Tag Archives: control

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 2

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the previous article, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) when a grower, processor or dispensary (user) questions a laboratory result. Now let us look behind this paperwork wall to the laboratory culture the user will encounter once their complaint is filtered past the first line of defense.

It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.In an ISO 17025 (2005 or 2017) and TNI accreditation, the laboratory must be organized into management, quality and technical areas. Each area can overlap as in the ISO 17025-2017 standard or be required to remain as separate sections in the laboratory as in the ISO 17025-2005 or TNI 2009 standards. ISO 17025 standards (e.g. 2005 and 2017) specifically require a separation of monetary benefits for laboratory results as it applies to the technical staff. This “conflict of interest” (CoI) is not always clearly defined in the laboratory’s day-to-day practices.

One example that I have experienced with this CoI separation violation goes back to my days as a laboratory troubleshooter in the 1990s. I was called into a laboratory that was failing to meet their Department of Defense (DoD) contract for volatile organic hydrocarbon analyses (VOAs) of soil samples by purge trap-gas chromatography-mass spectroscopy. I was required to “fix” the problem. What I determined was:

  • The analytical chemists performing the VOAs analyses were high school graduates with no coursework in chemistry or biology.
  • There was no training program in place for these analysts in instrument use, instrument troubleshooting and interpretation of the analytical results.
  • The only training the analysts received was for simple instrument set-up and basic instrument computer software use. (e.g. Push this button and send results to clerks)
  • Clerks with a high school degree and no analytical chemistry training in the business office generated the final reports and certified them as accurate and complete.

None of the staff was technically competent to perform any in-depth VOAs analytical work nor was the clerical staff competent to certify the results reported.

When I pointed out these discrepancies to the laboratory management, they declined to make any changes. The laboratory management had a direct monetary interest in completing all analyses at the lowest costs within the time limit set by DoD. If the laboratory did not complete the analyses as per the DoD contract, DoD would cancel the contract and not pay the laboratory.

The DoD, in a “Double Blind” test sample, later caught this laboratory.. A Double Blind test sample is used to check to see if the laboratory is performing the tests correctly. The laboratory does not know it is a test sample. So if the laboratory is cheating, they will be caught.This does not mean that all laboratories have staff or management issues

Once the laboratory was caught by DoD with the Double Blind, laboratory management claimed they were unaware of this behavior and management fired all analytical staff performing VOAs and clerical staff reporting the VOAs results to show DoD that it was a rogue group of individuals and not the laboratory management. The fired staff members were denied unemployment benefits as they were fired with cause. So, the moral to this story is if the analytical staff and specifically the clerical staff had wanted to hold the laboratory management accountable for this conflict of interest, they may have been fired, but without cause. The staff would have kept their reputation for honesty and collected unemployment benefits.

I have witnessed the “CoI above repeatedly over the last 30+ years both in laboratories where I have been employed and as a consultant. The key laboratory culture problems that lead to these CoI issues can be distilled into the following categories:

  • Financial CoI: In the financial CoI, the laboratory management must turn out so many analytical test results per day to remain financially solvent. The philosophical change that comes over management is that the laboratory is not producing scientific results, but is instead just churning out tests. Therefore, the more tests the laboratory produces, the more money it makes. Any improvement in test output is to be looked upon favorably and anything that diminishes test output is bad. So, to put this in simple terms: “The laboratory will perform the analyses quickly and get the report sent to the user so the laboratory can be paid. Anything that slows this production down will not be tolerated!” To maximize the Return on Investment (RoI) for the laboratory, management will employ staff that outwardly mirrors this philosophy.
  • I Need This Job CoI: This is the CoI area that poor quality lab technical staff and clerical staff most readily falls into. As outlined in the example above, both the analytical staff and clerical staff lacked the educational credentials, the technical training to be proficient in the use of the analytical instruments, ability to identify problems performing the analytical methods or complications in reporting analytical results. That means they were locked into the positions they held in this specific laboratory. This lack of marketable skills placed pressure on these staff members to comply with all directives from management. What happened to them in the end was regrettable, but predictable. Management can prey on this type of staff limitation.
  • Lack of Interest or Care CoI: This form of CoI is the malaise that infects poor quality laboratories, but can reach a level in management, quality and technical areas as to produce a culture where everyone goes through the moves, but does not care about anything but receiving their paycheck. In my many years of laboratory troubleshooting this type of CoI is the most difficult to correct. Laboratories where I had to correct this problem required that I had to impress on the staff that their work mattered and that they were valued employees. I had to institute a rigorous training program, require staff quality milestones and enforce the quality of work results. During my years of laboratory troubleshooting, I only had to terminate three laboratory staff for poor work performance. Unfortunately after I left many of these laboratories, management drifted back to the problems listed above and the laboratory malaise returned. This proves that even though a laboratory staff can achieve quality performance, it can quickly dissolve with lax management.

So, what are the conclusions of this article?

  • Laboratory culture can place profit over scientific correctness, accuracy and precision.
  • Laboratory management sets the quality of staff that determines the analytical results and report quality the user receives.
  • Laboratory quality can vary from acceptable performance to unacceptable performance over the lifetime of the laboratory depending on management.
  • This does not mean that all laboratories have staff or management issues. It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.

The next article in this series will introduce the user to the specific Quality Control (QC) analyses that an acceptable laboratory should perform for the user’s sample. These QC analyses are not always performed by accredited laboratories as the specific state that regulates their cannabis program does not require them. The use of these QC samples is another example of how laboratory’s with poor quality systems construct another paper work wall.

Refining Techniques for Growing Cannabis

By Cannabis Industry Journal Staff
No Comments

As the cannabis industry in the United States and throughout the world develops, the market is getting more competitive. Markets in a number of states are experiencing disruptions that will have lasting effects for cultivators, including oversupply and supply chain bottlenecks. Now more than ever, growers need to look for ways to differentiate their product or gain a bigger market share. Looking at yield efficiency, quality improvements and analyzing the cost of inputs versus value of the crop can help growers make the right choices in technology for lighting, irrigation and pest control among other technologies.

adamplants
Adam Jacques, co-founder of Growers’ Guild Gardens and Sproutly

A series of free webinars in two weeks can help growers learn about some of the more advanced techniques in improving yield and quality. The Cannabis Cultivation Virtual Conference on May 23rd will explore a variety of tips and tricks for taking their cultivation operation to the next level. This event is free to attendees, made possible by sponsors VividGro and CannaGrow Expo.

Dr. Allison Justice
Dr. Allison Justice, vice president of cultivation at Outco

Attendees will hear from experts in cannabis cultivation on a range of topics, including breeding, drying, curing, environmental monitoring and micropropagation. Adam Jacques, co-founder of Growers’ Guild Gardens and Sproutly, will discuss some of his experience with breeding high-CBD strains in Oregon. His talk will delve into some of the proper breeding procedures, along with how to hunt for particular phenotypes and developing specific cannabinoids and terpenes.

Dr. Allison Justice, vice president of cultivation at Outco, is going to present some of her findings in drying and curing at the company. She plans on sharing her research on how the post-harvest stages can affect and control the chemical makeup of flower. She’ll also discuss some new protocols to monitor the dry and cure of cannabis flowers so we are able to modulate the terpene and cannabinoid profiles.

More information on the other speakers at this event and how to register for free can be found here.

control the room environment

Environmental Controls: The Basics

By Vince Sebald
No Comments
control the room environment

The outside environment can vary widely depending on where your facility is located. However, the internal environment around any activity can have an effect on that activity and any personnel performing the activity, whether that’s storage, manufacturing, testing, office work, etc. These effects can, in turn, affect the product of such activities. Environmental control strategies aim to ensure that the environment supports efforts to keep product quality high in a manner that is economical and sensible, regardless of the outside weather conditions.

For this article, let us define the “environment” as characteristics related to the room air in which an activity is performed, setting aside construction and procedural conditions that may also affect the activity. Also, let us leave the issue of managing toxins or potent compounds for another time (as well as lighting, noise, vibration, air flow, differential pressures, etc). The intent here is to focus on the basics: temperature, humidity and a little bit on particulate counts.

Temperature and humidity are key because a non-suitable environment can result in the following problems:

  • Operator discomfort
  • Increased operator error
  • Difficulty in managing products (e.g. powders, capsules, etc)
  • Particulate generation
  • Degradation of raw materials
  • Product contamination
  • Product degradation
  • Microbial and mold growth
  • Excessive static

USP <659> “Packaging and Storage Requirements” identifies room temperature as 20-25°C (68-77 °F) and is often used as a guideline for operations. If gowning is required, the temperature may be reduced to improve operator comfort. This is a good guide for human working areas. For areas that require other specific temperatures (e.g. refrigerated storage for raw materials), the temperature of the area should be set to those requirements.

Humidity can affect activities at the high end by allowing mold growth and at the low end by increasing static. Some products (or packaging materials) are hydroscopic, and will take on water from a humid environment. Working with particular products (e.g. powders) can also drive the requirement for better humidity control, since some powders become difficult to manage in either high or low humidity environments. For human operations without other constraints, a typical range for desirable humidity is in the range of 20 to 70% RH in manufacturing areas, allowing for occasional excursions above. As in the case of temperature, other requirements may dictate a different range.

control the room environment
In some cases, a locally controlled environment is a good option to reduce the need to control the room environment as tightly or to protect the operator.

In a typical work environment, it is often sufficient to control the temperature, while allowing the relative humidity to vary. If the humidity does not exceed the limits for the activity, then this approach is preferred, because controlling humidity adds a level of complexity (and cost) to the air handling. If humidity control is required, it can be managed by adding moisture via various humidification systems, or cooling/reheating air to remove moisture. When very low humidity is required, special equipment such as a desiccant system may be required. It should be noted that although you can save money by not implementing humidity control at the beginning, retrofitting your system for humidity control at a later time can be expensive and require a shutdown of the facility.

Good engineering practice can help prevent issues that may be caused by activities performed in inappropriately controlled environments. The following steps can help manage the process:

  • Plan your operations throughout your facility, taking into account the requirements for the temperature and humidity in each area and know what activities are most sensitive to the environment. Plans can change, so plan for contingencies whenever possible.
  • Write down your requirements in a User Requirement Specification (URS) to a level of detail that is sufficient for you to test against once the system is built. This should include specific temperature and RH ranges. You may have additional requirements. Don’t forget to include requirements for instrumentation that will allow you to monitor the temperature and RH of critical areas. This instrumentation should be calibrated.
  • Solicit and select proposals for work based on the URS that you have generated. The contractor will understand the weather in the area and can ensure that the system can meet your requirements. A good contractor can also further assist with other topics that are not within the scope of this article (particulates, differential pressures, managing heating or humidity generating equipment effects, etc).
  • Once work is completed, verify correct operation using the calibrated instrumentation provided, and make sure you add periodic calibration of critical equipment, as well as maintenance of your mechanical system(s), to your calibration and maintenance schedules, to keep everything running smoothly.

The main point is if you plan your facility and know your requirements, then you can avoid significant problems down the road as your company grows and activity in various areas increases. Chances are that a typical facility may not meet your particular requirements, and finding that out after you are operational can take away from your vacation time and peace of mind. Consider the environment, its good business!

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 1

By Kathy Knutson, Ph.D.
1 Comment
HACCP

Hazard Analysis and Critical Control Points (HACCP) Defined

Farm-to-fork is a concept to describe the control of food safety starting in the fields of a farm and ending with deliciousness in my mouth. The more that is optimized at every step, the more food safety and quality are realized. Farm-to-fork is not a concept reserved for foodies or “eat local” food campaigns and applies to all scales of food manufacture. HACCP is like putting the last piece of a huge puzzle in the middle and seeing the whole picture develop. HACCP is a program to control food safety at the step of food processing. In states where cannabis is legal, the state department of public health or state department of agriculture may require food manufacturers to have a HACCP plan. The HACCP plan is a written document identifying food safety hazards and how those hazards are controlled by the manufacturer. While there are many resources available for writing a HACCP plan, like solving that puzzle, it is a do-it-yourself project. You can’t use someone else’s “puzzle,” and you can’t put the box on a shelf and say you have a “puzzle.”

HACCP is pronounced “ha” as in “hat” plus “sip.”

(Say it aloud.)

3-2-1 We have liftoff.

The history of HACCP starts not with Adam eating in the garden of Eden but with the development of manned missions to the moon, the race to space in the 1950s. Sorry to be gross, but imagine an astronaut with vomiting and diarrhea as a result of foodborne illness. In the 1950s, the food industry relied on finished product testing to determine safety. Testing is destructive of product, and there is no amount of finished product testing that will determine food is safe enough for astronauts. Instead, the food industry built safety into the process. Temperature was monitored and recorded. Acidity measured by pH is an easy test. Rather than waiting to test the finished product in its sealed package, the food industry writes specifications for ingredients, ensures equipment is clean and sanitized, and monitors processing and packaging. HACCP was born first for astronauts and now for everyone.HACCP

HACCP is not the only food safety program.

If you are just learning about HACCP, it is a great place to start! There is a big world of food safety programs. HACCP is required by the United States Department of Agriculture for meat processors. The Food and Drug Administration (FDA) requires HACCP for seafood processing and 100% juice manufacture. For all foods beyond meat, seafood and juice, FDA has the Food Safety Modernization Act (FSMA) to enforce food safety. FSMA was signed in 2011 and became enforceable for companies with more than 500 employees in September of 2016; all food companies are under enforcement in September 2018. FSMA requires all food companies with an annual revenue greater than $1 million to follow a written food safety plan. Both FDA inspectors and industry professionals are working to meet the requirements of FSMA. There are also national and international guidelines for food safety with elements of HACCP which do not carry the letter of law.

The first step in HACCP is a hazard analysis.

Traditionally HACCP has focused on processing and packaging. Your organization may call that manufacturing or operations. In a large facility there is metering of ingredients by weight or volume and mixing. A recipe or batch sheet is followed. Most, but not all, products have a kill step where high heat is applied through roasting, baking, frying or canning. The food is sealed in packaging, labeled, boxed and heads out for distribution. For your hazard analysis, you identify the potential hazards that could cause injury or illness, if not controlled during processing. Think about all the potential hazards:

  • Biological: What pathogens are you killing in the kill step? What pathogens could get in to the product before packaging is sealed?
  • Chemical: Pesticides, industrial chemicals, mycotoxins and allergens are concerns.
  • Physical: Evaluate the potential for choking hazards and glass, wood, hard plastic and metal.

The hazards analysis drives everything you do for food safety.

I cannot emphasize too much the importance of the hazard analysis. Every food safety decision is grounded in the hazard analysis. Procedures will be developed and capital will be purchased based on the hazard analysis and control of food safety in your product. There is no one form for the completion of a hazard analysis.

HACCP risk matrix
A risk severity matrix. Many HACCP training programs have these.

So where do you start? Create a flow diagram naming all the steps in processing and packaging. If your flow diagram starts with Receiving of ingredients, then the next step is Storage of ingredients; include packaging with Receiving and Storage. From Storage, ingredients and packaging are gathered for a batch. Draw out the processing steps in order and through to Packaging. After Packaging, there is finished product Storage and Distribution. Remember HACCP focuses on the processing and packaging steps. It is not necessary to detail each step on the flow diagram, just name the step, e.g. Mixing, Filling, Baking, etc. Other supporting documents have the details of each step.

For every step on the flow diagram, identify hazards.

Transfer the name of the step to the hazard analysis form of your choice. Focus on one step at a time. Identify biological, chemical and physical hazards, if any, at that step. The next part is tricky. For each hazard identified, determine the probability of the hazard occurring and severity of illness or injury. Some hazards are easy like allergens. If you have an ingredient that contains an allergen, the probability is high. Because people can die from ingestion of allergens when allergic, the severity is high. Allergens are a hazard you must control. What about pesticides? What is the probability and severity? I can hear you say that you are going to control pesticides through your purchasing agreements. Great! Pesticides are still a hazard to identify in your hazard analysis. What you do about the hazard is up to you.

California Rolls Out Licensing For Cannabis Businesses

By Aaron G. Biros
No Comments

Last week, the Bureau of Cannabis Control issued the first licenses for California’s new market. The first license went to Moxie, a cannabis distribution company out of Lynwood.

The search feature for the list of licenses issued so far

As of the publication of this article, the Bureau, the state authority tasked with leading the regulation of the industry, has issued 43 temporary licenses. So far, four laboratories have received licenses, along with a number of retailers, distributors, microbusinesses in both medical and adult-use markets.

The labs to receive their temporary licenses so far are pH Solutions, Steep Hill Labs, Pure Analytics and ORCA Cannalytics. Judging by the number of temporary medical and adult-use licenses awarded so far, it appears the Bureau is trying to issue a similar amount for each sector, distributing the number of licenses between the two equitably.

You can find the list of licensees here, and search between the dates of 12/15/17 to 1/2/18 to get the most up-to-date list of licenses awarded. “Last week, we officially launched our online licensing system, and today we’re pleased to issue the first group of temporary licenses to cannabis businesses that fall under the Bureau’s jurisdiction,” says Lori Ajax, Bureau of Cannabis Control Chief. “We plan to issue many more before January 1.”

According to the press release, temporary licenses are only issued to applicants with prior local authorization in the form of a license or permit from the jurisdiction where the business is. Those licenses will become effective on January 1, 2018. The temporary licenses will work for 120 days, or May 1, 2018, after which businesses will need to have a permanent license to continue operating.

More than 1,900 users have registered with the Bureau’s online system, and more than 200 applications have been submitted, according to the press release.

The various regulatory bodies in California have worked diligently for months now to roll out proposed emergency regulations, setting strict requirements for manufacturers, growers, retailers and testing labs. Manufacturing regulations, including specific labeling, packaging and processing requirements, give a good snapshot of how regulators plan to move forward. Testing requirements could also be significantly firmer, with rules for documentation, sample sizes, sampling procedures, storage and transportation.

Yet when the adult-use sales become fully legal on January 1, 2018, those regulations will not be fully implemented.

Donald Land, a UC Davis chemistry professor and chief scientific consultant at Steep Hill Labs Inc., told The Associated Press, “Buyer beware.” There will be a six-month range where existing inventory will be allowed on the shelves, products that might not meet the standards of the new rules. So dispensaries will get half a year of sales before all products have to meet the new, stricter testing requirements.

California Manufacturing Regulations: What You Need To Know

By Aaron G. Biros
No Comments

In late November, California released their proposed emergency regulations for the cannabis industry, ahead of the full 2018 medical and adult use legalization for the state. We highlighted some of the key takeaways from the California Bureau of Cannabis Control’s regulations for the entire industry earlier. Now, we are going to take a look at the California Department of Public Health (CDPH) cannabis manufacturing regulations.

According to the summary published by the CDPH, business can have an A-type license (for products sold on the adult use market) and an M-type license (products sold on the medical market). The four license types in extraction are as follows:

  • Type 7: Extraction using volatile solvents (butane, hexane, pentane)
  • Type 6: Extraction using a non-volatile solvent or mechanical method
    (food-grade butter, oil, water, ethanol, or carbon dioxide)
  • Type N: Infusions (using pre-extracted oils to create edibles, beverages,
  • capsules, vape cartridges, tinctures or topicals)
  • Type P: Packaging and labeling only

As we discussed in out initial breakdown of the overall rules, California’s dual licensing system means applicants must get local approval before getting a state license to operate.

The rules dictate a close-loop system certified by a California-licensed engineer when using carbon dioxide or a volatile solvent in extraction. They require 99% purity for hydrocarbon solvents. Local fire code officials must certify all extraction facilities.

In the realm of edibles, much like the rule that Colorado recently implemented, infused products cannot be shaped like a human, animal, insect, or fruit. No more than 10mg of THC per serving and 100mg of THC per package is allowed in infused products, with the exception of tinctures, capsules or topicals that are limited to 1,000 mg of THC for the adult use market and 2,000 mg in the medical market. This is a rule very similar to what we have seen Washington, Oregon and Colorado implement.

On a somewhat interesting note, no cannabis infused products can contain nicotine, caffeine or alcohol. California already has brewers and winemakers using cannabis in beer and wine, so it will be interesting to see how this rule might change, if at all.

CA Universal Symbol (JPG)

The rules for packaging and labeling are indicative of a major push for product safety, disclosure and differentiating cannabis products from other foods. Packaging must be opaque, cannot resemble other foods packaged, not attractive to children, tamper-evident, re-sealable if it has multiple servings and child-resistant. The label has to include nutrition facts, a full ingredient list and the universal symbol, demonstrating that it contains cannabis in it. “Statute requires that labels not be attractive to individuals under age 21 and include mandated warning statements and the amount of THC content,” reads the summary. Also, manufacturers cannot call their product a candy.

Foods that require refrigeration and any potentially hazardous food, like meat and seafood, cannot be used in cannabis product manufacturing. They do allow juice and dried meat and perishable ingredients like milk and eggs as long as the final product is up to standards. This will seemingly allow for baked goods to be sold, as long as they are packaged prior to distribution.

Perhaps the most interesting of the proposed rules are requiring written standard operating procedures (SOPs) and following good manufacturing practices (GMPs). Per the new rules, the state will require manufacturers to have written SOPs for waste disposal, inventory and quality control, transportation and security.

Donavan Bennett, co-founder and CEO of the Cannabis Quality Group

According to Donavan Bennett, co-founder and chief executive officer of the Cannabis Quality Group, California is taking a page from the manufacturing and life science industry by requiring SOPs. “The purpose of an SOP is straightforward: to ensure that essential job tasks are performed correctly, consistently, and in conformance with internally approved procedures,” says Bennett. “Without having robust SOPs, how can department managers ensure their employees are trained effectively? Or, how will these department managers know their harvest is consistently being grown? No matter the employee or location.” California requiring written SOPs can potentially help a large number of cannabis businesses improve their operations. “SOPs set the tempo and standard for your organization,” says Bennett. “Without effective training and continuous improvement of SOPs, operators are losing efficiency and their likelihood of having a recall is greater.”

Bennett also says GMPs, now required by the state, can help companies keep track of their sanitation and cleanliness overall. “GMPs address a wide range of production activities, including raw material, sanitation and cleanliness of the premises, and facility design,” says Bennett. “Auditing internal and supplier GMPs should be conducted to ensure any deficiencies are identified and addressed. The company is responsible for the whole process and products, even for the used and unused products which are produced by others.” Bennett recommends auditing your suppliers at least twice annually, checking their GMPs and quality of raw materials, such as cannabis flower or trim prior to extraction.

“These regulations are only the beginning,” says Bennett. “As the consumer becomes more educated on quality cannabis and as more states come online who derives a significant amount of their revenue from the manufacturing and/or life science industries (e.g. New Jersey), regulations like these will become the norm.” Bennett’s Cannabis Quality Group is a provider of cloud quality management software for the cannabis industry.

“Think about it this way: Anything you eat today or any medicine you should take today, is following set and stringent SOPs and GMPs to ensure you are safe and consuming the highest quality product. Why should the cannabis industry be any different?”

Lezli Engelking

Q&A with Lezli Engelking: Why Are Standards Important?

By Aaron G. Biros, Lezli Engelking
1 Comment
Lezli Engelking
Lezli Engelking
Lezli Engelking, founder of FOCUS

FOCUSlogoLezli Engelking founded the Foundation of Cannabis Unified Standards (FOCUS) in 2014 to protect public health, consumer safety, and safeguard the environment by promoting integrity in the cannabis industry through the use of standards. Standards are an agreed upon way of doing things and specify guidelines or requirements for producing goods or providing services, according to FOCUS.

Peter Maguire, committee chair of the FOCUS Cultivation Standard
Peter Maguire, committee chair of the FOCUS Cultivation Standard

Standards can take the form of a “reference document, which may include specifications, guidelines, conditions or requirements for products, operations, services, methods, personnel and systems on how to design, operate, manufacture or manage something.” Peter Maguire, VP of System Applications for Lighthouse Worldwide Solutions and committee chair of the FOCUS Cultivation standard, joined the organization wanting to make a positive impact on the industry that is in line with protecting people and medical patients. He sees so much variability in the industry and the need to homogenize standard operating procedures (SOPs). “I have worked with multiple cultivation facilities and a few of them have operating procedures in place but having them in place is only half the solution- it’s critical to have the right ones in place,” says Maguire. He has twenty years of experience in contamination control in manufacturing, before entering the cannabis industry.

The FOCUS cultivation standard was created by experts who have years of experience in both cannabis cultivation, good agricultural practices and in the tightly regulated pharmaceutical industry. “FOCUS created these guidelines as a sort of roadmap for success in business; You need to keep your employees healthy and your products safe to survive in the long term,” says Maguire. We sit down with Lezli Engelking to find out how the standards are created, what makes them significant and what businesses can gain by working with them.

CannabisIndustryJournal: Why are standards important?

Lezli: Standards are the international language for trade – they exist in every industry. “The U.S. Department of Commerce estimates that standards and conformity assessment impact more than 80% of global commodity trade.” FOCUS is not reinventing the wheel with what we are doing. We are simply adapting a business model the federal government already uses. In the 80s, when the heroin epidemic swept across the US, methadone clinics popped up in every state in the country within two years. The clinics were all operating under different state, city and county regulations – much like the cannabis industry is today. The federal government took a look at the situation and decided they needed a way to regulate these clinics in order to protect public health and safety. They released a Request For Proposal (RFP) looking for an organization to create voluntary-consensus standards and a third-party certification system for the methadone clinics. Commission on Accreditation of Rehabilitation Facilities (CARF) is the organization that answered and won that RFP. CARF continues to work with Health and Human Services to maintain the standards and provide third-party certification to the clinics today. FOCUS develops international, voluntary consensus standards and a third party certification program for the global cannabis industry based on the CARF model. This is extremely important, because of the National Technology Transfer and Advancement Act, (Public Law 104-115), signed into law March 7, 1996 by President Clinton. The act requires that all federal agencies use standards developed by voluntary-consensus standards bodies, instead of government-unique standards wherever possible. Perhaps even more importantly, the Act includes provisions that encourage federal agencies to partner with the private sector in the development of standards that not only help improve the efficiency and effectiveness of government, but also strengthen the U.S. position in the global marketplace.

CIJ: What exactly goes into developing a voluntary-consensus standard?

Lezli: Voluntary-Consensus refers to the type of standard and how it is developed. Everyone who participates in the development of voluntary-consensus standards does so on a voluntary basis. Committee members must come to a consensus on every point within the standard- down to every comma or semicolon. Once the development process is complete, the standards must undergo a 30-day public review period. The process for developing voluntary-consensus standards is designated by International Organization for Standardization (ISO). ISO has member agencies in 163 countries that participate in the development of standards. The American National Standards Institute (ANSI) is the American body for ISO. FOCUS follows all ISO/ANSI guidelines in the standards development process. This is extremely important because it means FOCUS standards are suitable for accreditation and adoption into regulations according to the National Technology Transfer and Advancement Act. All voluntary-consensus standards are developed under the principles of:

  • Openness| Participation in the standard development process is open to individuals with a stake in the standard who bring useful expertise along with the spirit and willingness to participate.
  • Balance| Focus stakeholder groups involve all stakeholder groups: industry, regulatory, quality assurance, medical, law enforcement, business, research, consumers, patients and the general public.
  • Voluntary-Consensus| Individual subcommittees of volunteers develop each area of the standard, offering their unique expertise to form a consensus. They are not paid for their participation.
  • Lack of Dominance| No party has dominant representation, or influence to the exclusion of fair and equitable consideration of other viewpoints.

CIJ: More specifically, how are the FOCUS standards developed?

Lezli: To create a baseline standard, FOCUS utilized World Health Organization (WHO) guidelines for Good Manufacturing Practices (GMP), Good Agricultural Practices (GAP), Good Laboratory Practices (GLP), Code of Federal Regulations (CFR) for pharmaceutical GMPs, nutraceutical GMPs, food safety standards, OSHA and HACCP. From there, applicable cannabis regulations from around the world were added. All of this information was compiled into auditor-style checklists. Each committee member was provided time to go edit, remove or add to items in the checklist on their own. Over the next two years, each of the eight committees had monthly meetings, going through and coming to a consensus on each line item of the standard. Once the committees completed development, the standards were open for a 30-day Public Review to collect comments and feedback. The first eight FOCUS standards, completed and ready for use, cover Cultivation, Retail, Extraction, Infused Products, Laboratory, Security, Sustainability and Packaging & Labeling.

FOCUS is currently recruiting committee members to begin development of five new cannabis standards later this year: Advertising/Marketing, Insurance, Banking/Finance, Patient Care and Research. Committees will receive a list of proposed suggestions for what should be considered in developing the standards. Each committee member will develop a list to select criteria they think should be included into the standard. FOCUS will compile the lists, then committees will go through the monthly standards development/vetting process for each line item in the standard.

CIJ: So what does a business have to gain by adopting a FOCUS standard?

Lezli: Compliance becomes easily manageable with the FOCUS software platform, integrating standards, training and SOPs into the everyday operations of the business. FOCUS certified clients could expect to reduce costs, reduce risk and reduce liability by assuring they are producing safe, quality and consistent products. FOCUS certification allows a business to differentiate themselves from their competitors, and prove to their patients and customers they can trust their products. Certification also allows businesses to access reasonable insurance rates and drives interest from investors.

FOCUS is here to partner with cannabis businesses. We are there to hold their hand, by providing guidance and assistance along every step of the way. Unlike state mandated audits that delineate what a business is doing right or wrong, FOCUS is an on-going compliance management system. We are here to make sure a business runs as efficiently as possible and take the guesswork out of compliance. Under FOCUS certification, a business receives ongoing consulting, customized SOPs, employee training and a documentation management software system to track and prove compliance.

CIJ: Can you give us an update on FOCUS’ progress in 2016?

Lezli: A large milestone for FOCUS this year, aside from completing version one of the standards, is choosing an appropriate software platform, (Power DMS) to house the standards and provide an ongoing compliance management system for our clients. Power DMS also houses regulatory standards for law enforcement; health care, federal aviation and fire departments, so most agencies in public health are already familiar with it. The familiarity and access to this platform is a huge benefit on the regulatory side. It allows first responders to access the schematics of a FOCUS certified client in the event of an emergency. This is crucial in the event of an explosion from extraction equipment, or a fire in a cultivation facility, as without first identifying where the hazards are, they will not access the facility. The FOCUS software platform allows first responders access to all pertinent information through computers in police cars, ambulances, or fire trucks.

For the industry, the FOCUS software platform is equally as impressive. Not only does the platform house the standards and all SOPs, it is also complete compliance management system. FOCUS certified clients have a simple management tool that houses all training and documentation, assuring all required compliance documentation can be easily accessed at any time. The platform also allows FOCUS certified clients to provide access to governing bodies in advance of state audits –streamlining the process and minimizing time and interruption caused by state audits. The FOCUS platform tracks all changes to required documents, provides real time updates on employee training, creates appropriate traceability logs, and provides updates on regulatory changes, including which SOPs need to be changed to maintain compliance. The platform allows FOCUS to be way more than an auditing company. FOCUS is a partnership in compliance for cannabis companies wanting to maintain good business practices and stay compliant with regulations.

We have about 140 new committee members that will assist existing committees with standards updates and participate in the development of the next set of FOCUS standards for advertising/marketing, banking/finance, research, patient care and insurance. All committees will convene before 2017.

Pesticide Position Paper: Prepared by Comprehensive Cannabis Consulting (3C)

By Adam Koh, Nic Easley
4 Comments

Those that follow the legal cannabis industry are undoubtedly aware of the struggles of Colorado to regulate pesticide use on cannabis. At the time of this writing, there have been 19 recalls of products contaminated by pesticides in as many weeks. Authorities could not in all cases identify exactly how many units of products may have been tainted, but based on the numbers available, roughly 200,000 individual cannabis products, if not more, have been pulled from dispensary shelves. Along with these recalls have come a large amount of coverage and commentary from various news outlets, industry stakeholders, and even those companies who have had products pulled from shelves.

As this is a controversial and contentious subject, it can be difficult to parse and evaluate the various points of view being offered. In what follows, we will outline the issues at hand objectively: first providing a brief overview of federal and state pesticide regulations and how they pertain to cannabis; addressing claims of whether pesticide usage is “safe” or not; and, finally, offering our opinion of how the cannabis industry should address the pesticide conundrum considering the current regulatory environment and the state of our knowledge.

Before diving in, we are also aware that there is controversy around cannabis testing methodologies, and that the reliability of cannabis testing labs in general has been called into question by a number of the companies that have faced recalls. While we cannot comment on the operations of particular labs, we do support the application of consistent standards, proficiency evaluations, and stringent regulatory oversight to testing labs themselves, so that their results can be assured of being beyond reproach.

Still, 3C’s stance is that quality cannot be tested into a product. To have growers continue to produce contaminated cannabis only to see it recalled repeatedly is unsustainable for the industry; indeed, it threatens its very existence, as we discuss below. That is why we focus in this paper on the cultivation of the plant, as correcting problems on the production side is the only way to ultimately resolve the dilemma in which the industry finds itself.

Pesticide Regulation in the US Relative to Cannabis Cultivation

Cannabis’ pesticide problems stem in large part from the fact the pesticide regulation takes place at the federal level, under the auspices of the EPA. All pesticides undergo years of research and development before they can be sold to farmers and employed on crops. That research addresses questions such as where and how a pesticide can be employed, on what crops, in what concentrations, with what frequency, and how long before harvest can a pesticide be applied. Questions of worker safety are also addressed, such as those concerning what Personal Protective Equipment (PPE) might be required and how long workers must avoid treated areas (Re­Entry Intervals), among other concerns.

The fruits of such studies are then distilled to the contents of a pesticide’s label, which must be registered with and approved by the EPA before a pesticide can be distributed for sale. Federal and state laws require that pesticides be applied according to label directions, making the label a legal document of sorts. “The label is the law,” is a phrase common among agricultural professionals with which the legal cannabis industry is becoming acquainted.

The sticking point in regard to cannabis is that, due to its federal illegality, no research has been performed on the use of pesticides on cannabis. Due to the lack of research, no pesticides registered currently with the EPA are labeled for use on cannabis. Since all pesticides must be applied according to label specifications, this essentially prohibits pesticide use in cannabis production. However, some labels are written in such a broad manner that the use of those pesticides could not be construed as a breach of the legally­ binding use directions. Additionally, certain pesticides are of such low­toxicity that the EPA has deemed that their registration is not required; these are known as minimum­ risk products under section 25(b) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). At this time, the Colorado Department of Agriculture (CDA), in an attempt to offer guidance to cannabis growers, is maintaining a list of such products that, either due to broad label language or 25(b) status, may be used on cannabis without that use being a violation of the label.

Are Pesticides Safe for Use on Cannabis?

Since the first plants to be quarantined after discoveries of improper, off­-label pesticide use to the most recent recalls, some of the Colorado cannabis companies caught up in those enforcement actions have made public statements claiming that their products are safe. These statements are dangerously misleading, as they do not take into account the issues laid out above, nor the facts that follow.

Frequently, attempts to justify such claims point out that pesticides are employed on our food and therefore must be okay to apply to cannabis as well. This is a classic case of comparing apples to oranges; or, in this case, comparing apples and oranges to cannabis. Such data cannot be bridged for the simple reason that apples and oranges (and most other agricultural food crops) are not smoked. Smoking remains the primary method of cannabis ingestion, but cannabis products are also vaporized (concentrates), consumed (edibles), applied to the skin (topical creams and patches), and taken sublingually (tinctures, sublingual strips).

As noted, the studies that pesticides must undergo prior to being approved by the EPA involve measuring acceptable residues based on the method of consumption of the final product. Since most food is consumed and digested, few pesticides on the market have undergone pyrolysis studies, which examine how the chemical structures of pesticides degrade when burned. This means that while the fungicide myclobutanil, the active ingredient in Eagle 20EW, may be approved for use on grapes, that approval is meaningless in regard to cannabis, as grapes are not smoked and the relative safety of myclobutanil residues was not tested in regard to such a consumption method.

While studies may eventually reveal that certain pesticides may be used on cannabis without ill effects to the end users, such research has not been performed and no one can say with certainty what the effects of consuming cannabis containing pesticide residues might be. Even the CDA qualifies the list of products that may be used without violating labeling guidelines with the following statement, “These products have not been tested to determine their health effects if used on marijuana that will be consumed and thus the health risks to consumers is unknown.”

Again, no one can currently say what pesticides, if any, can be safely employed on cannabis; anyone claiming definitively that their products are safe despite off­-label pesticide use is making a statement that at this time lacks any scientific basis whatsoever.

Another claim made numerous times by companies defending their off­-label pesticide use is that no one has yet fallen ill from pesticide use on cannabis. While this is true, we must remember that we are in uncharted territory, and no large­scale public health studies have been done to determine what, if any, effects result from consuming cannabis to which pesticides were applied. We hope that no ill effects will surface, but the fact of the matter is that chronic health issues may take years to show themselves and a public health crisis may yet emerge.

Recommendations for the Cannabis Industry

We are advocates for cannabis legalization and want to see this industry grow and develop into one that is beneficial for all involved. We believe that cannabis can continue to be a force for positive change in numerous areas of society, from medicine to criminal justice to agriculture, and beyond. But, in order for it to do so, we must navigate issues such as those around pesticide use in an intelligent and responsible manner.

Our primary recommendation should be preceded by the statement that the use of chemical pesticides of the type triggering Colorado’s recalls is not needed in cannabis production. We make this statement based on years of experience working in, managing, and advising cultivation operations of all types, methodologies, and scales on how to grow successfully without illegal pesticides. Cannabis has survived and flourished throughout human history without pesticides, and will continue to do so if we cultivate it correctly.

As such, we recommend that growers n​ot​ employ any pesticides in a manner that violates label directions, and only use 25(b) products that have undergone pyrolysis testing to ensure that they are not releasing harmful compounds when burned. Furthermore, applications should only be made during the vegetative stage, prior to the emergence of flowers. Overall, if there is any doubt as to whether a product or material is safe, it should not be used until legitimate, peer­-reviewed research has been performed by a reputable institution.

Successful pest control can be achieved via intelligent facility design, robust environmental controls, workflow protocols, and strict cleanliness standards, in addition to preventative applications of appropriate minimum­ risk pesticides. There is no magic bullet that will solve all pest problems, which is why experienced agricultural professionals rely on Integrated Pest Management (IPM), defined as “an ecosystem­-based strategy that focuses on long­term prevention of pests or their damage through a combination of techniques such as biological control, habitat manipulation, modification of cultural practices, and use of resistant varieties.” Overall, the adoption of Good Agricultural Practices (GAP) is much needed in the industry, and cannabis growers should look to agricultural operations that promote the four pillars of GAP standards (economic viability, environmental sustainability, social acceptability, and safety and quality of the final product) for guidance in formulating best practices in this new field.

This recommendation is not simply a matter of principle, but one that will preserve your business. In addition to costly and brand­-damaging recalls, we have already seen the first product liability lawsuits filed last year against LivWell by cannabis consumers over off­label pesticide use. Another issue is that of worker safety. Most cannabis cultivation takes place indoors, where pesticide residues can linger in garden areas and on equipment, creating toxic work environments. Unfortunately, based on the widespread nature of pesticide use in the legal cannabis industry, we feel confident in stating that thousands of workers employed in legal cannabis cultivation operations have applied chemical pesticides without proper PPE or safety training. Businesses employing pesticides off­-label will likely find themselves subject to liability claims from workers, as well as consumers, in the relatively near future.

Conclusion

In closing, the bottom line is that applying pesticides off­-label is a violation of state and federal law and could result in criminal and civil sanctions, should regulators and affected parties choose to pursue them.

It must also be noted that off­-label pesticide use threatens the industry as a whole. Point six of the Cole Memorandum states that the federal government will not make the enforcement of the Controlled Substances Act a priority as long as the “exacerbation of (…) public health consequences associated with marijuana use” is prevented. The emergence of a public health problem would be a violation of the Cole Memo ­and it could be argued that the current situation unfolding in Denver is already a violation ­ and could trigger federal intervention against states that have legalized cannabis. In this light, the Denver Department of Environmental Health, which is driving the recalls, has not “launched a campaign against legal cannabis,” as a company recently subject to a recall claimed, but is actually acting as a bulwark against a potentially serious Cole Memo violation that could shutter the entire industry.

Based on the current situation, the cannabis industry must come together to denounce and eliminate off­-label pesticide use. In order to ensure the health of patients, consumers, workers, and the industry itself, we must seize this opportunity to grow without chemicals that are currently illegal, potentially very harmful, and ultimately not even necessary.