Tag Archives: CEA

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 3

By Phil Gibson
No Comments

This is Part 3 in The 3-Legged Stool of Successful Grow Operations series. Click here to see Part 1 and here to see Part 2. Stay tuned for Part 4, coming next week.

The Right Build Out

Aeroponic & hydroponic systems grow plants at a highly accelerated rate. A “clean room” type of construction approach is the best way to manage this type of grow operation. Starting with a facility that is completely void of any kind of wood or materials that are porous is a good start. Cellulose materials collect moisture and encourage mold and mildew formation no matter how good the sealant.

We have seen cultivation spaces built out of dry wall over wooden post construction and studs that look sealed and solid on the outside of walls but when repaired for plumbing or other expansion work, they are black inside and covered with nasty mold that no one wants near their grow space.

Panel construction over steel frames or steel studs with skins is a safer, more sterile approach than retrofitting a wooden structure. Panel construction offers the added benefit of rapid assembly and minimal labor costs. We have seen 300 light rooms assembled in a few days so it is both very cost effective and safely sealed for protected growth.

Room Sizes & Count

How do you best fill this space if you have a clean slate?

If you have unlimited space, temperature and humidity management should determine the room sizes in your facility. Room sizes that are square in dimensions tend to be easier to maintain from an environmental standpoint. Long narrow rooms are good for fan airflow but tend to be more expensive from a cooling and dehumidification point of view. The larger the room, the more likely that you will get “microclimates” within the room which can challenge yield optimization.

Now, of course, many grows are retrofits of existing structures so compromises can be necessary. We have found that cultivators that have both very large and mid-size rooms in the same facility (200 lights versus 70 lights) are consistently more successful in the 70 light rooms. These “smaller rooms (~1,500 ft2) out-yielded and out-performed the larger rooms using the same genetics and grow plans. Compartmentalization also minimizes the risk in the case that a calamity (i.e. pest infestation) strikes the room. In a large room scenario, the losses can damage your operation. For this reason, we recommend 70-100 light/tub rooms as a standard.

Rooms should also follow your nursery economics. Structuring your nursery to produce just enough clones/veg plants for your next flower room avoids wasted plant material and resources. Breaking a larger space down into individual rooms means that you need fewer veg plants to fill your flower room that week. The best way to optimize this is to have a number of rooms that are symmetrical with the number 8 (typical 8-week cycle genetics).

With 8 rooms running flower, you are able to plant one room per week for 8 weeks. In the 9th week, you start over on room 1. This continuous harvest process is highly efficient from a labor standpoint and it minimizes the size of your mothers room (cost center). Additional space can be applied to your flower rooms. If you do not have infinite space, even divisors work just as well; 2 or 4 rooms can be planted in sequence for the same optimization (for 2-room structures, harvest and replant 1 room every 4 weeks for example). The optimal structure (8, 16, 24, or more rooms) enables you to optimize your profitability. If any of this needs further explanation, please just ask.

Not photoshopped: An “ideal” 70-tub flower room in a CEA greenhouse (courtesy of FarmaGrowers, South Africa)

Within your room choice, movable rows or columns of tubs/lights also provides optimal yields.  Tubs/plants can be moved together for light usage efficiency and one 3-foot aisle can be opened for plant maintenance. Racking systems or movable trays/tubs make this convenient nowadays.

Floors

Concrete floors offer pockets for bacteria to collect and smolder.  As such, they have to be sealed.  Proper application of your sealant choice is required so that it does not peal up or crack after sealing. There are many benefits to sealed floors that is discussed in the white paper. Floor drains are the equivalent of a portal to Hell for a sterile grow operation. Avoid them at all costs.

Phased Construction

Tuning or optimizing you grow rooms for ideal flowering operation depends on your location. Our advice is that you build and optimize your facility in phases with the expectation that nothing is perfect and you will learn improvements in every phase of expansion. The immediate benefit is production that you can promote to your sales channels and revenue that starts as soon as possible to improve your profitability. This is also an excellent learning curve to apply to subsequent rooms. Our happiest customers are those that learned construction improvements in early rooms that were able to be applied to following rooms without headache. The ability to focus on one or two rooms also allows you to get the recipe correct rather than just relying on “winging it”.

Don’t Be In A Rush To Go Green

A 70-tub flower room (courtesy of FarmaGrowers, South Africa)

Validate your water supplies and their stability. Verify that the water in your aeroponic or hydroponic feeds that get to your plants are clean and sterile. This is much easier in a step-by-step fashion than in a crisis debug mode once production is in progress. Be very cautious about incoming clone supplies. We will talk about this more in the next chapter on Integrated Pest Management but incoming clones are a top pest vector that can contaminate your entire facility.

Warehouse Versus Greenhouse Cultivation Spaces

As we started out, controlling your environment is your most important concern. We have seen success in both indoor rooms and greenhouses. The defining success factor is controlling humidity and temperature. Modern sealed controlled environment (CEA) greenhouses do this well and CEA is somewhat of a given for indoor grows. More details on this in the white paper.

Packaging these recommendations gets you to the perfect body for your Formula 1 race car. Now, you are ready to look at some of the mechanics of protecting your operation from pesky little critters and biologicals that can derail your operation and weaken your engine.

Before we sign off this week, I wanted to highlight the ultimate build-out that we have seen so far.  Of course, there are many challengers that have done this well but at this point, FarmaGrowers in South Africa has the best thought out facility we have seen. They acquired Good Manufacturing Practice (GMP) & Good Agricultural & Collection Practice (GACP) certification early in their operations due to very well-thought-out designs. They are exporting to global markets without irradiation today. Certainly, many successful customers have beautifully thought-out operations and there are several upcoming facilities that offer amazing planning that will challenge for this crown, but for now. FarmaGrowers leads the pack in this aspect. See here for a walkthrough.

To download the complete guide and get to the beef quickly, please request the complete white paper Top Quality Cultivation Facilities here.

Stay tuned for Part 4 coming next week where we’ll discuss Integrated Pest Management.

The USDA & Controlled Environment Agriculture: A Q&A with Derek Smith, Executive Director of the RII

By Aaron Green
No Comments

Controlled environment agriculture (CEA) is a hot area of investment right now for the USDA, holding the promise of improved efficiencies and productivity for indoor growing operations. The cannabis industry, long accustomed to indoor growing has emerged as a spearhead in CEA innovation.

The Resource Innovation Institute has been supporting cannabis enterprises as a non-profit entity since 2016, providing a benchmarking platform called Power Score to help cannabis cultivators be more efficient with resources in their growing practices. Recently, RII submitted a proposal to the USDA to bring best practices from the cannabis industry to other CEA crop producers. They have also recently been responding to the Cannabis Administration and Opportunity Act, providing comments to frame an energy and environmental policy framework for future federal regulation.

We interviewed Derek Smith, executive director of Resource Innovation Institute (RII).  Derek engages RII’s advisory bodies, including the Strategic Advisory Council and Technical Advisory Council Leadership Committees and develops global partnerships and oversees the organization’s policy work. Prior to RII, Derek was CEO of Clean Energy Works and policy advisor to the City of Portland Bureau of Planning and Sustainability.

Aaron Green: What are RII’s plans for the USDA? I understand you’ve also been working on the CAOA recently?

Derek Smith: We’ve been working in cannabis for five years, publishing best practices and capturing data to inform governments and utilities on how much energy is being used. Our mission is to help producers become more efficient in their use of resources. In addition to informing policies that support producers, we also engage utilities to help them evaluate efficient technologies, so they can put incentives on them and so they can help buy down the cost for cannabis producers to install more efficient technologies.

We submitted a proposal to the USDA, saying we’ve been doing all that in cannabis. This was under the banner of a Conservation Innovation Grant, which is an innovation funding mechanism from the USDA. They specifically wanted something related to indoor agriculture and energy and water efficiency. So, we essentially said, we’ll give you a three-year project that will basically be the blueprint for the controlled environment agriculture (CEA) industry to transform itself toward a more sustainable production path. This applies to both the urban vertical farms growing leafy greens, as well as the growing greenhouse sector that is producing a range of crops, from tomatoes, to berries, to leafy greens to mushrooms, hemp, etc.

We’re essentially taking the Power Score benchmarking platform that we’ve been serving cannabis producers with to help them understand how competitive they are relative to the rest of the data set that we have on energy use and on water use and opening that platform so that more producers of other types of crops can use it. It also feeds into their Environment, Social & Governance (ESG) reporting needs.

We’re going to write a series of best practices guidance for CEA producers, covering a number of topics: facility design and construction, lighting, HVAC, irrigation and water reuse, controls and automation. This will all be very similar to what we’ve done in cannabis. These best practices guides are peer reviewed by subject matter experts throughout the supply chain. A lot of the supply chain in cannabis is the same in CEA. So, we’re bringing them all together to give this kind of good guidance to the producer community.

Green: You started with cannabis and created these white papers. Now you’re branching out into the larger CEA space?

Smith: Exactly. The federal government is literally funding us to develop a green building rating system like LEED, or like the Living Building Challenge, but for the CEA industry for indoor agriculture. The cannabis industry can leverage this federal investment and basically ride right alongside of it so that we can create a “LEED for weed” type of certification system.

Derek Smith, Executive Director of Resource Innovation Institute

That’s one of the main features in our comments to the CAOA when they asked, “what else should we be thinking about on any number of topics as it relates to federal cannabis regulations?” We proposed an energy and environment policy framework for federal cannabis regulation. We did that in partnership with a group called the Coalition for Cannabis Policy Education and Regulation (CPEAR). We just held a webinar two weeks ago. Hawthorne Gardening Company was featured on there as well. They’re very supportive of the federal government playing a “carrots rather than sticks” role as it relates to cannabis energy and environmental policy issues.

That’s essentially our platform at the federal level. The stuff that the USDA is funding us to do will come back and benefit the cannabis industry, because we’ll have this broader set of best practices guidance, data, etc. And then we’ll be able to leverage the federal investment into a certification system for the cannabis industry.

Green: The specific comments you made to the CAOA were primarily related to this energy efficiency certification system work you’ve been doing?

Smith: Yes. It’s more resource efficiency – it’s broader than just energy efficiency. Well, it was three things. So, I’ll just unpack this quickly. One, is learn from the states that have already initiated some form of regulation or support on helping producers be more efficient. Massachusetts is one example. They put lighting requirements on the industry that don’t explicitly mandate LEDs, but it comes close to that. California passed an energy code that will take effect on January 1 of 2023, that also has lighting requirements.

Green: Is this applied to all greenhouse growers?

Smith: Yes, at a certain size and level of energy usage. In California, it’s the first market where their Title 24 regulations apply not just to cannabis, but to all horticultural operations. Yes. So that’s what we’re seeing is that cannabis is sort of the tip of the spear for the way governments are thinking about policy for indoor agriculture more broadly. We’re trying to get them to focus more on having the federal government play a supportive role. The states are doing the regulation, the federal government can be more focused on carrots, not sticks, right?

So, back to the list of three things. Number one is learn from the states. Don’t add regulatory stuff, just learn what’s going on, and then decide about how to act. Number two is recognizing the need for data. So, supporting state requirements on energy and water reporting like Massachusetts, Illinois, California – a lot of states have either enacted reporting requirements, so the producers must tell the state how much energy and water they’re using and they’re using the Power Score benchmarking platform, which has a compliance function for free to do that reporting. Then what we’re doing is helping everybody understand what the aggregate data is telling us. We protect the producer’s confidentiality, and we’re building this valuable data set that’ll inform the market about what is the most efficient path going forward.

Then the third thing is focused on carrots, not sticks. For example, support the development of a certification system that recognizes leadership, that’s based on a market driven voluntary action by a producer where they say, “I’ll be transparent with my data, because I’d like to be showcased as a leader and get recognition for the good work I’ve done to create an efficient operation.” Then there’s valuation through the real estate transaction as well because you even have a plaque on your building that says this is certified to this agricultural standard.

That’s all the vision that we’re laying out, and we’re looking for partnerships at the MSO level to join in and be recognized and get in the queue as leaders for the investments they’ve made in efficiency.

Green: Great, thank you Derek. That concludes the interview.

Smith: Thanks, Aaron.