Tag Archives: concrete

european union states

Why Europe May Serve as an Important Bellwether for Hempcrete Use in the United States

By Stephanie McGraw
No Comments
european union states

Hemp-based construction materials are an attractive option for achieving environmentally friendly goals in construction, including reduced emissions and conservation of natural resources. Hemp construction materials dating back to the 6th Century have been discovered in France and it has long been eyed with interest by hemp growers and manufacturers, as well as environmentalists in the United States and abroad. As the European Union moves forward with its 2019 European Green Deal, United States hemp, construction and limestone industries, as well as regulatory agencies, will be provided with an important preview of the benefits, risks and issues arising out of the use of hemp in construction.

The European Green Deal and Circular Economy Action Plan

Hemp applications in construction are gaining increased interest as the EU seeks to neutralize its greenhouse gas emissions by 2050. Much of the specifics for this transition to zero emissions are outlined in the EU’s “A New Circular Economy Action Plan,” announced on March 11, 2020. According to the EU, “This Circular Economy Action Plan provides a future-oriented agenda for achieving a cleaner and more competitive Europe in co-creation with economic actors, consumers, citizens and civil society organisations.” The plan aims at accelerating the transformational change required by the European Green Deal and tackles emissions and sustainability issues across a number of industries and products, including construction.

Construction in the EU accounts for approximately 50% of all extracted natural resources and more than 35% of the EU’s total waste generation. According to the plan, greenhouse gas emissions from material extraction, manufacturing of construction products and construction and renovation of buildings are estimated at 5-12% of total national greenhouse gas emissions. It is estimated that greater material efficiency could save 80% of those emissions. To achieve those savings, the plan announces various efforts to address sustainability, improve durability and increase energy efficiency of construction materials.

How Hemp Could Help Europe Achieve Neutral Emissions

Hemp, and specifically hempcrete, is being eyed with heightened interest as the EU enacts its plan. Indeed, recent mergers and acquisitions in the European hemp industry signal just how attractive this hemp-based product may be as international, national and local green initiatives gain momentum. But how would hemp be utilized in construction and what types of legal issues will this industry face as it expands?

Image: National Hemp Association

The primary hemp-based construction material is “hempcrete.” Hempcrete is typically composed of hemp hurds (the center of the hemp plant’s stalk), water and lime (powdered limestone). These materials are mixed into a slurry. The slurry petrifies the hemp and the mixture turns into stone once it cures. Some applications mix other, traditional construction materials with the hempcrete. The material can be applied like stucco or turned into bricks. According to the National Hemp Association, hempcrete is non-toxic, does not release gaseous materials into the atmosphere, is mold-resistant, is fire– and pest-resistant, is energy-efficient and sustainable. To that last point, hemp, which is ready for harvest after approximately four months, provides clear advantages over modern construction materials, which are either mined or harvested from old forests. Furthermore, the use of lime instead of cement reduces the CO2 emissions of construction by about 80%.

Watching Europe with an Eye on Regulation and Liability Risks

Hempcrete indeed sounds like a wünder-product for the construction industry (and the hemp industry). Unfortunately, while it may alleviate some of the negative environmental impacts of the construction sector, it will not alleviate the threat of litigation in this industry, particularly in the litigious United States. The European Union’s experience with it will provide important insights for U.S. industries.

Hempcrete blocks being used in construction

Because hemp was only recently legalized in the United States with the passage of the 2018 Farm Bill, it is not included in mainstream building codes in the United States, the International Residential Code, nor the International Building Code. Fortunately, there are pathways for the consideration and use of non-traditional materials, like hempcrete, in building codes. However, construction applications of any form of hemp, including hempcrete, at this point would likely require extensive discussions with local building authorities and an application showing that the performance criteria for the building are satisfied by the material. Such criteria would include standards and testing relating to structural performance, thermal performance, and fire resistance. Importantly, the ASTM does have a subcommittee working on various performance standards for hemp in construction applications. European progress on this front would pave an important regulatory pathway for the United States, as well as provide base-line standards for evaluating hempcrete materials.

Insights into regulation and performance standards are not the only reason to watch the EU construction industry in the coming decades. Introduction of hempcrete and hemp-based building materials in the United States will likely stoke litigation surrounding these materials. Although there is no novel way to avoid the most common causes of construction litigation, including breach of contract, quality of construction, delays, non-payment and personal injury, the lessons learned in Europe could provide risk management and best-practice guidance for the U.S. industry. Of particular concern for the hemp industry should be the potential for product liability, warranty, and consumer protection litigation in the United States. The European experience with hempcrete’s structural performance, energy efficiency, mold-, pest- and fire-resistant properties will be informative, not just for the industry, but also for plaintiff attorneys. Ensuring that hempcrete has been tested appropriately and meets industry gold-standards will be paramount for the defense of such litigation and EU practices will be instructive.

The United States construction industry, and particularly hempcrete product manufacturers, should pay close attention as the EU expands green construction practices, including the use of hempcrete. The trials and errors of European industry counterparts will inform U.S. regulations, litigation and risk management best practices.

 

Risks of Bare Concrete Flooring in Cannabis Grow Rooms & Greenhouses

By Kendall Youngworth
3 Comments

With legalization rapidly increasing across states, the cannabis market is exploding. And with estimates of sales in the billions, it’s no surprise that greenhouses and grow rooms are emerging everywhere. As growers and extracting facilities continue to expand one important consideration that most tend to underestimate, is how flooring can impact both their production and product. Bare concrete is often a popular choice in cannabis facilities, as there are typically very minimal costs−if any at all−associated with preparing it for use. However, concrete floors can pose unique challenges when left untreated, which could inadvertently create unforeseen problems and unexpected costs.

Understanding the Risks of Bare Concrete Flooring

Whether a facility is growing or extracting, the proper flooring can play a critical role in helping maintain optimal safety and sanitation standards, while simultaneously contributing to production. That’s why its important for growers and extractors to know and understand the potential risks associated with bare concrete.

Concrete is porous: While concrete is a solid material, people may forget that it is porous. Unfortunately, these pores can absorb liquids and harbor small particles that spill on the floor. They create perfect hiding places for bacteria and other pathogens to proliferate. Pathogens can then contaminate product within the facility, causing a halt on production, and/or a potential product recall. This can incur unexpected costs associated with shutdown time and loss of product.

Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Concrete can be damp: When in a facility with an untreated concrete floor, at times the slab can feel slightly wet or damp to touch. This is due to moisture within the concrete that can eventually work its way up to the surface of the slab. When this happens, items that are placed on top of the floor can be damaged by trapped moisture above the slab and below the object. When this happens, if a product is not protected properly, it can be damaged.

Concrete is dark and unreflective: An untreated concrete slab can often make a room feel dark and it does not reflect lighting within the room. This can result in the need for extra lights and electricity to properly grow cannabis.

Concrete lacks texture: When working in areas where water and other liquids can fall to the ground and accumulate, flooring with traction can play a key role in helping aid against slip and fall incidents. Untreated concrete typically does not provide sufficient texture and can become very slippery when wet.

The Benefits of Bare Concrete Flooring

While the previously mentioned risks can be associated with bare concrete flooring, there is an upside to the situation! Concrete is the perfect substrate for adding a coating that is built to withstand the industry’s demands.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

With the application of a fluid-applied or resinous floor coating, the risks of bare concrete flooring can be mitigated. There are a variety of resin and fluid-based coating systems that can be applied, such as:

  • Epoxy and Urethane Systems
  • Urethane Mortar Systems
  • Decorative Quartz Systems
  • Decorative Flake Systems

These durable coatings have numerous benefits and can offer:

  • Protection against the proliferation bacteria and other pathogens: Unlike porous concrete, a smooth and virtually seamless floor coating eliminates the little crevices where pathogens can grow. This in turn helps aid against the growth of bacteria, keeping hygiene standards at the forefront and grow rooms in full operations.
  • Protection against moisture damage: As moisture within the concrete can move upward to the surface of the slab, there are moisture mitigation coating systems, that keep it trapped below the surface, thus helping toprotect items placed on the floor.
  • Brighter spaces and light reflection: Installing a floor coating that is light in color, such as white or light gray, can help brighten any space. The benefits of this are twofold: First, it can help with visibility, helping employees navigate the space safely. Secondly, light reflectivity of the flooring improves lighting efficiency, resulting in fewer light fixtures and smaller electric costs.
  • Texture options to help aid against slip and fall incidents: Floor coating systems can offer a variety of texture options−from light grit to heavy grit−depending on how much accumulated water and foot traffic the area receives. Without additional texture in wet areas, slip and fall incidents and injuries are inevitable.
  • A wide range of colors and decorative systems: These coating systems can be designed to match the aesthetics of the building or corporate colors. Some manufacturers even offer color matching upon request. When it comes to colors, the options are virtually endless.

Choosing the Right Flooring: Considering Bare Concrete

Choosing the right flooring for a cannabis greenhouse or processing facility requires important consideration as every grow room and greenhouse is different. Bare concrete is a popular flooring option for manufacturing and processing facilities across industries, however, as discussed, it can pose unique challenges due to its innate nature. That said, by taking the right steps to ensure that the concrete substrate is properly sealed, it can then be an effective and hygienic flooring option, offering high durability and a longer life cycle.

Cannabusiness Sustainability

Designing More Sustainable Cannabis Facilities

By Sophia Daukus
1 Comment

The topic of sustainability has grown in importance and priority for both consumers and regulators. From reducing emissions to lowering energy and water consumption, cannabis growing facilities face unique challenges when it comes to designing sustainable operations. Moreover, as the cannabis market grows and usage becomes more accepted, regulatory bodies will continue to increase the number of directives to help ensure the safety and quality of cannabis products.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

Ubiquitous throughout cannabis grow rooms and greenhouses, flooring can be easily overlooked, yet offers an economical way to create more sustainable facilities. Many of today’s grow rooms are located in old retrofitted warehouses or former industrial buildings that were designed without sustainability or environmental concerns in mind.

Combined with energy efficient lighting and more thoughtful water usage, flooring can help create a more efficient facility that not only improves business operations, but also contributes to a better bottom line.

Sustainability Challenges Facing Cannabis Facilities

Whether in an old warehouse space or a new structure designed from the ground up, cannabis businesses face unique operational challenges when it comes to sustainable best practices.

  • Energy Consumption: Like any indoor farm, lighting plays an important role in cannabis growing facilities. Traditional grow lights can utilize a large amount of electricity, putting a strain on the company budget as well as regional energy resources. Switching to highly-efficient LED lighting can help facilities reduce their consumption, while still maximizing crop yield.
  • Water Consumption: Among the thirstiest of flora, cannabis plants require consistent and plentiful watering for healthy and fruitful crop production.
  • Carbon Dioxide (CO2) Enrichment: In many cases, carbon dioxide is introduced into facilities to help enhance the growth of crops. However, this practice may pose safety and health risks for workers, the surrounding community and the planet at large. CO2 is a greenhouse gas known to contribute to climate change.

In order to head off upcoming regulatory restrictions, as well as to alleviate the mounting safety and health concerns, it behooves cannabis grow room managers and owners to explore alternatives for improving sustainability in their facilities.

Flooring Requirements for More Sustainable Cannabis Facilities

Spanning thousands or even hundreds of thousands of square feet throughout a facility, flooring can be a unique way to introduce and support sustainable practices in any grow room or greenhouse.

When seeking to improve operational efficiency and implementing the use of sustainable practices in cannabis facilities, look for flooring systems with the following characteristics:

  • Impervious Surfaces— Fertilizers, fungicides, and other chemicals can infiltrate porous unprotected concrete to leach through the slab matrix and into the soil and groundwater below. Non-porous flooring options, such as industrial-grade, fluid-applied epoxies and urethanes, are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.
  • Light-Reflective Finishes— Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms. By mirroring overhead lighting back upward, bright, light-reflective flooring can help minimize facilities’ reliance on expensive ceiling fixtures and electricity usage.
  • USDA, FDA, EPA, OSHA and ADA Compliancy— With cannabis industry regulations currently in flux, grow facilities that select food- and pharmaceutical-compliant flooring will be ahead of the game. Governing bodies in some states have already begun expanding the facility requirements of these sectors to the cannabis market.
  • Durable and Easy Care— Having to replace flooring every couple of years imposes high costs on businesses as well as the environment. Installation of many traditional types of flooring produces cut-off waste and requires landfill disposal of the old floor material. In contrast, by installing industrial-grade flooring systems that are highly durable and easy-to-maintain, facilities can count on long-term performance and value, while helping to minimize disposal costs and concerns.
Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Optimal flooring can help cultivation facilities reduce waste, improve the efficacy of existing lighting and lengthen floor replacement cycles for a better bottom line and a healthier environment. Additionally, having the right grow room floor can assist facilities in meeting regulatory requirements, help ensure production of quality products and improve the safety for consumers and staff.

Flooring Benefits for Employees and Consumers

Safety is paramount in any workplace. When it comes to the manufacture of foodstuffs and other consumed products, government oversight can be especially stringent. With the right compliant flooring in place, cultivation facilities can focus on the rest of their business, knowing that what’s underfoot is contributing to the safety of employees and their customers.

Here’s how:

  • Chemical Resistance— Floors can be exposed to a high concentration of chemicals, acids and alkalis in the form of fertilizers, soil enhancers and other substances. In processing locations, the proper disinfecting and sanitizing of equipment can require harsh solvents, detergents and chemical solutions, which can drip or spill onto the floor, damaging traditional flooring materials. It pays to select cannabis facility flooring with high chemical resistance to help ensure floors can perform as designed over the long term.
  • Thermal Shock Resistance— Optimal cannabis facility flooring should be capable of withstanding repeated temperature cycling. Slab-on-grade structures in colder climates may be especially vulnerable to floor damage caused by drastic temperature differences between a freezing cold concrete slab and the tropical grow room above. This extreme contrast can cause certain floor materials to crack, delaminate and curl away from the concrete substrate. The resulting crevices and uneven surfaces present trip and fall hazards to employees and leave the slab unprotected from further degradation. As an alternative, thermal shock-resistant floors, such as urethane mortar systems, furnish long-lived functionality even when regularly exposed to extreme temperature swings.
  • Humidity and Moisture Resistance— Traditional floor surfaces tend to break down in ongoing damp, humid environments. Cannabis facility flooring must be capable of withstanding this stress and more.
  • Pathogen Resistance— Undesirable microbes, fungi and bacteria can thrive in the moist, warm environments found in grow rooms. Floors with extensive grout lines and gaps provide additional dark, damp locations for pathogen growth. Fluid-applied flooring results in a virtually seamless surface that’s directly bonded to the concrete. Integral floor-to-wall cove bases can further improve wash down and sanitation.
  • Proper Slope and Drainage— Where food and/or pharmaceutical facility regulations have already been extended to cannabis operations, flooring is required to slope properly toward a floor drain. This prevents puddling, which can be a slip hazard as well as a microbe breeding ground. Unlike more typical materials, resinous flooring offers an economical solution for correcting floor slope wherever needed.

The Problems Presented by Traditional Flooring Options

Previously, cannabis growers often relied on traditional greenhouse-type flooring, including tamped down dirt floors, gravel or bare concrete. However, current and upcoming regulations are curtailing the use of these simple flooring options.

Growers often compare and contrast the benefits and value of traditional greenhouse flooring with more modern solutions, such as fluid-applied epoxy and urethane floors.

Dirt and gravel flooring offers little opportunity to properly sanitize, thus potentially inviting microorganism and pathogen invasion, contamination and costly damage. Growers who have turned to bare concrete floors face other concerns, including:

  • Unprotected concrete is inherently porous and therefore able to quickly absorb spilled liquids and moisture from the air. In addition, organic and synthetic fertilizers, fungicides, and chemicals can leach through the concrete floors, contaminating the groundwater, injuring the surrounding environment and wildlife.
  • Older slabs often lack an under-slab vapor barrier. Even in new construction, a single nail hole can render an under-slab barrier ineffective. In these situations, moisture from underneath the floor slab can move upward osmotically through the alkaline slab, leading to blistering and damage to standard commercial floor coverings.
  • Bare concrete floors can stain easily. These dark stains tend to absorb light instead of reflecting it, contributing to a potential increase in energy usage and cost.
  • The mold proliferation encouraged by the warmth and humidity of grow rooms can easily penetrate into the depths of unprotected slab surfaces, eventually damaging its structural integrity and shortening the usable life of the concrete.

While traditional greenhouse flooring options can initially seem less expensive, they frequently present long-term risks to the health of cannabis grow businesses. In addition, the performance of dirt, gravel and bare concrete floors runs counter to the industry’s commitment to reducing the carbon footprint of growing facilities.

Choosing Sustainable Grow Room Flooring

It’s no secret that the cannabis industry is undergoing enormous change and faces numerous environmental challenges. Luckily, optimal flooring options are now available to help growers economically increase their eco-friendly practices on many fronts. By focusing on quality resinous flooring, cannabis growers can get closer to meeting their sustainability goals, while simultaneously contributing to improved operation efficiency, enhanced yields and an increased bottom line.

Flooring Tips for Cannabis Growing Facilities

By Sophia Daukus
5 Comments

In the burgeoning cannabis market, grow facilities are facing more and more competition every day. New indoor cultivation enterprises are often being set up in formerly vacant industrial buildings and commercial spaces, while in other cases, companies are planning and constructing new grow facilities from the ground up. For all these establishments, continually lowering production costs while supplying the highest possible quality in ever-increasing yields is the way forward.

Whether in existing or new structures, concrete floors are ubiquitous throughout the majority of cannabis growing facilities. With the right treatment, these indoor concrete traffic surfaces can greatly contribute to a company achieving its operational objectives. Alternatively, insufficiently protected concrete floors can create annoying and costly barriers to accomplishing company goals.

Challenges in Cannabis Grow Facility Construction

As with any emergent industry, mainstream acceptance and market growth is bringing regulation to cannabis cultivation. Local governments are paying more attention to how cannabis growing facilities are constructed and operated. In addition to the standard business matters of building safety, employee working conditions and tax contributions, elected officials are increasingly under pressure from constituents to analyze the overall effect of grow facilities on their communities at large.

High consumption of energy for grow room lights and high water usage are just part of the equation. The temperature and humidity needs of a grow facility can be similar to that of an indoor swimming pool environment. While warmth and moisture are ideal for cannabis growth, they also provide the ideal conditions for the growth and proliferation of fungi and other undesirable microorganisms. Therefore, to help preserve plant health in the moist indoor climate, fumigation often comes into play.

Carbon dioxide (CO2) enrichment of grow room air, a common practice proven to increase crop yields, presents another set of safety and health considerations in dense urban environments.

Adding to these challenges, many cannabis grow facilities are producing plants destined for either pharmacological or nutritional use. This in itself demands scrutiny by regulators for the sake of the consuming public.

As a result, grow room managers and owners must stay informed about the evolution of the industry in terms of local and federal agency regulations concerning their facilities, their overall operation and their products.

Bare Concrete Floors in Grow Rooms

As a foundational construction material, concrete continues to lead the way in commercial and industrial construction. Despite the many advantages of concrete floors, when left unprotected they can present significant challenges specific to cannabis grow rooms.

  • Untreated, bare concrete is naturally porous, easily absorbing liquids and environmental moisture. Substances found in grow rooms, such as fertilizers, fungicides and other chemicals, can leach through the porous concrete floor slab into the soil and ground water. Whether organic or synthetic, concentrations of such substances can be highly detrimental to the surrounding environment.
  • Whether in an existing or newly constructed facility, it is not uncommon for the under-slab vapor barrier to be compromised during construction. When this occurs, moisture from the soil beneath the floor slab can enter the concrete and move osmotically upward, creating a phenomenon known as Moisture Vapor Transmission (MVT). The resulting moisture and moisture vapor tends to become ever more alkaline as it rises upward through the concrete slab. MVT can result in blistering, bubbles and other damage to floor coverings.
  • The warm temperatures, regular watering of plants and high relative humidity maintained within many grow rooms can contribute to a weakening of the structural integrity of unprotected grow room slabs.
  • Within the confined space of a grow room, the warm, moist air invites microbe proliferation. Food and pharmaceutical plants are high on the priority list when it comes to facility hygiene levels, as demanded by code.

Public health guidelines for cannabis cultivation facilities in various parts of the country are increasingly mirroring those of food processing. Typical requirements include having smooth, durable, non-absorbent floor surfaces that are easily cleaned and in good repair, possessing proper floor slope towards a sanitary floor drain, with no puddling, as well as an integral floor-to-wall cove base. These directives cannot be met with bare concrete alone.

Optimal Grow Room Flooring Performance

In some locations, cannabis growing facilities are already subject to strict building codes and regulations. This will no doubt be spreading to other regions in the near future. For example, the Public Health Agency of Los Angeles County publishes construction guidelines to ensure cannabis facility floors meet standards mirroring the food processing and pharmaceutical manufacturing industries, where sanitation, facility hygiene and safety are paramount. In these types of facilities, bare, unprotected concrete floor slabs are not allowed as a general rule, due to the material’s innate porosity and absorbency.

Flooring in grow rooms, like in their food and pharma industry counterparts, should optimally:

  1. Provide a monolithic and virtually seamless surface to help eliminate crevices, grout lines and other dark, damp locations where soil and pathogens tend to hide
  2. Be impervious and non-porous, providing a surface that can isolate toxic materials on the surface for proper clean-up where needed
  3. Enable correction or improvement of the floor slope for proper drainage, with no low spots to help avoid puddling
  4. Be installed with integral floor-to-wall cove options for easier wash-down and sanitizing
  5. Have the strength and thermal shock resistance, plus the tenacious bond, to undergo steam-cleaning and/or hot power washing, where needed
  6. Enable seamless, continuous surface installation over concrete curbs and containment areas
  7. Offer antimicrobial options for highly sensitive locations
  8. Demonstrate high compressive strength and impact resistance for durability under heavy loads
  1. Display excellent abrasion resistance, allowing the system to perform under grueling daily wear-and-tear
  2. Present customizable slip-resistance options that can be balanced with easy clean-ability
  3. Facilitate the use of floor safety markings, such as color-coded traffic and work area designations
  1. Be formulated with low odor, low-VOC chemistries that meet all EPA and similar regulations
  2. Be able to contribute LEED Green Building Credits, where desired
  3. Include options for refurbishing old or damaged concrete surfaces to allow reuse of existing facility resources, as opposed to having to be demolished, thus unnecessarily contributing to landfill waste
  4. Withstand and perform in continually damp grow room conditions, without degrading
  5. Be compliant with FDA, USDA, EPA, ADA, OSHA, as well as local regulations and/or guidelines
  6. Include MVT mitigating solutions where Moisture Vapor Transmission site issues are present
  7. Provide waterproofing underlayment options for multi-story facilities
  8. Demonstrate excellent resistance to a broad range of chemicals, fertilizers and extreme pH substances

Finding an affordable floor system with all the above features may seem like a tall order. Luckily, innovative manufacturers now offer cannabis facility flooring that meets sanitation, regulatory compliancy, durability and budgetary needs of growers.

Resinous Flooring Value for Cannabis Facilities

Choosing the right floor solutions for a given cultivation facility may be one of the most important decisions an owner or manager makes. Since floors are present throughout the structure, poor selection and compromised protection of concrete slabs can end up wreaking havoc with profits and yields over time.

Few facilities can afford the inconvenience and expense of an otherwise unnecessary floor repair or replacement. Having to suddenly move cumbersome plant beds and heavy pots in order to give workers access to the floor area can be headache. In addition, the unscheduled downtime and overall juggling of resources that invariably must take place make a strong case for investing in optimal grow room flooring from the start.

An excellent long-term value, professional-grade resinous floor systems present cannabis growers with a unique set of solutions for cultivation rooms. Not only does this type of flooring offer all the desirable features listed above, but also furnish a host of added benefits to grow room operations, including:

Very High Gloss Finish

  • Highly reflective floor surfaces enable light entering the space from overhead to bounce back upward, exposing the underside of leaves to the light and potentially increasing yields
  • Exceptionally high gloss floor finishes in light colors help make the most of your existing lighting sources, significantly increasing room illumination
  • Achieving greater illumination without adding fixtures helps reduce energy consumption and associated costs

Virtually Seamless Surface

  • Fluid-applied resin-based flooring provides an impermeable, monolithic surface that is exceptionally easy to clean and maintain
  • The virtually seamless finish of resinous coated floors greatly reduces the number of locations for soil, pathogens and microbes to gather
  • Resinous floors, by incorporating integral cove bases to eliminate ninety degree angles, correcting floor slope to eliminate puddling, and allowing for a virtually seamless surface, provide an optimally sanitary flooring solution

Outstanding Moisture Tolerance

  • Designed specifically for use in wet industrial environments, cementitious urethane flooring is a top choice for humid grow rooms
  • Also called “urethane mortar”, this type of floor can help mitigate certain undesirable site conditions, such as Moisture Vapor Transmission (MVT)

Chemical, Acid and Alkali Resistance

  • Whether organic or synthetic, many soil enhancers and substances used to eradicate undesirable fungi and pests can damage concrete and shorten the usable life of foundational slabs
  • Protecting concrete slabs with monolithic, non-absorbent and appropriately chemical resistant coating systems allows concrete to perform as designed, for as long as intended
  • A proper barrier coating on the floor allows spilled or sprayed substances to be properly cleaned up and disposed of, rather than allowing the liquids to seep through the porous slab, and into the surrounding natural environment

Added Safety

  • Resinous coating systems’ slip-resistance is completely customizable at the time of installation, enabling growers to request more traction in pedestrian walkways and less slip-resistance under raised beds.
  • Epoxy, urethane and polyaspartic resinous flooring systems accommodate the installation of safety and line markings, as well as varying colors to delineate specific work areas
  • The antimicrobial flooring options available from some manufacturers offer further hygiene support in highly sensitive facilities
  • Today’s industrial resinous floor coatings from reputable suppliers are very low to zero V.O.C. and compliant with EPA and other environmental regulations

Resinous coating systems provide ideal value to informed growers who require durable, reliable and long-lasting high performance flooring for their facilities.

Support from the Ground Up

From incredible medical advances to high tensile fiber in construction materials, the expanding cannabis industry is bringing exciting opportunities to many areas of the economy. As more and more growers enter the market, so increases the pressure to compete.

By choosing light reflective, seamless and moisture tolerant resinous flooring that meets regulatory guidelines for grow rooms, managers can help reduce their overhead costs on multiple fronts — and get a jump on the competition.