Last week, the Oregon Health Authority (OHA) published a bulletin, outlining new temporary testing requirements effective immediately until May 30th of next year. The changes to the rules come in the wake of product shortages, higher prices and even some claims of cultivators reverting back to the black market to stay afloat.
According to the bulletin, these temporary regulations are meant to still protect public health and safety, but are “aimed at lowering the testing burden for producers and processors based on concerns and input from the marijuana industry.” The temporary rules, applying to both medical and retail products, are a Band-Aid fix while the OHA works on a permanent solution to the testing backlog.
Here are some key takeaways from the rule changes:
Labeling
THC and CBD amounts on the label must be the value calculated by a laboratory, plus or minus 5%.
Batch testing
A harvest lot can include more than one strain.
Cannabis harvested within a 48-hour period, using the same growing and curing processes can be included in one harvest lot.
Edibles processors can include up to 1000 units of product in a batch for testing.
The size of a process lot submitted for testing for concentrates, extracts or other non-edible products will be the maximum size for future sampling and testing.
Sampling
Different batches of the same strain can be combined for testing potency.
Samples can be combined from a number of batches in a harvest lot for pesticide testing if the weight of all the batches doesn’t exceed ten pounds. This also means that if that combined sample fails a pesticide test, all of the batches fail the test and need to be disposed.
Solvent testing
Butanol, Propanol and Ethanol are no longer on the solvent list.
Potency testing
The maximum concentration limit for THC and CBD testing can have up to a 5% variance.
Control Study
Process validation is replaced by one control study.
After OHA has certified a control study, it is valid for a year unless there is an SOP or ingredient change.
During the control study, sample increments are tested separately for homogeneity across batches, but when the control study is certified, sample increments can be combined.
Failing a test
Test reports must clearly show if a test fails or passes.
Producers can request a reanalysis after a failed test no later than a week after receiving failed test results and that reanalysis must happen within 30 days.
The office of Gov. Kate Brown along with the OHA, Oregon Department of Agriculture (ODA) and Oregon Liquor Control Commission (OLCC) issued a letter in late November, serving as a reminder of the regulations regarding pesticide use and testing. It says in bold that it is illegal to use any pesticide not on the ODA’s cannabis and pesticide guide list. The letter states that failed pesticide tests are referred to ODA for investigation, which means producers that fail those tests could face punitive measures such as fines.
The letter also clarifies a major part of the pesticide rules involving the action level, or the measured amount of pesticides in a product that the OHA deems potentially dangerous. “Despite cannabis producers receiving test results below OHA pesticide action levels for cannabis (set in OHA rule), producers may still be in violation of the Oregon Pesticide Control Act if any levels of illegal pesticides are detected.” This is crucial information for producers who might have phased out use of pesticides in the past or might have began operations in a facility where pesticides were used previously. A laboratory detecting even a trace amount in the parts-per-billion range of banned pesticides, like Myclobutanil, would mean the producer is in violation of the Pesticide Control Act and could face thousands of dollars in fines. The approved pesticides on the list are generally intended for food products, exempt from a tolerance and are considered low risk.
As regulators work to accredit more laboratories and flesh out issues with the industry, Oregon’s cannabis market enters a period of marked uncertainty.
When a cannabis sample is submitted to a lab for testing there is a four-step process that occurs before it is tested in the instrumentation on site:
It is ground at a low temperature into a fine powder;
A solution is added to the ground powder;
An extraction is repeated 6 times to ensure all cannabinoids are transferred into a common solution to be used in testing instrumentation.
Once the cannabinoid solution is extracted from the plant matter, it is analyzed using High Pressure Liquid Chromatograph (HPLC). HPLC is the key piece of instrumentation in cannabis potency testing procedures.
While there are many ways to test cannabis potency, HPLC is the most widely accepted and recognized testing instrumentation. Other instrument techniques include gas chromatography (GC) and thin layer chromatography (TLC). HPLC is preferred over GC because it does not apply heat in the testing process and cannabinoids can then be measured in their naturally occurring forms. Using a GC, heat is applied as part of the testing process and cannabinoids such as THCA or CBDA can change form, depending on the level of heat applied. CBDA and THCA have been observed to change form at as low as 40-50C. GC uses anywhere between 150-200C for its processes, and if using a GC, a change of compound form can occur. Using HPLC free of any high-heat environments, acidic (CBDA & THCA) and neutral cannabinoids (CBD, THC, CBG, CBN and others) can be differentiated in a sample for quantification purposes.
Near Infrared
Near infrared (NIR) has been used with cannabis for rapid identification of active pharmaceutical ingredients by measuring how much light different substances reflect. Cannabis is typically composed of 5-30% cannabinoids (mainly THC and CBD) and 5-15% water. Cannabinoid content can vary by over 5% (e.g. 13-18%) on a single plant, and even more if grown indoors. Multiple NIR measurements can be cost effective for R&D purposes. NIR does not use solvents and has a speed advantage of at least 50 times over traditional methods.
The main downfall of NIR techniques is that they are generally less accurate than HPLC or GC for potency analyses. NIR can be programmed to detect different compounds. To obtain accuracy in its detection methods, samples must be tested by HPLC on ongoing basis. 100 samples or more will provide enough information to improve an NIR software’s accuracy if it is programmed by the manufacturer or user using chemometrics. Chemometrics sorts through the often complex and broad overlapping NIR absorption.
Bands from the chemical, physical, and structural properties of all species present in a sample that influences the measured spectra. Any variation however of a strain tested or water quantity observed can affect the received results. Consistency is the key to obtaining precision with NIR equipment programming. The downfall of the NIR technique is that it must constantly be compared to HPLC data to ensure accuracy.
At Eurofins Experchem , our company works with bothHPLC and NIR equipment simultaneously for different cannabis testing purposes. Running both equipment simultaneously means we are able to continually monitor the accuracy of our NIR equipment as compared to our HPLC. If a company is using NIR alone however, it can be more difficult to maintain the equipment’s accuracy without on-going monitoring.
What about Terpenes?
Terpenes are the primary aromatic constituents of cannabis resin and essential oils. Terpene compounds vary in type and concentration among different genetic lineages of cannabis and have been shown to modulate and modify the therapeutic and psychoactive effects of cannabinoids. Terpenes can be analyzed using different methods including separation by GC or HPLC and identification by Mass Spectrometry. The high-heat environment for GC analysis can again cause problems in accuracy and interpretation of results for terpenes; high-heat environments can degrade terpenes and make them difficult to find in accurate form. We find HPLC is the best instrument to test for terpenes and can now test for six of the key terpene profiles including a-Pinene, Caryophyllene, Limonene, Myrcene, B-Pinene and Terpineol.
Quality Systems
Quality systems between different labs are never one and the same. Some labs are testing cannabis under good manufacturing practices (GMP), others follow ISO accreditation and some labs have no accreditation at all.
From a quality systems’ perspective some labs have zero or only one quality system employee(s). In a GMP lab, to meet the requirements of Health Canada and the FDA, our operations are staffed in a 1:4 quality assurance to analyst ratio. GMP labs have stringent quality standards that set them apart from other labs testing cannabis. Quality standards we work with include, but are not limited to: monthly internal blind audits, extensive GMP training, yearly exams and ongoing tests demonstrating competencies.
Maintaining and adhering to strict quality standards necessary for a Drug Establishment License for pharmaceutical testing ensures accuracy of results in cannabis testing otherwise difficult to find in the testing marketplace.
Important things to know about testing
HPLC is the most recommended instrument used for product release in a regulated environment.
NIR is the best instrument to use for monitoring growth and curing processes for R&D purposes, only if validated with an HPLC on an ongoing basis.
Quality Systems between labs are different. Regardless of instrumentation used, if quality systems are not in place and maintained, integrity of results may be compromised.
GMPs comprise 25% of our labour costs to our quality department. Quality systems necessary for a GMP environment include internal audits, out of specification investigations, qualification and maintenance of instruments, systems controls and stringent data integrity standards.
Legal marijuana sales are expected to hit $6.7 billion in 2016, with the market expected to climb to $21.8 billion in sales by 2020. As legal cannabis sales rise, cannabis labels are quickly becoming one of the fastest growing markets for label manufacturers.
An Industry Gaining Legitimacy
Since California first legalized medical cannabis in 1996, the cannabis industry has grown considerably. Voters in four states legalized recreational cannabis last week on Election Day, including California, which is currently the world’s 6th largest economy. Voters in another four states legalized medical cannabis as well, bringing the total to 28 states with some form of legalization measure.
What’s more, public support for full cannabis legalization is at an all-time high 61 percent, according to a recent survey from the AP-NORC Center for Public Affairs Research. The market is here to stay.
Cannabis flower labels
Legal cannabis has primarily consisted of dispensaries selling cannabis flower or leaves (ready-to-smoke marijuana) in pouches or childproof containers. Regulations have essentially required two cannabis labels for the pouches: a branded label on the front and a regulatory label on the back. Many dispensaries also use pre-printed pouches.
Similar to the way alcohol labels must contain information for alcohol content, the informational labels that sit on the backs of pouches are legally required to provide certain accurate information, including:
THC %
CBD %
Net weight in grams
Lab name and test number confirmation
Batch number
Date tested
Strain name
Warning Label
And cannabis flower labels are just the beginning. Many smoke-free product categories are emerging with similar labeling requirements. These often allow for increased branding opportunities that will afford better profit margins for label suppliers. Some of the many products in this young category include:
Edibles — such as dark chocolates, baked goods, snack crackers and teas infused with cannabis.
Topicals — such as pain-relieving lotions and creams.
Tinctures — cannabis-infused oils that are applied in drops to the tongue.
Bottom line: For label and packaging suppliers, cannabis represents one of the fastest growing market opportunities today and the opportunities extend way beyond labeling for the flower itself.
Managing Compliance
As more and more states move toward legalization and regulation, uneven laws in different states are increasingly governing the market. Businesses must respond to ever-changing requirements, including labeling standards. While many dispensaries have gotten away with minimalist labels, states are increasingly demanding dispensaries meet more stringent legal requirements. For example, Oregon passed new labeling requirements this year and products that failed to meet them by October 1, 2016 were not allowed on store shelves.
Label suppliers entering the market must keep abreast of the changing regulations and be able to help brands navigate them. They need to work to understand the intricacies of this new market, rather than simply looking to redirect the capabilities they already possess. See the original post here.
Dr. Zacariah Hildenbrand, chief scientific officer and partner at C4 Laboratories, is currently researching some of the lesser-known molecules in cannabis, and he’s on to something. His research focuses on discovering new molecules, determining their therapeutic effects and expanding our understanding of the constituents of cannabis.
Dr. Hildenbrand received his Ph.D. from the University of Texas at El Paso where he researched the molecular architecture involved in hormone-dependent cancers. At the University of Texas Southwestern Medical Center in Dallas, his post-doctoral research contributed to the development of a novel therapy for the treatment of chronic myeloid leukemia, a blood-borne cancer that afflicts small children. He has published over 25 peer-reviewed scientific journal articles and hopes to do the same with his research in cannabis.
After a career of scientific consulting, Dr. Hildenbrand met Ryan Treacy, founder and chief executive officer of C4 Laboratories, in 2015 when Treacy launched the company. In June of 2015, the laboratory began operations, providing Dr. Hildenbrand the opportunity to embark on a new and exciting field of research- cannabis.
They currently collaborate with Dr. Kevin Schug of the Shimadzu Center for Advanced Analytical Chemistry (SCAAC) at the University of Texas, Arlington and together Drs. Schug and Hildenbrand are pursuing a DEA license to expand their current cannabis research. The SCAAC is a $10.0+ million analytical laboratory with instrumentation that only a handful of people in the world has access to.
C4 Laboratories, based in Mesa, Arizona, currently offers a range of services for cannabis analysis including terpene and cannabinoid analytics, microbial, pesticide, fungicide and insecticide testing. In addition to the standard gamut of tests, they also specialize in cultivation analytics like mold and mildew culture testing, viral detection with sentinel plants and comprehensive analysis of environmental conditions.
What makes their company unique is their multidisciplinary effort to characterize the therapeutic compounds found in cannabis, the C4 Cannabinomics Collaborative. We sit down with Dr. Zac Hildenbrand to talk cannabis science, his research and what they hope to accomplish with the C4 Cannabinomics Collaborative.
CannabisIndustryJournal: What is the C4 Cannabinomics Collaborative?
Dr. Zacariah Hildenbrand: The C4 Cannabinomics Collaborative is an open collaboration between growers and scientists to discover new molecules in cannabis and to have a better characterization of individual cannabis strains based on the active constituents found in each sample. We are facilitating the collaboration of some of the world’s best cannabis growers with world-class scientists to find new information about the plant.
What we want to accomplish in this work is identifying novel molecules. Because of the [federal government’s] restrictions in researching cannabis, there is very little peer-reviewed literature on many of the compounds found in cannabis. We want to secondarily find out what those molecules do in the human body and thus make recommendations for strains targeting specific conditions.
We also want to understand the strains currently out there by determining the most established cannabinoids and terpenes via chemotyping. You hear a lot of people talking about the effects of an Indica or Sativa and making recommendations based on that. We want to find chemical signatures based on cannabinoids and terpenes and make recommendations based on that. There are a lot of problems at hand when discussing strain names scientifically. There are nomenclature issues- people calling the same strain different names, people giving multiple names to the same strain to make it appear that their strain portfolios are more diverse.
We can identify the chemical signatures in strains based on the major cannabinoids and terpenes. Based on the terpenes and chemical profile we can determine more accurate recommendations for patients as well as in recreational applications. All of this, again, discovering the new molecules, identifying the current strains, is so we can make more informed decisions regarding cannabis use. It is not a panacea but it is a very robust plant. There are a lot of terpenes with anti-inflammatory responses. Other molecules help with blood flow, sleep, regulating blood glucose, and we all know the cases of CBD helping children with convulsions and epilepsy. We want people to make sure they have the most up-to-date information.
CIJ: How is your collaboration with the SCAAC at UT Arlington contributing to this work?
Dr. Hildenbrand: One of the instruments we use there is a supercritical-fluid-extraction supercritical-fluid-chromatography mass-spectrometer (SFE-SFC-MS). With that instrument, we can do the extraction on the machine with an extreme level of sensitivity. It is ideal for drug discovery and identifying molecules in the parts-per-quadrillion range. This particular instrument allows us to detect molecules with an extreme level of sensitivity without volatizing them during the sample extraction process.
We want to acquire samples of unique cannabis from growers that will work with us to discover new cannabis constituents. We are in the process of getting a DEA license so that we can send products across state lines to the center at UT Arlington to perform the advanced characterization. They have instrumentation that only a handful of people in the world have access to, which gives us the best opportunity to explore the unknown. When we discover new molecules, find out what they do on the molecular level, we can then isolate these compounds and ultimately use this newfound knowledge for the development of effective nutraceuticals.
CIJ: What molecules are you researching right now?
Dr. Hildenbrand: Some of the low-hanging fruit in our research looks at identifying compounds similar to the better-studied compounds such as THC and CBD. THCV has a very similar structure to THC, but has a shorter acyl carbon chain (3 carbons vs. 5).
THCV doesn’t induce a psychoactive response (like THC), but it does improve fat utilization, so it has remarkable potential for medicine. We are looking at what conditions are required for it to occur naturally. Cannabis doesn’t produce THCV in a high amount. 0.7% by weight is the most we have seen in Arizona. In Oregon, where craft cannabis has been refined to a much higher degree, we have heard rumblings of some strains containing up to 3% THCV. We want to find out if this is a possible weight loss tool. Our research in CBDV is very much the same.
CBL is the breakdown product of CBC when it is treated with ultraviolet light. We know absolutely nothing about what CBL does. If we find a strain that produces high amounts of CBC, we can then treat it with UV light and force the conversion to CBL, and then ultimately determine what it does. This is a good example of low-hanging fruit and the versatility of cannabis. Based on the biogenesis of the cannabinoids, we can alter the profile of cannabis products using a series of biochemical reactions.
For example, we have been helping clients in Arizona look for a quality sleep aid in cannabis. Certainly, Indica strains will help, but the molecule CBN helps specifically with sleep abnormalities. As CBN is formed as a byproduct when CBD or THC are oxidized, we see some producers using liquid nitrogen to oxidize CBD, leading to higher CBN levels. I would like to think we are in the age of understanding CBD, THC and the major terpenes,but there are a whole milieu of compounds that require our attention and THCV, CBDV and CBL are just a few that we want to devote our efforts to right away.
CIJ: What are your plans in the immediate future?
Dr. Hildenbrand: We are in the process of finalizing the documents to bring a C4 laboratory into Oregon where we can do quite a bit of research and where we’ll have access to some very unique cannabis. We will offer full compliance testing per ORELAP and OLCC regulations, but we also want to acquire samples (free of charge) from growers that want to collaborate with us to discover new molecules. We’ve been lucky enough to start working with growers like Adam Jacques and Chris West in Eugene, but we also want to be available to other growers who want to contribute to this research.
CIJ: What are your long-term goals with this project?
Dr. Hildenbrand: At a basic level, we hope to expand the current understanding of the cannabis plant. There is a lot of “bro science” and anecdotal claims out there. There is so much that we don’t know about cannabis that we cannot simply rely on anecdotal claims for each strain. We want to bring cannabis into the same light as any pharmaceutical-grade or biomedical research.
We need to be characterizing this plant with the same level of detail as other pertinent molecular therapies. In doing so there are a lot of potential discoveries to be made and we might be able to unlock the future of medicine. A drug like Marinol, for example, has been met with mixed reviews because its only one dimensional. Furthermore, we find that the terpene molecules are tremendously beneficial and this interplay between cannabinoids and terpenes is something that we want to explore further. All and all we wish to further illustrate the therapeutic capacities of cannabis within the contexts of specific ailments and medical conditions, while discovering the medicine of the future.
Last week, Steep Hill Labs, Inc. announced plans to expand on the East Coast, including licensing for laboratories in Washington, D.C. and Pennsylvania. The cannabis testing company now is operating or developing in seven states, the District of Columbia along with an official arrangement with a research university in Jamaica, according to Cathie Bennett Warner, director of public relations at Steep Hill.
The same team of physicians that oversees the Steep Hill laboratory in Maryland will operate the Pennsylvania and D.C. labs. Heading that team is chief executive officer Dr. Andrew Rosenstein, chief of the division of Gastroenterology at University of Maryland Saint Joseph Medical Center and assistant clinical professor of Gastroenterology and Hepatology at the University of Maryland Medical Center. Dr. Rosenstein has been recognized by Baltimore Magazine as a top doctor in the Baltimore area, according to a press release.
According to Dr. Rosenstein, they want to provide accurate clinical results for trials with patients using cannabis. “All clinical trials will require a competent, credible and reliable lab partner and that is what we are bringing to the field- and that is why we are working with Steep Hill,” says Dr. Rosenstein. With team members having backgrounds in pathology, molecular diagnostics, clinical chemistry, microbiology and genetics, it should come as no surprise that they plan to participate in clinical research.
Dr. Rosenstein’s vested interest in cannabis safety stems from prior experience with his patients using cannabis. “Over the past five years, we have seen an increased number of patients using cannabis, particularly for managing the side effects of Crohn’s disease and cancer treatment,” says Dr. Rosenstein. “They would bring it up to us and at the time I didn’t know much about it, but anecdotally it’s really clear that a lot of patients have great responses to it.” Not knowing much about the preparation or safety of cannabis at the time led Dr. Rosenstein to advise patients to be very careful if they are immunocompromised.
“When a patient is immunocompromised, a bacterial or fungal infection can be lethal, so because we had patients using cannabis, we wanted to make sure it was safe,” says Dr. Rosenstein. So when Maryland legalized medical cannabis, Dr. Rosenstein and his team saw the need to protect patient safety and Steep Hill was a perfect fit. “We really didn’t want to reinvent the wheel so we looked for someone to partner with,” says Dr. Rosenstein. “Steep Hill has the best technology and the best credibility and we didn’t want to compromise on quality and safety issues. They felt the same way so we partnered with them and culturally it has been a great fit.”
The new laboratories plan to offer a similar range of services that are offered at other Steep Hill labs, such as rapid potency testing for THC-A, ∆-9-THC, CBD, CBD-A and moisture. But Dr. Rosenstein sees clinical opportunities in the East Coast medical hubs. “We want to provide the testing component for studies, providing clinical reproducibility and consistency, and those are the things as a top-notch lab that we are interested in doing.”
With a physician-led group that has experience in molecular diagnostics, partnering with Steep Hill is about being medically focused, according to Dr. Rosenstein. “First and foremost, this is about patient safety.” Because of that, he emphasizes the need for required microbiological contaminant testing, particularly because of his experience with patients. “If you’re a cancer patient and you get a toxic dose of salmonella or E. coli, that can kill you, so testing for microbiologic contamination is of the highest priority.”
According to Warner, bridging the medical cannabis science gap with Steep Hill’s professionalism and experienced doctors practicing medicine is a big deal. “We are working very closely with their medical team to make sure these standards are medically superior,” says Warner. “To have these doctors with such a high level of knowledge in medicine working with us in cannabis analytics is a breakthrough.”
Oregon cannabis regulators began enforcing new rules over the weekend when the October 1st compliance deadline passed. Compared to the relatively cut-and-dried new Colorado regulations, the Oregon cannabis market faces more complex and changing regulatory compliance issues.
The new rules in Oregon address changes to testing, packaging and labeling regulations along with concentration and serving size limits, according to a bulletin published by the Oregon Health Authority (OHA) and the Oregon Medical Marijuana Program (OMMP) earlier this week. Most of the new rules are meant to add safeguards for public health and consumer safety, while putting an emphasis on keeping cannabis away from children.
Around the same time, the Oregon Liquor Control Commission (OLCC) published a bulletin with a new temporary rule that is meant to prevent marketing to children. The OLCC’s temporary rule clarifies “restrictions on product wording commonly associated with products marketed by or to children.” The OLCC reviewed around 500 strain names and found roughly 20 of them that could appeal to children. The OLCC will not approve labels that include strain names like Girl Scout Cookies, Candyland and Charlotte’s Web, among others. This means that breeders and growers have to change strain names on labels like Death Star, Skywalker and Jedi Kush because they contain a reference to the Star Wars franchise, which is marketed to children.
The new testing regulations establish requirements for testing cannabis products for THC and CBD concentrations, water activity, moisture content, pesticides and solvents in concentrates. They also stipulate that ORELAP-accredited laboratories must perform the testing. In the time leading up to the compliance deadline, many lacked confidence that ORELAP would accredit enough laboratories to meet the demand for testing. “We have heard from existing accredited labs that they can meet demand for cannabis product testing,” says Jonathan Modie, spokesman for the OHA. “We don’t yet know how much product requires testing, so we can’t speculate on whether labs will indeed be able to meet demand.” It is still unclear at this time if there are enough laboratories to perform all of the testing for cannabis products in the state.
At this time, 16 laboratories have been accredited for some form of testing, but only four labs have been accredited for pesticide testing. A list of the labs that ORELAP has accredited can be found here. Notably, only one lab is accredited for testing microbiological contaminants, such as E. coli. Testing for microbiological contaminants is not required for all cannabis products sold, rather it is only required upon written request by the OHA or OLCC.
The new labeling and packaging requirements concern testing, consumer education, childproofing and preventing marketing to minors. All cannabis products must contain a label that has been pre-approved by the OLCC. “Cannabis products have to be clearly labeled, showing that is has been tested, or if it has not been tested then it must display ‘does not meet new testing requirements’,” says Modie. “It [the label] must be clear, legible and readable, so they [the consumer] know exactly what it contains, including what cannabis product is inside the package, how much of it, how much THC, and where the product came from.”
According to Modie, it is particularly important that the packaging is not attractive to minors. Cartoons, designs and names that resemble non-cannabis products intended for, or marketed to children, should not be on the packaging or label. “Part of our education to the public and recreational cannabis users focuses on keeping these products out of reach of children in the first place, like storing cannabis in a locked area or an area where a child cannot reach or see,” says Modie. “Our goal is always to protect public health.”
Adam Jacques and his team officially launched the newest arm of their business last week, Sproutly, a dispensary located in Eugene, Oregon. “This is an extension of what the Grower’s Guild Gardens does and what the Microgrower’s Guild was,” says Jacques. The Grower’s Guild Gardens, Jacques’ award-winning cultivation business, is known for their high-CBD genetics and patient-focused work, most notably with Leni Young, which helped lead to the passing of legislation in Alabama called Leni’s Law, decriminalizing the possession of cannabis oil for patients in the state.
Sproutly is a medical and recreational dispensary that boasts a wide variety of high-CBD strains, a reflection of the team’s focus in the past. “We are extremely medically focused with a variety of unique CBD strains in stock,” says Jacques. “First and foremost are the patients, but entering the recreational market means we will be carrying a wider variety.” The opening of the dispensary is well timed as the team received their Tier II cultivation license, allowing them to grow cannabis up to 20,000 square feet in an outdoor space and 5,000 square feet indoor. So in addition to the handful of brands they carry, including Lunchbox Alchemy edibles, Northwest Kind and Marley Naturals, they also carry over 75 strains from their own Grower’s Guild Gardens.
Adam and Debra Jacques pride themselves in rigid standards for quality in sourcing, so it should be no surprise that they plan on supplying their dispensary with over 150 strains coming from more than 1,200 plants on their farm. “We really only take products from people we know and trust,” says Jacques. “That is why most of the flower in the dispensary is coming from our farm, so we know exactly what is going into it.” Jacques points to third-party certifications such as Clean Green, for other vendors to find reputable growers. “I need to know where it is coming from and that requires a personal relationship to trust the quality of their products.” The value of trust and personal relationships is also why they go through extensive training of their staff, using their own expertise for in-house training.
The team includes Chris West, Elton Prince and John De Kluyver, all of whom have a decade or more of experience cultivating cannabis and working with patients. “We take our bud tenders through training classes, they get tested on their knowledge of products and the science of cannabinoids and terpenes and how the combinations affect people differently,” says Jacques. By leveraging that high level of in-house expertise, the team prides themselves on customer service, helping patients and customers find the right strain or product that suits them best.
In the front of the dispensary, a receptionist greets patients or customers, checking identification and showing you to a bud tender. As you walk into the retail space, you immediately notice the professionalism of the staff, taking time to personalize each customer’s experience without making him or her feel rushed. The clean aesthetics, product selection and knowledgeable staff provide for a friendly retail culture without the common ‘stoner culture’ that usually follows.
Jacques and his team will not be trading in their overalls and work boots just yet as they are inching toward harvesting their 1,200 outdoor cannabis plants soon. Grinning ear-to-ear, Jacques showed off his Tier II cultivation license on the farm, and with it came a glimpse into their exciting growth.
Canada’s new ACMPR was launched late last month on August 24th. The key change that most notice is that Canadians may now again grow their own cannabis at home for medical purposes. In addition, more strict guidelines for product testing and labeling requirements for Licensed Producers (LPs) were released.
Short term pain for long term gain. While the combination of allowing patients to grow at home and more strict regulations for LPs may at first seem like a business disadvantage; overtime LPs will be thankful for the combination switch. Health Canada’s new requirements encourage a leveling of the playing field globally between LPs and large scale product manufacturers of pharmaceuticals, therapeutics and natural health products. The steps Health Canada is taking to regulate our producers, is exactly what they need to get ready for mass production that will be necessary for recreational markets, scheduled for release in Spring 2017.
Picture rows of Tylenol bottles on the shelf at your favorite pharmacy. Now picture rows of cannabis bottles on the shelf beside them. This is what medical cannabis will look like in Canada perhaps as early as 2018, if not sooner. With just under forty LPs on the map and a projected sales volume of modest billions, Canada’s LPs’ eyes are widening with dollar signs as they lube up their oil production and more to see what shelves in Canada will hold.
Curious to know more? Our regulatory department manager Elfi Daniel-Ivad is an expert in regulatory change. She has worked on close to 150 submissions for cannabis licensees in Canada and beyond. Here are a few key changes from her department’s overview to better understand.
No personal production or designated production available to patients (aside from that grandfathered in by MMAR).
Personal production and designated production available. Patients may grow 5 indoor plants OR 2 outdoor plants at any given time per gram prescribed to them.
Licensed Producers were not required to label THC or CBD amounts in dried cannabis, though most producers did for sales and educational purposes. Oils had to be labeled with THC and CBD amounts.
Licensed Producers must label their percent THC and CBD for dried and fresh cannabis products.
For the labelling of oils, the total quantity of THC, CBD and oil in a container had to be shown. Restrictions on THC allowed no more than 10mg/mL THC per capsule and no more than 30mg/mL THC per mL oil to be distributed.
In addition, oil labels must now include information on “carrier” oil and allergen information. Containers must be labelled with number of capsules, the net weight and volume of each capsule. .
No reference to validation of analytical testing methods.
Analytical testing must be completed using validated testing methods; confirming reliability and consistency in results for contaminants, disintegration, residues and THC, THC-A, CBD and CBD-A
Accredited labs can only test products as received from Licensed Producers.
In addition to Licensed Producers, patients growing their own or having a designated grower growing for them may also test their products at an accredited lab.
In addition to these changes, it is important to note that if an individual or company has an MMPR proposal already submitted they can now revise it to include oil production (previously, it was first dried bud only). If a company submits a new ACMPR proposal, they can include oil production on their application right away. Interested in submitting your own application? Or need help with one in the USA? Our regulatory department would be happy to answer any questions you might have about the process.
Hemp-derived cannabidiol (CBD) products are quickly becoming a burgeoning industry. Consumers can purchase the products in all fifty states and can receive the therapeutic effects of certain cannabinoids without any psychoactivity. Commonly used to help treat inflammation, pain, seizures and anxiety, CBD comprises a sizable portion of the cannabis market that patients and consumers are flocking to.
Founded by Paul Benhaim in 2013, Colorado-based Elixinol is reaching this market with a line of hemp-derived CBD oils and capsules. The company has grown rapidly and now has agreements with exclusive distributors in Japan, Puerto Rico, The United Kingdom and South Africa.
According to Chris Husong, sales and marketing director at Elixinol, achieving superior quality is central to the company’s growth strategy. “We are thinking about the long-term play here,” says Husong. Achieving the highest quality possible starts with sourcing from industrial hemp farms in Northern Europe, according to Husong. Through good manufacturing practices (GMPs), the company pays close attention to every detail involved in producing the hemp-derived CBD oil.
Safety and transparency are two core tenants in the company’s goal to strive for quality products. “We use third-party independent labs for our testing including one in Northern Europe where we source from in addition to Proverde Labs when it reaches us in Colorado,” says Husong. They test their products for over 300 chemicals (including pesticides, residual solvents and heavy metals) as well as for microbiological contamination and a unique terpene profile using GC-MS/GC-FID.
In addition to stringent manufacturing safety procedures and testing, tracking is a huge part of meeting quality standards. Each product batch also has a lot number. While batch numbers are a requirement in GMPs, lot numbers mean that they are well equipped in the event of a product recall. After the product is packaged, they perform additional spot-checks periodically.
Contract manufacturing and white-labeling products is a large part of their business, so the company needs to meet rigorous quality standards for their partners as well. “We provide our oil to a variety of associates, but we are always looking for new partners on the cutting edge, innovating with new products that we can help with,” says Husong. Very often, this means doing a full plant extraction for different uses. Utilizing a full-spectrum plant extraction helps maintain a well-balanced cannabinoid profile with many of the original terpenes found in the plant.
What makes their product so appealing to consumers is not just the quality, but also the method of delivery into the bloodstream and very precise dosing. “Our liposome products have a relatively new technology that allows the oil to be absorbed into your system via fatty acids, which lets you absorb the compounds much faster, requiring less of it and more consistency,” adds Husong. In addition to their fast-acting delivery mechanism, they produce capsules dosed to precisely fifteen milligrams and a delivery system they call ‘Xpen,’ which draws the oil in an oral applicator to a precise dose of fifteen milligrams every time.
After the manufacturing process, the company pays close attention to detail in their packaging and distribution. “The packaging is built to maintain that quality in the manufacturing process and to extend the shelf life of our products,” says Husong. The technology that goes into their packaging involves using Miron Violet glass, which is anti-fungal and prevents external light from deteriorating the oil inside.
This growing sector in the cannabis market is representative of a greater trend: the commodification of hemp and cannabis. When businesses like Elixinol scale up production of goods such as CBD oil, a lens focused on consistency and quality can not only improve business operations but also raise the standard across the entire industry.
Based in Santa Monica, California, Sagely Naturals was founded in the summer of 2015, with the goal to produce a sustainably sourced, topical CBD cream with no psychoactive effects to treat daily aches and pains. The co-founders, Kerrigan Hanna and Kaley Nichol, have extensive backgrounds in the food service industry, and as a result they pride themselves in quality controls and proper safety procedures. Since the launch of Sagely Naturals, they have been selling their Relief & Recovery Cream online and in a wide variety of retail outlets beyond just cannabis dispensaries. Their ability to distribute outside of dispensaries is due to the fact that the product’s active ingredient, Cannabidiol (CBD), is derived from hemp, instead of cannabis with higher levels of Tetrahydrocannabinol (THC).
Their attention to detail in consistency and quality makes them stand out as cannabis processors, using a contract manufacturer with good manufacturing practices (GMPs) along with the proper standard operating procedures (SOPs) in place. “All of our contract manufacturer’s corrective and preventative actions (CAPAs) are outlined in the company’s SOPs, which are in place for everything including specific manufacturing processes, receiving and shipping materials and testing batches,” says Hanna. “The contract manufacturer also provides certificates of analysis (COAs) for every product they make.” According to Hanna, they exclusively use current GMP-certified facilities. One such SOP lays out the responsibilities for the quality control department in order to release and approve ingredients of their products.
There are some SOPs that could pertain specifically to the processing of hemp or cannabis products, according to Hanna. “Receiving and handling raw materials like hemp, batch coding, the actual formulation and manufacturing process, quality controls and cleaning and sanitation [could be tailored to pertain to cannabis],” says Hanna. Proper SOPs laid out in the manufacturing process include the cleaning and sanitation of machines, as well as adjusting settings, formula ratios and initialing and dating product labels on every batch, among more specific operating procedures.
According to the co-founders, they spent a large amount of time vetting their hemp supplier, making sure they are using cutting-edge technology, growing it sustainably, and adhering to strict SOPs. “The team includes a Ph.D. chemist, who also is a founding member of our supplier and extractor,” says Hanna. “We work with CO2 extraction because we wanted the most control over the compounds that end up in our product. We are able to purposefully choose which cannabinoids end up in our product.” Through supercritical carbon dioxide extraction and post-extraction processing, the team is able to eliminate any trace of THC, guaranteeing the consumers will receive no psychoactive effects.
In looking toward long-term growth, the co-founders emphasize the importance of environmental sustainability. “Having honest ingredients is one of our company missions along with having honest practices,” says Hanna. “None of our ingredients are tested on animals so we are an animal cruelty-free organization.” Their hemp is grown using organic and environmentally friendly practices. “We prioritize using plant-based ingredients, so the formulation of our Relief & Recovery Cream relies on using organic and raw materials—such as essential peppermint and safflower oil.” Companies like Sagely Naturals using contract manufacturers to process hemp could represent the future of the cannabis industry. When safety, sustainability and quality issues come into the spotlight more, so will the need for outlined SOPs, proper documentation and extensive lab testing.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.