, while cybersecurity risks have also become more prevalent. These potential issues make it clear that the stakes are high, and as the potential impact on a business rises, the need for real-time, predictive response increases. Insider threats are another issue plaguing the industry when you look at the rate of theft, diversion and burglary that is attributable to employees.

The cannabis market is complex: it’s expanding rapidly, has to meet essential regulatory requirements and faces high-security risks. Therefore, security needs to be looked at holistically since it can be challenging to determine where a potential threat may originate.

With security top of mind, it is critical to move away from responsive behaviors and seek ways to manage security in a manner that gets ahead of threats, prevent them before they happen and respond to them in real-time. But does a grower or retailer have the time and expertise to manage all this while keeping an eye on how security affects the business?

Remote Security Operations

The ability to comply with government regulations and protect a valuable cannabis crop at all stages of its journey from seed to sale makes security systems a mission-critical asset for cannabis growers. Security operations centers create a safer and more productive environment and provide state-of-the-art tools to protect employees, retail locations and grow facilities. But some businesses in the cannabis market may not have the resources or space to have their centralized security operations, leading them to piece-meal security together or do the best with what they can afford at the time. Running these facilities can also be prohibitively expensive.

Security operations centers create a safer and more productive environment and provide state-of-the-art tools to protect employees, retail locations and grow facilities.

But new options take the process of security off the table. The business can focus on the growth of its core functions. Remote security operations services allow companies to take advantage of advanced security services typically only possible in larger enterprise environments. These services are offered on a subscription basis, delivered through the cloud, and are entirely customizable to detect risks unique to your business operations while saving each company significant expense.

Centralized security operations centers leverage intelligent tools, standard operating procedures and proven analytic methods to provide cannabis facilities with the information and guidance necessary to mitigate issues like retail or grow theft before they can have a significant impact.

The integrated, holistic response center staffed by experienced operators and security experts delivers a comprehensive security and regulatory compliance method. This approach is designed to provide complete data about what is happening across a cannabis business, from seed to sale, and how individual events can impact the company as a whole. As a result, stakeholders get the security intelligence they need, without the high overhead, personnel investments and complex daily management.

For those businesses in the cannabis market looking to supplement their security operations with other workforce but may not have the budget or infrastructure to do so, remote security operations services are something you should consider. With the experts handling all the heavy lifting, leaders can focus on growth. And, right now, in the cannabis industry, the sky is the limit in terms of opportunity.

How to Develop Quality Cannabis Products with Advanced Analytical Testing

By Vanessa Clarke, Melody Lin
No Comments

A thorough cannabis product development process goes far beyond extracting and packaging. Performing advanced analytical testing at each and every stage allows producers to know the quantity, quality and behaviour of compounds in samples. Here are the four key stages from flower to consumption.

Stage 1: Flower

Developing a quality cannabis product begins with knowing the composition of compounds in your starting material. The best analytical tests utilize a metabolomics approach. Metabolomics is a suite of techniques that include a variety of instruments to run samples through in order to receive compositional data. In this stage, LC-qTOF and GC-MS are the best instruments to track all the compounds in the starting plant material. Essentially, metabolomics establishes a fingerprint of the compounds in a plant sample. This is beneficial because producers have to understand how their chosen cannabis plant differs from other cultivars and how it would potentially behave in their desired end product formulations.

Stage 2: Concentrate

After the plant material has gone through an extraction process, producers want to know precisely what is in the extract. Are there compounds that should not be there and are all the desired compounds present? The best way to test the quality of cannabis oils is again to use metabolomics (e.g. via LC-qTOF). This test reveals all the compounds in the sample in order to help the producer determine the purity and consistency of molecules beyond just THC and CBD.

When testing cannabis isolates, it is best to use NMR spectroscopy and X-ray diffraction. NMR characterizes and assesses the purity of single compounds or mixtures in solution or solid state. X-ray diffraction provides information about the crystal structure, chemical composition and the physical properties of the cannabis sample to help the producer prove the identification of desired compounds. Establishing that the concentrates are pure and aligned with what the producer intended to extract is key in this stage of product development.

Stage 3: Formulation

Designing an appropriate drug delivery formula is a universal challenge producers face at this stage of product development. Where nanoemulsion or other carrier approaches are being used, formulation characterization allows producers to understand how their active compounds behave in simulated physiological environments as well as how stable their products are over time. Specifically, nanoparticle sizing and assessing size changes over time can help a formulation scientist ensure the highest quality product is being mixed, and that the desired effect will be imparted on the consumer/patient.

Stage 4: Smoke/Vapor

Many producers might not consider this final stage, but it is critical for all inhalable cannabis products and devices. Using a smoke analyzer and metabolomics testing can identify and quantify compounds present within the formed smoke or vapor from pre-roll joints to vape devices. This is not only important for preventing the production of toxic by-products, but it can help producers create an optimal smoking experience for consumers.

One area that is often an afterthought is quality compliance testing. Despite a number of groups using the required tests well during development, many forget to continue the same robust testing on end products. In the current cannabis product development landscape, there is little guidance on how compliance testing should be conducted on every product “batch.” With these advanced analytical tests, producers can confidently develop compliant, stable and quality cannabis products.

 

Trichome Analytical Accredited, DEA-Registered

By Cannabis Industry Journal Staff
No Comments

In a press release sent out this week, Trichome Analytical, based in Mount Laurel, New Jersey, announced two new developments for their business: They have achieved ISO 17025:2017 accreditation and they are officially registered with the DEA for hemp compliance testing.

The press release also mentions their collaboration with Shimadzu, who supplies 80% of the lab’s equipment and supports the Trichome’s operations with technical guidance.

For the hemp industry, pre-harvest testing for THC levels is a requirement and labs are required to get registered with the DEA in order to perform that testing.

These announcements are somewhat timely, given the results of the election. Voters in New Jersey approved adult use cannabis legalization just last week.

ZOSI Analytical Accredited to ISO:17025

By Cannabis Industry Journal Staff
1 Comment

ZOSI Analytical, a third-party hemp testing lab based in Georgetown, Texas, announced last week that they have achieved ISO 17025:2017 accreditation from Perry Johnson Laboratory Accreditation (PJLA). ZOSI Analytical is actually the very first hemp lab in Texas to be DEA-registered.

A sample prepared from hemp flower, following extraction of cannabinoids at ZOSI Analytical

The 2018 Farm Bill has a stipulation for all hemp compliance testing labs to be ISO 17025:2017 accredited by October 2021. ZOSI is a bit ahead of that deadline, but ready to test products for retailers and processors looking to confirm their potency levels below the 0.3% THC federal legal threshold.

According to Amy Lummus, CEO of ZOSI Analytical, they have a turnaround time of about 48-72 hours from receipt of a hemp sample. “Although regulations continue to change at the Federal level and vary widely at State levels, one thing has remained consistent and that has been the understanding that third-party testing laboratories need to show a level of commitment and accountability to quality,” says Lummus. “Our accreditation is one more step in our commitment to helping the industry to produce and sell safe products.”

Cannabinoid Research & Pharmacology: A Q&A with Dr. Linda Klumpers

By Cannabis Industry Journal Staff
No Comments

Dr. Linda Klumpers has a Ph.D. in clinical pharmacology of cannabinoids. Originally from the Netherlands, she began much of her career in studying cannabis there. She now lives and works in the United States, where she has worked on a number of projects, started her own company and is continuing her research on cannabis as an effective medicine.

After studying neuroscience at the University of Amsterdam, she went on to train at the Centre for Human Drug Research and Leiden University Medical Center, where Dr. Klumpers obtained a clinical pharmacology degree and a Ph.D. in clinical pharmacology of cannabinoids. She has been researching cannabinoids in humans since 2006. Dr. Klumpers co-authored a number of peer-reviewed cannabinoid publications and she has received five honors and awards for her work, including the BJCP Prize from the British Journal of Clinical Pharmacology.

Dr. Linda Klumpers

In 2016, she moved to the United States and founded Cannify, an online tool that helps patients and clinicians with product matching and providing legitimate cannabis education based in sound science. In 2018, Dr. Klumpers joined forces with Dr. Michael Tagen, another clinical pharmacologist, to launch Verdient Science, a consulting partnership. Their work at Verdient Science includes helping clients set up human studies, advise on FDA submissions, creating course materials, adjusting product pipelines and product development strategies, among other areas of focus.

Right now, Dr. Klumpers is waiting to hear back from a grant application they submitted to study THC and CBD ratios for medical efficacy in chronic pain patients. We sat down with Dr. Klumpers to hear her story, what she is working on now and how she hopes to continue researching cannabis as an effective medicine.

Cannabis Industry Journal: Tell us about your background as a research scientist. How did you get involved in cannabis? 

Dr. Linda Klumpers: During my Ph.D. work, we studied the effects of so-called cannabinoid receptor antagonists that block the effects of THC – I prefer to say “we”, as research is always done by multiple people. The problem with studying these compounds in healthy volunteers is that you can’t observe acute effects, which means that you won’t measure any effect after a single dose. To circumvent this issue, we applied a trick and developed a ‘challenge test’: after you give the ‘invisible’ blocking compound, you stimulate the cannabinoid system by giving people THC. If the subjects don’t feel the effects of THC, you know that the blocker worked. One thing lead to another and we ended up studying various administration methods, such as intrapulmonal (via the lungs) with vaporization, oral and sublingual. We studied the behavior of cannabinoids in the body and how the body responded to them.

CIJ: Can you share some information on the projects you are working on? What is Cannify and what is Verdient Science?  

Dr. Klumpers: Cannify was founded in 2016 after I saw that too many people had opinions about cannabis that were more based on emotion than fact. Besides, I noticed that a majority of the scientific literature on cannabis pharmacology was left unnoticed and unapplied to the people getting exposed to cannabis, such as patients, the cannabis industry – that was in a very different stage at that time – healthcare providers and regulators. With my Ph.D. in cannabis pharmacology, I wanted to add a level of objectivity to cannabis education and research. Cannify’s goals are to understand the science of cannabis, and share this with others.

The way we do this is multi-fold:

  1. Cannify Quiz: Patients with an interest in cannabis often want to know the science about cannabis and their condition. Our quiz helps these people by asking in-depth questions and showing them relevant scientific literature in a personalized report. After that, an overview is given with products and product matching scores. Our account system allows users to track their progress over time. Product manufacturers, dispensaries and other companies can use the quiz for their websites and their stores to help out retail employees and save them time, and to receive insight with our analytics on customer desires and behavior. Needless to say, an educated customer is a better customer. It is important that customers come and leave stores well-informed.
  2. Education: Speaking of education, our website contains educational articles about everything cannabis: from plant to patient and from product to mechanism of action. We regularly publish educational quizzes for people to test their knowledge level. With a free Cannify account, you can find all of our educational quizzes and save your results. We also provide customized courses, and have educated a wide audience varying from industry professionals to CME-accredited courses for healthcare providers. On top of that, our educational videos in dispensaries (in collaboration with our partner, Enlighten) reach customers and retail employees.
  3. One of Cannify’s educational graphics, showing the difference between topical and transdermal product administration

    Research: To expand the knowledge on cannabis, performing and especially sharing research is essential. We have already performed and published some of Cannify’s results on descriptive statistics and effect prediction during conferences, as well as a review paper on cannabis therapeutics in a peer-reviewed journal and a book chapter. This year, we expect to co-publish the results of a survey in different sleep patient groups. We collaborated with the Centre of Excellence for Epilepsy and Sleep Medicine in the Netherlands on a peer-reviewed paper from which we expect new research to follow to benefit these patients. We have also co-submitted a grant to study THC and CBD ratios in chronic pain patients: fingers crossed! Another important next step is to test a healthcare provider-specific version of Cannify’s quiz in the clinic once COVID dies down. I want to add that after working in a clinical lab for many years, it is important to combine the results of clinical trials to what people do in real life, which is what we do with Cannify.

And here’s some information on Verdient Science:

Verdient Science is a consulting partnership I have with clinical pharmacologist Dr. Michael Tagen. We provide clinical and translational pharmacology expertise to improve the quality of product development & clinical testing. While both working as independent consultants, we decided from 2018 to start working together to offer better services. Since then, our work has been very variable and includes helping clients set up human studies, advise on FDA submissions, creating course materials, adjusting product pipelines and product development strategies to make them more efficient and cheaper, performed scientific due diligence and much more. When clients want additional services that are beyond our expertise, we are typically able to introduce them to various people per expertise area, or refer them to our partner companies, Complex Biotech Discovery Ventures (CBDV) with Dr. Markus Roggen, and Via Innovations with Dr. Monica Vialpando. A benefit of working with the same partners includes smooth handovers and the feeling of a one stop shop.

CIJ: How does Cannify match available products to consumer needs? Is there an algorithm you developed that matches moods or feelings to cannabinoids or chemical profiles?

Dr. Klumpers: That is a great question and the core of what we do! So back to the Cannify quiz: there are three steps:

  1. Users fill in questions;
  2. A personalized report is generated with the relevant science;
  3. The user gets a product overview with product matching scores.
Another Cannify educational graphic, showing THC distribution throughout the body over time

The report and the matching scores are generated using algorithms that are regularly updated. These algorithms are based on various data sources:

  1. Literature: There is a lot of available literature, and we make sure to select the most relevant and reliable studies;
  2. Raw data: There is only so much one can find in the literature, and lots is hidden in the raw data. Therefore, we piled up data from studies done at various research institutions, including the University of Kentucky and Johns Hopkins University, and used them in our algorithms;
  3. Internal studies: From the thousands of users filling in their results, there is a lot of information that we should learn from. This feedback loop helps us to better understand how the lab relates to real life situations.

CIJ: The world of cannabis research has been historically stymied by red tape, DEA interference and a host of federal regulations. How have you managed to work through all that? Do you have a DEA license? What did it take to get it? 

Dr. Klumpers: Luckily, a majority of our research was and is done outside of the US. You still need to obtain the appropriate licenses, but I was perhaps lucky to have filled in every form very thoroughly and we got the licenses within months. The process is quite meticulous, as you need separate licenses for almost every step from manufacturing to administration. An additional complication is that our cannabis is not stored in our own building, but in the hospital pharmacy across the street, involving transport via the public road. Despite the roadblocks, including a legal procedure about this matter that was going on in parallel, I had no major issues getting our work done. For our research in the US, we were lucky to have been working with partners that already have the required license.

Also with publishing, I have never had an issue with the cannabis stigma. Generally, in my field of science, good quality science is very much welcomed and appreciated, and this was even before the time that there were four different cannabis-related journals, as is the case nowadays.

CIJ: Looking to the future, where do you hope to focus your research efforts? Where do you think the cannabis community should be focusing their efforts in the next 5-10 years?

Dr. Klumpers: Besides continuing to analyze the data generated from Cannify, I keep my fingers crossed for the grant application I mentioned earlier on THC and CBD ratios in chronic pain patients. Although we know that CBD is able to influence THC-induced effects, it is not known at what dosages, which ratios and how the effects are related to each other. For example: is CBD able to decrease certain side-effects of THC without decreasing pain-relieving effects?

Whatever is done, wherever in the community: good quality data are keyNext to that, I am also interested in other neurological and psychiatric disorders, and, of course, my Ph.D. love: the cannabinoid antagonists. Sadly, all the research efforts on this compound group were halted more than a decade ago. However, there is a renewed interest. I would love to help turn these compounds into effective and safe medicines.

Regarding the cannabis community: 5-10 years sounds really far away for an industry that is relatively new to many, but a lot has already changed since I started cannabis research more than 14 years ago and time has flown by. Some changes have been positive and others less so. Whatever is done, wherever in the community: good quality data are key. Many companies gather data and even publish them in peer-reviewed journals, but that does not always mean that the data are useful or that the studies were done well. Only a few minor changes to how and which data are gathered, and so much more can be done. What can help with achieving this is to let the right people do the right thing: many call themselves a ‘cannabis scientist’ or ‘cannabis expert’, but that does not mean anything. What has someone truly achieved and what is their exact expertise? A Ph.D. in chemistry is not going to help you in setting up effect studies, neither will I be able to improve your product’s shelf life or extraction yield. Getting the right people in the right place is key. Lastly: the cannabis community should stay critical. The length of one article in Cannabis Industry Journal wouldn’t be enough to lay out all the misconceptions that people have about cannabis. Make sure that those misconceptions do not live on and do not be afraid to admit you don’t know something, irrespective of the branch you work in: only then, can the cannabis community progress to the benefit of all.

Cannabis Labs / Food Labs 2020 Agenda Announced

By Cannabis Industry Journal Staff
No Comments

EDGARTOWN, MA, March 11, 2020 – Innovative Publishing Co., the publisher of Cannabis Industry Journal and organizer of the Cannabis Quality Conference & Expo is announcing the agenda release for the Cannabis Labs Conference. The event will address science, technology, regulatory compliance and quality management as they relate to the cannabis testing market. It will take place on June 3–4 at U.S. Pharmacopeia in Rockville, MD.

Two keynotes for the Cannabis Labs Conference are listed in the agenda: Rowing in the Same Direction: The Biggest Safety Issues Facing the Cannabis Industry & How We Intend to Tackle Them – this talk will be delivered by Andrew Kline, Director of Public Policy at the National Cannabis Industry Association (NCIA). The second keynote is titled Cannabis Testing in Maryland: Protecting Patient Safety – this talk will be delivered by Lori Dodson, Deputy Director of the Maryland Medical Cannabis Control Commission.

The event will begin on June 3 with an opening general session with Charles Deibel speaking to both the cannabis and food lab testing industries: The Evolution of the Lab Testing Market: A History of Food and Cannabis Testing & How Far We’ve Come

Other notable presentations include: Building a Comprehensive Analytical Testing Program for Hemp by Grace Bandong, Global Scientific Strategy Leader at Eurofins; FDA Compliance for Cannabis- Stories from a Cannabis Public Health Investigator by Kim Stuck, Founder of Allay Consulting; Evaluation of Cannabinoids Reference Standards by Shiow-Jyi Wey, Reference Standard Scientist at the US Pharmacopeia; and more.

The event is co-located with the Food Labs Conference, which will focus on regulatory, compliance and risk management issues that companies face in the area of testing and food laboratory management. More information about this event is available on Food Safety Tech. Some of the critical topics include a discussion of FDA’s proposed FSMA rule, Laboratory Accreditation Program for Food Testing; considerations in laboratory design; pathogen testing and detection; food fraud; advances in testing and lab technology; allergen testing, control and management; validation and proficiency testing; and much more.

“By presenting two industry conferences under one roof, we can provide attendees with technology, regulatory compliance and best practices that cannabis and food might share but also focused topics that are unique to cannabis or food laboratory industry needs,” said Rick Biros, president of Innovative Publishing Co., Inc. and director of the Cannabis Labs Conference.

To learn more about the agenda, speakers and registration pricing, click here. The early bird discount of $395 expires on March 31.

Innovative Publishing Company, Inc., the organizer of the conference, is fully taking into considerations the travel concerns related to the coronavirus. Should any disruption occur that may prevent the production of this live event at its physical location in Rockville, MD due to COVID-19, all sessions will be converted to a virtual conference on the already planned dates. More information is available on the event website.

North Coast Analytical & North Coast Testing Accredited to ISO 17025:2017

By Cannabis Industry Journal Staff
No Comments

According to a press release published earlier this month, the American Association for Laboratory Accreditation (A2LA) announced the accreditation of both North Coast Analytical Laboratories and North Coast Testing Laboratories to ISO 17025:2017 for cannabis testing.

Both labs are located in Streetsboro, Ohio, becoming A2LA’s first accredited labs in the state. North Coast Testing does cannabis testing for Ohio’s medical cannabis industry, whereas North Coast Analytical does testing for the hemp industry.

Carolyn Friedrich, Ph.D., scientific director at North Coast Testing, says they are excited to help ensure the safety of patients for Ohio’s medical cannabis program. “We are extremely proud of the work of our entire team in rapidly developing and implementing a comprehensive quality management program that can give all participants in the Ohio Medical Marijuana Control Program confidence in the quality and safety of products tested in our laboratory,” says Friedrich.

Nick Szabo, laboratory director at North Coast Analytical, says A2LA went “above and beyond at every step, we greatly appreciate their efforts. Our accreditation by A2LA is a testament to our ability to meet the most rigorous quality management standards in analytical testing of hemp products, and a vote of confidence in our team’s ability to perform at the highest levels.”

A2LA Accredits GoodCat Analytical to ISO/IEC 17025

By Aaron G. Biros
1 Comment

According to a press release published last week, the American Association of Laboratory Accreditation (A2LA) announced the accreditation of GoodCat Analytical, LLC, a cannabis testing laboratory based in Naples, Florida. This marks the first time that A2LA has accredited a cannabis testing lab in the state.

Adam Gouker, A2LA General Manager, says this is a momentous achievement for GoodCat Analytical. “A2LA is excited to expand our cannabis accreditation program into yet another state, promoting the value of independent third-party accreditation to support quality products in the industry,” says Gouker. “We congratulate GCA Laboratories in achieving this milestone for their organization and wish them all the best as they move forward with this new endeavor.”

According to Jimmy Dodsworth, chief science officer at GoodCat Analytical, they had to develop a lot of methods on their own. “I can’t say enough about each of our staff members efforts to develop and validate each analytical method,” says Dodsworth. “The level of quality for these internally developed tests is amazing considering we started from scratch.”

Raymond Keller, owner and president of GoodCat Analytical, says A2LA’s support was an incredibly valuable resource for them. “We also need to acknowledge the tremendous guidance and support from the A2LA staff,” says Keller. “There is no doubt that they had a hand in making our lab the impressive operation it is today and know they will continue to do so moving forward.”

Spotlight on AOAC: New Leadership, New Initiatives In Cannabis & Food

By Aaron G. Biros
No Comments

AOAC INTERNATIONAL is an independent, third party, not-for-profit association and voluntary consensus standards developing organization. Founded in 1884, AOAC INTERNATIONAL was originally coined the Association of Official Agricultural Chemists. Later on, they changed their name to the Association of Official Analytical Chemists. Now that their members include microbiologists, food scientists as well as chemists, the organization officially changed its name to just AOAC INTERNATIONAL.

Much of AOAC’s work surrounds promoting food safety, food security and public health. Their work generally encompasses setting scientific standards for testing methodology, evaluating and adopting test methods and evaluating laboratory proficiency of test methods. The organization provides a forum for scientists to develop microbiological and chemical standards.

In December of 2018, they appointed Dr. Palmer Orlandi as deputy executive director and chief science officer. Dr. Orlandi has an extensive background at the U.S. Food and Drug Administration (FDA), serving the regulatory agency for more than 20 years. Most recently, he was the CSO and research director in the Office of Food and Veterinary Medicine at the FDA. He earned the rank of Rear Admiral and Assistant Surgeon General in 2017.

Dr. Palmer Orlandi is the new Deputy Executive Director and Chief Science Officer at AOAC.

Where It All Began With Cannabis

As recently as three years ago, AOAC began getting involved in the cannabis laboratory testing community, with a working group dedicated to developing standard method performance requirements for AOAC Official MethodsSM for cannabis testing. We sat down with Dr. Palmer Orlandi and a number of AOAC’s leaders to get an update on their progress working with cannabis testing as well as food security and food fraud.

According to Scott Coates, senior director of the AOAC Research Institute, they were approached three years ago to set up a working group for cannabis testing. “We created standards that we call the standard method performance requirements (SMPR®), which are detailed descriptions of what analytical methods should be able to do,” says Coates. “Using SMPRs, we issued a series of calls for methods and looked for methods that meet our standards. So far, we’ve completed four SMPRs- cannabinoids in plant material, cannabinoids in plant extracts, cannabinoids in chocolate (edibles), and one for pesticides in cannabis plant material.” AOAC doesn’t develop methods themselves, but they perform a comprehensive review of the methods and if they deem them acceptable, then the methods can be adopted and published in the AOAC compendium of methods, the Official Methods of Analysis of AOAC INTERNATIONAL.

Deborah McKenzie, senior director of Standards and Official Methods at AOAC

Deborah McKenzie, senior director of Standards and Official MethodsSM at AOAC, says the initial working group set the stage for really sinking their teeth into cannabis testing. “It started with methods for testing cannabinoids in plant dried material and plant extract,” says McKenzie. “That’s where our previous work has started to mold into the current effort we are launching.” McKenzie says they are looking forward to getting more involved with methods regarding chemical contaminants in cannabis, cannabinoids in various foods and consumables, as well as microbial organisms in cannabis. “We are pretty focused on testing labs having reliable and validated analytical solutions as our broad goal right now.”

Moving Forward, Expanding Their Programs

Coates says the work they’ve done over the past few years was more of a singular project, developed strictly for creating standards and to review methods. Now they are currently developing their Cannabis Analytical Science Program (CASP), which is expected to be an ongoing program. “We are looking to fully support the cannabis analytical community as best we can, which will potentially include working on reference materials, proficiency testing, education, training and ISO 17025 accreditation, all particularly as it applies to lab testing in the cannabis industry,” says Coates. “So, this CASP work is a much bigger and broader effort to cover more and to provide more support for labs doing the analysis of cannabis and its constituents, as well as hemp.”

According to Dr. Orlandi, they want this program to have a broad reach in the cannabis testing community. “As Scott pointed out, it’s not just strictly developing standards and methods,” says Dr. Orlandi. “It is going to be as all-encompassing as possible and will lead to training programs, a proficiency testing program and other areas.” Arlene Fox, senior director of AOAC’s Laboratory Proficiency Testing Program, says they are actively engaging in proficiency testing. “We are in the process of evaluating what is out there, what is possible and what’s needed as far as expanding proficiency testing for cannabis labs,” says Fox.

Regulatory Challenges & Obstacles

The obvious roadblock to much of AOAC’s work is that cannabis is still considered a controlled substance. “That creates some challenges for the work that we do in certain areas,” says Dr. Orlandi. “That is why this isn’t just a one-year project. We will work with these challenges and our stakeholders to address them.” AOAC had to put some limits on participation- for example, they had to decide that they cannot look for contributions or collaborations with producers and distributors, so long as cannabis is still a Schedule I controlled substance in the US.

Arlene Fox, senior director of AOAC’s Laboratory Proficiency Testing Program

Muddying the waters even further, the recent signing of the Farm Bill puts a clear distinction between most types of cannabis and industrial hemp. David Schmidt, executive director of AOAC realizes they need to be realistic with their stakeholders and in the eye of federal law.

While scientifically speaking, it’s pretty much the same plant just with slightly different chemical constituents, AOAC INTERNATIONAL has to draw a line in the sand somewhere. “As Palmer suggests, because of the Farm Bill being implemented and hemp being defined now as a legal substance from a controlled substance standpoint, industrial hemp has been given this exclusion,” says Schmidt. “So, we are trying to be realistic now, working with our stakeholders that work with hemp, trying to understand the reality of the federal law. We want to make clear that we can meet stakeholder needs and we want to distinguish hemp from cannabis to remain confident in the legality of it.” Schmidt says this is one of a number of topics they plan on addressing in detail at their upcoming 9thannual 2019 Midyear Meeting, held March 11-14 in Gaithersburg, Maryland.

Uniformity in Methodology: The Future of Cannabis Testing

Dr. Orlandi says his experience at the FDA has prepared him well for the work being done at AOAC. “The role that I served at the FDA prior to joining my colleagues here at AOAC was very similar: And that is to bring together stakeholders to accomplish or to solve a common problem.” Some of their stakeholders in the CASP program include BC Testing, Inc., the Association of Food and Drug Officials (AFDO), Bia Diagnostics, Bio-Rad, Industrial Laboratories, Materia Medica Labs, PerkinElmer, R-Biopharm AG, Supra R & D, TEQ Analytical Laboratories, Titan Analytical and Trilogy Analytical, among others.

David Schmidt, executive director of AOAC

“The underlying reason behind this effort is to create some level of harmonization for standards and methods,” says Dr. Orlandi. “They can be used in the near future to stay ahead of the curve for when regulatory agencies become involved. The idea is that these standards for analytical methods will already be established and as uniform as possible.”

When comparing cannabis to other industries in the US, Scott Coates mentions that most standards are signed off by the federal government. “When we started looking at pesticides in cannabis, it became really clear that we have a number of states doing things differently with different limits of quantification,” says Coates. “Each state, generally speaking, is setting their own standards. As Palmer was saying, one thing we are trying to do with this CASP program eventually will be to have some harmonization, instead of 30 different states having 30 different standards and methods.” So, on a much broader level, their goal for the CASP program is to develop a common set of standard methods, including hemp testing and even the Canadian market. “Hopefully this will be an international collaboration for standards for the methodology,” says Coates. They want to create a common set of standards, setting limits of quantification that will be accepted internationally, that will be accurate and repeatable and for the entire cannabis industry, not just state by state.

Food Authenticity & Fraud

One of the other activities that AOAC just launched recently is the food authenticity and fraud program. As the name implies, the goal is to start developing standards and methods and materials to look at economically adulterated foods, says Dr. Orlandi. That includes non-targeted analyses looking at matrices of food products that may be adulterated with an unknown target, as well as targeted analytes, identifying common adulterants in a variety of food products. “One example in the food industry is fraudulent olive oil,” says Dr. Orlandi. “Honey is another commodity that has experienced adulteration.” He says that in most cases these are economically motivated instances of fraud.

AOAC INTERNATIONAL is working in a large variety of other areas as well. All of these topics will be explored in much greater detail at their upcoming 9thannual 2019 Midyear Meeting, held March 11-14 in Gaithersburg, Maryland.

IR Spectrum of 2,4-Dichlorophenol in different physical states
From The Lab

Gas Chromatography/Infrared Spectroscopy: A Tool For the Analysis of Organic Compounds in Cannabis

By John F. Schneider
2 Comments
IR Spectrum of 2,4-Dichlorophenol in different physical states

Editor’s Note: The author will be teaching a 1/2 day short course on this topic at PITTCON in Philadelphia in March 2019.


The combination of gas chromatography and infrared spectroscopy (GC/IR) is a powerful tool for the characterization of compounds in complex mixtures. (1-5) Gas chromatography with mass spectroscopy detection (GC/MS) is a similar technique, but GC/MS is a destructive technique that tears apart the sample molecules during the ionization process and then these fragments are used to characterize the molecule. In GC/IR the molecules are not destroyed but the IR light produced by molecular vibrations are used to characterize the molecule. IR spectrum yields information about the whole molecule which allows the characterization of specific isomers and functional groups. GC/IR is complementary to GC/MS and the combination results in a powerful tool for the analytical chemist.

A good example of the utility of GC/IR vs GC/MS is the characterization of stereo isomers. Stereo isomers are mirror images such as a left hand and a right hand. In nature, stereo isomers are very important as one isomers will be more active then its mirror image. Stereo isomers are critical to medicinal application of cannabis and also a factor in the flavor components of cannabis.

GC/MS is good at identifying basic structure, where GC/IR can identify subtle differences in structure. GC/MS could identify a hand, GC/IR could tell you if it is a left hand or right hand. GC/MS can identify a general class of compounds, GC/IR can identify the specific isomer present.

Why GC/IR?

Gas chromatography interfaced with infrared detection (GC/IR), combines the separation ability of GC and the structural information from IR spectroscopy. GC/IR gives the analyst the ability to obtain information complementary to GC/MS. GC/IR gives the analyst the power to perform functional group detection and differentiate between similar molecular isomers that is difficult with GC/MS. Isomer specificity can be very important in flavor and medical applications.

 IR Spectrum of 2,4-Dichlorophenol in different physical states

IR Spectrum of 2,4-Dichlorophenol in different physical states

Gas chromatography with mass spectrometry detection (GC/MS) is the state-of-the-art method for the identification of unknown compounds. GC/MS, however, is not infallible and many compounds are difficult to identify with 100 % certainty. The problem with GC/MS is that it is a destructive method that tears apart a molecule. In infrared spectrometry (IR), molecular identification is based upon the IR absorptions of the whole molecule. This technique allows differentiation among isomers and yields information about functional groups and the position of such groups in a molecule. GC/IR complements the information obtained by GC/MS.

Interfaces

Initial attempts to couple GC with IR were made using high capacity GC columns and stopped flow techniques. As GC columns and IR technology advanced, the GC/IR method became more applicable. The advent of fused silica capillary GC columns and the availability of Fourier transform infrared spectrometry made GC/IR available commercially in several forms. GC/IR using a flow cell to capture the IR spectrum in real time is known as the “Light Pipe”. This is the most common form of GC/IR and the easiest to use. GC/IR can also be done by capturing or “trapping” the analytes of interest eluting from a GC and then measuring the IR spectrum. This can be done by cryogenically trapping the analyte in the solid phase. A third possibility is to trap the analyte in a matrix of inert material causing “Matrix Isolation” of the analyte followed by measuring the IR spectrum.

Infrared Spectroscopy

The physical state of the sample has a large effect upon the IR spectrum produced. Molecular interactions (especially hydrogen bonding) broadens absorption peaks. Solid and liquid samples produce IR spectra with broadened peaks that loses much of the potential information obtained in the spectra. Surrounding the sample molecule with gas molecules or in an inert matrix greatly sharpens the peaks in the spectrum, revealing more of the information and producing a “cleaner” spectrum. These spectra lend themselves better to computer searches of spectral libraries similar to the computer searching done in mass spectroscopy. IR spectral computer searching requires the standard spectra in the library be of the same physical state as the sample. So, a spectrum taken in a gaseous state should be searched against a library of spectra of standards in the gaseous state.

IR of various phases:

  • Liquid Phase – Molecular interactions broaden absorption peaks.
  • Solid Phase – Molecular interactions broaden absorption peaks.
  • Gas Phase – Lack of molecular interactions sharpen absorption peaks.
  • Matrix Isolation – Lack of molecular interactions sharpen absorption peaks.

IR Chromatograms

GC/IR yields chromatograms of infrared absorbance over time. These can be total infrared absorbance which is similar to the total ion chromatogram (TIC) in GC/MS or the infrared absorbance over a narrow band or bands analogous to selected ion chromatogram. This is a very powerful ability, because it gives the user the ability to focus on selected functional groups in a mixture of compounds.

Conclusion

Gas chromatography with infrared detection is a powerful tool for the elucidation of the structure of organic compounds in a mixture. It is complementary to GC/MS and is used to identify specific isomers and congeners of organic compounds. This method is greatly needed in the Cannabis industry to monitor the compounds that determine the flavor and the medicinal value of its products.


References

  1. GC–MS and GC–IR Analyses of the Methoxy-1-n-pentyl-3-(1-naphthoyl)-Indoles: Regioisomeric Designer Cannabinoids, Amber Thaxton-Weissenfluh, Tarek S. Belal, Jack DeRuiter, Forrest Smith, Younis Abiedalla, Logan Neel, Karim M. Abdel-Hay, and C. Randall Clark, Journal of Chromatographic Science, 56: 779-788, 2018
  2. Simultaneous Orthogonal Drug Detection Using Fully Integrated Gas Chromatography with Fourier Transform Infrared Detection and Mass Spectrometric Detection , Adam Lanzarotta, Travis Falconer, Heather McCauley, Lisa Lorenz, Douglas Albright, John Crowe, and JaCinta Batson, Applied Spectroscopy Vol. 71, 5, pp. 1050-1059, 2017
  3. High Resolution Gas Chromatography/Matrix Isolation Infrared Spectrometry, Gerald T. Reedy, Deon G. Ettinger, John F. Schneider, and Sid Bourne, Analytical Chemistry, 57: 1602-1609, 1985
  4. GC/Matrix Isolation/FTIR Applications: Analysis of PCBs, John F. Schneider, Gerald T. Reedy, and Deon G. Ettinger, Journal of Chromatographic Science, 23: 49-53, 1985
  5. A Comparison of GC/IR Interfaces: The Light Pipe Vs. Matrix Isolation, John F. Schneider, Jack C. Demirgian, and Joseph C. Stickler, Journal of Chromatographic Science, 24: 330- 335, 1986
  6. Gas Chromatography/Infrared Spectroscopy, Jean ‐ Luc Le Qu é r é , Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2006