Last week, the 4th annual Emerald Conference brought attendees from around the world to San Diego for two days of education, networking and collaboration. Leading experts from across the industry shared some of the latest research in sessions and posters with over 600 attendees. The foremost companies in cannabis testing, research and extraction brought their teams to exhibit and share cutting edge technology solutions.
The diversity in research topics was immense. Speakers touched on all of the latest research trends, including tissue culture as a micropropagation technique, phenotype hunting, pharmaceutical product formulation, chromatography methods and manufacturing standards, to name a few.
On the first day of the event, Ken Snoke, president of Emerald Scientific, gave his opening remarks, highlighting the importance of data-driven decisions in our industry, and how those decisions provide the framework and foundation for sound progress. “But data also fuels discovery,” says Snoke, discussing his remarks from the event. “I told a story of my own experience in San Diego almost 30 years ago while working in biotech, and how data analysis in a relatively mundane and routine screening program led to discovery. And how we (the folks at Emerald) believe that when we get our attendees together, that the networking and science/data that comes from this conference will not only support data-driven decisions for the foundation of the industry, but it will also lead to discovery. And that’s why we do this,” Snoke added.
Snoke says the quality of the content at the poster session was phenomenal and engaging. “We had over 500 attendees so we continue to grow, but it’s not just about growth for us,” says Snoke. “It’s about the quality of the content, and providing a forum for networking around that content. I met a scientist that said this conference renewed his faith in our industry. So I firmly believe that the event has and will continue to have a profound and immensely positive impact on our industry.”
Introducing speakers as one of the chairs for first session focused on production, Dr. Markus Roggen says he found a number of speakers delivered fascinating talks. “This year’s lineup of presentations and posters really showcase how far the cannabis industry has come along,” says Dr. Roggen. “The presentations by Roger Little, PhD and Monica Vialpando, PhD, both showed how basic research and the transfer of knowledge from other industries can push cannabis science forward. Dr. Brian Rohrback’s presentation on the use of chemometrics in the production of pharmaceutical cannabis formulations was particular inspiring.”
Shortly after Snoke gave his opening remarks, Dr. Roggen introduced the first speaker, Roger Little, Ph.D., owner of CTA, LLC. He presented his research findings on phenotype hunting and breeding with the help of a cannabis-testing laboratory. He discussed his experience working with local breeders and growers in Northern California to identify high-potency plants early in their growth. “You can effectively screen juvenile plants to predict THC potency at harvest,” says Dr. Little. The other research he discussed included some interesting findings on the role of Methyl jasmonate as an immune-response trigger. “I was looking at terpenes in other plants and there is this chemical called methyl jasmonate,” says Dr. Little. “It is produced in large numbers of other plants and is an immune response stimulator. This is produced from anything trying to harm the plant such as a yeast infection or mites biting the stem.” Dr. Little says that the terpene has been used on strawberries to increase vitamin C content and on tobacco plants to increase nicotine content, among other uses. “It is a very potent and ubiquitous molecule,” says Dr. Little. “Cannabis plants’ immune-response is protecting the seeds with cannabinoid production. We can trick plants to think they are infected and thus produce more cannabinoids, stimulating them to produce their own jasmonate.”
Dr. Hope Jones, chief scientific officer of C4 Laboratories, spoke about tissue culture as an effective micropropagation technique, providing attendees with a basic understanding of the science behind it, and giving some estimates for how it could effectively replace cloning and the use of mother plants. You could overhear attendees discussing her talk throughout the remainder of the show.
Dr. Jones has worked with CIJ on a series of articles to help explain cannabis tissue culture, which you can find here. “In this example, we started with one vessel with 4 explants,” says Dr. Jones. “Which when subcultured 4-6 weeks later, we now have 4 vessels with 16 plants.” She says this is instrumental in understanding how tissue culture micropropagation can help growers scale without the need for a ton of space and maintenance. From a single explant, you can potentially generate 70,000 plants after 48 weeks, according to Dr. Jones.
Those topics were just the first two of many presentations at Emerald Conference. You can take a look at some of the other presentation abstracts in the agenda here. The 5th Annual Emerald Conference in 2019 will be held February 28th through March 1st in San Diego next year.
Last week, Oregon Secretary of State Dennis Richardson published his office’s audit of The Oregon Liquor Control Commission (OLCC). The audit uncovered a number of inadequacies with the regulatory agency, most notably the problems with their tracking system, designed to prevent cannabis form being sold on the black market.
The report highlights the need for Oregon to implement a more robust tracking system, citing reliance on self-reporting, overall poor data quality and allowing untracked inventory for newly licensed businesses. The audit also found an insufficient number of inspectors and unresolved security issues. According to The Oregonian, the OLCC only has 18 inspectors, roughly one for every 83 licensed businesses.
Auditors also found inadequacies in the application system, saying the OLCC doesn’t monitor third-party service providers and doesn’t have a process in place for reconciling data between the licensing and tracking systems. The audit found there is a risk that decisions made for the program could be based on unreliable data. It also found a risk of unauthorized access to the systems, due to a lack of managing user accounts.
This audit’s publication is very timely. Most notably because U.S. Attorney Billy Williams, who called Oregon’s black market problem “formidable,” convened a summit this week to examine how Oregon can prevent cannabis being exported to other states. According to the Oregonian, Williams said Oregon has an “identifiable and formidable overproduction and diversion problem.” The audit’s findings highlighting security issues are also very timely, given that in the same week, Oregon’s neighbor to the North, Washington, experienced a security breach in its own tracking system.
The problems with the Oregon tracking system’s security features are numerous, the audit says. They found that the OLCC lacks a good security plan, IT assets aren’t tracked well, there are no processes to determine vulnerabilities, servers and workstations not using supported operating systems and a lack of appropriately managing antivirus solutions. “Long-standing information security issues remain unresolved, including insufficient and outdated policies and procedures necessary to safeguard information assets,” reads the report’s summary.
The audit proposes 17 recommendations for the state to bolster its regulatory oversight. Those recommendations intend to address undetected compliance violations, weaknesses in application management, IT security weaknesses and weaknesses in disaster recovery and media backup testing. You can read the full audit here.
On February 8th, Peter Antolin, the deputy director for the Washington State Liquor and Cannabis Board (WSLCB), sent an email to licensees explaining why the transition to their new traceability system was disrupted. Last Saturday, someone gained access to the sensitive information in Leaf Data Systems, the state’s traceability software that is powered by MJ Freeway.
“A computer vulnerability was exploited on Saturday, allowing unauthorized access to the traceability system,” Antolin told licensees in the email. “There are indications an intruder downloaded a copy of the traceability database and took action that caused issues with inventory transfers for some users. We believe this was the root cause of the transfer/manifest issue experienced between Saturday and Monday.”
The email goes on to say that no personally identifiable information was available to the ‘intruder,’ but some sensitive information was clearly accessed. That data includes route information of manifests filed between February 1st and 4th as well as transporter vehicle information including VIN, license plate number and vehicle type, according to the email.
That email leaves much to be desired. For one, they do not exactly have a solution, instead trying to alleviate licensees’ worries with a hollow inanity full of meaningless jargon: “The WSLCB and MJ Freeway continue to implement several strategies to prevent future vulnerabilities to future intrusions,” reads the email. “This includes full logging and monitoring and working with third-party entities. Since this remains an active investigation, details on security are not publicly available.” However, today the WSLCB is hosting a webinar where Peter Antolin, their IT division, the MJ Examiners unit and enforcement will be available to answer questions, according to the email.
This is by no means the first security breach that Washington and MJ Freeway have suffered. In May of 2017, Washington originally selected Franwell’s METRC as the contract partner for their traceability software system. Less than a month later in June of 2017, after a mistake in the selection process, Washington selected MJ Freeway instead of Franwell for the traceability contract. Three days later, MJ Freeway’s source code was stolen and published online. Then in September, Nevada cancelled their contract with MJ Freeway after a security breach, their services crashed in Pennsylvania and Spain, and in October it became clear that the company could not meet the October 31 deadline for their new Washington contract.
In November of 2017, BioTrackTHC, the company that held the previous contract for Washington’s traceability software, helped the state through the transition period with a temporary Band-Aid solution to hold the state over until January of 2018. A month after they expected to implement the new MJ Freeway system, the latest security breach occurred this week and disrupting the rollout yet again.
At the end of the email Antolin sent to licensees yesterday, he says there will continue to be attempts to breach the system’s security. “The bottom line is that this incident is unfortunate,” says Antolin. “There will continue to be malicious cyberattacks on the system. This is true of any public or private system and is especially true of the traceability system.” This begs a few questions: why aren’t we hearing about this kind of security breach in other states’ traceability systems? What are other companies doing that prevents this from happening? Why does this keep happening to MJ Freeway?
With the state led legalization of both adult recreational and medical cannabis, there is a need for comprehensive and reliable analytical testing to ensure consumer safety and drug potency. Cannabis-testing laboratories receive high volumes of test requests from cannabis cultivators for testing quantitative and qualitative aspects of the plant. The testing market is growing as more states bring in stricter enforcement policies on testing. As the number of testing labs grow, it is anticipated that the laboratories that are now servicing other markets, including high throughput contract labs, will cross into cannabis testing as regulations free up. As the volume of tests each lab performs increases, the need for laboratories to make effective use of time and resource management, such as ensuring accurate and quick results, reports, regulatory compliance, quality assurance and many other aspects of data management becomes vital in staying competitive.
Cannabis Testing Workflows
To be commercially competitive, testing labs offer a comprehensive range of testing services. These services are available for both the medical and recreational cannabis markets, including:
Detection and quantification of both acid and neutral forms of cannabinoids
Screening for pesticide levels
Monitoring water activity to indicate the possibility of microbiological contamination
Moisture content measurements
Terpene profiling
Residual solvents and heavy metal testing
Fungi, molds, mycotoxin testing and many more
Although the testing workflows differ for each test, here is a basic overview of the operations carried out in a cannabis-testing lab:
Cannabis samples are received.
The samples are processed using techniques such as grinding and homogenization. This may be followed by extraction, filtration and evaporation.
A few samples will be isolated and concentrated by dissolving in solvents, while others may be derivatized using HPLC or GC reagents
The processed samples are then subjected to chromatographic separation using techniques such as HPLC, UHPLC, GC and GC-MS.
The separated components are then analyzed and identified for qualitative and quantitative analysis based on specialized standards and certified reference materials.
The quantified analytical data will be exported from the instruments and compiled with the corresponding sample data.
The test results are organized and reviewed by the lab personnel.
The finalized test results are reported in a compliant format and released to the client.
In order to ensure that cannabis testing laboratories function reliably, they are obliged to follow and execute certain organizational and regulatory protocols throughout the testing process. These involve critical factors that determine the accuracy of testing services of a laboratory.
Factors Critical to a Cannabis Testing Laboratory
Accreditations & Regulatory Compliance: Cannabis testing laboratories are subject to regulatory compliance requirements, accreditation standards, laboratory practices and policies at the state level. A standard that most cannabis testing labs comply to is ISO 17025, which sets the requirements of quality standards in testing laboratories. Accreditation to this standard represents the determination of competence by an independent third party referred to as the “Accreditation Body”. Accreditation ensures that laboratories are adhering to their methods. These testing facilities have mandatory participation in proficiency tests regularly in order to maintain accreditation.
Quality Assurance, Standards & Proficiency Testing: Quality assurance is in part achieved by implementing standard test methods that have been thoroughly validated. When standard methods are not available, the laboratory must validate their own methods. In addition to using valid and appropriate methods, accredited laboratories are also required to participate in appropriate and commercially available Proficiency Test Program or Inter-Laboratory Comparison Study. Both PT and ILC Programs provide laboratories with some measure of their analytic performance and compare that performance with other participating laboratories.
Real-time Collaboration: Testing facilities generate metadata such as data derived from cannabis samples and infused products. The testing status and test results are best served for compliance and accessibility when integrated and stored on a centralized platform. This helps in timely data sharing and facilitates informed decision making, effective cooperation and relationships between cannabis testing facilities and growers. This platform is imperative for laboratories that have grown to high volume throughput where opportunities for errors exist. By matching test results to samples, this platform ensures consistent sample tracking and traceability. Finally, the platform is designed to provide immediate, real-time reporting to individual state or other regulatory bodies.
Personnel Management: Skilled scientific staff in cannabis-testing laboratories are required to oversee testing activities. Staff should have experience in analytical chromatography instruments such as HPLC and GC-MS. Since samples are often used for multi-analytes such as terpenes, cannabinoids, pesticides etc., the process often involves transferring samples and tests from one person to another within the testing facility. A chain of custody (CoC) is required to ensure traceability and ‘ownership’ for each person involved in the workflow.
LIMS for Laboratory Automation
Gathering, organizing and controlling laboratory-testing data can be time-consuming, labor-intensive and challenging for cannabis testing laboratories. Using spreadsheets and paper methods for this purpose is error-prone, makes data retrieval difficult and does not allow laboratories to easily adhere to regulatory guidelines. Manual systems are cumbersome, costly and lack efficiency. One way to meet this challenge is to switch to automated solutions that eliminate many of the mundane tasks that utilize valuable human resources.. Laboratory automation transforms the data management processes and as a result, improves the quality of services and provides faster turnaround time with significant cost savings. Automating the data management protocol will improve the quality of accountability, improve technical efficiency, and improve fiscal resources.
A Laboratory Information Management System (LIMS) is a software tool for testing labs that aids efficient data management. A LIMS organizes, manages and communicates all laboratory test data and related information, such as sample and associated metadata, tests, Standard Operating Procedures (SOPs), test reports, and invoices. It also enables fully automated data exchange between instruments such as HPLCs, GC-FIDs, etc. to one consolidated location, thereby reducing transcription errors.
How LIMS Helps Cannabis Testing Labs
LIMS are much more capable than spreadsheets and paper-based tools for streamlining the analytical and operational lab activities and enhances the productivity and quality by eliminating manual data entry. Cloud-enabled LIMS systems such as CloudLIMS are often low in the total cost of acquisition, do not require IT staff and are scalable to help meet the ever changing business and regulatory compliance needs. Some of the key benefits of LIMS for automating a cannabis-testing laboratory are illustrated below [Table 1]:
Key Functionality
Benefit
Barcode label designing and printing
Enables proper labelling of samples and inventory
Follows GLP guidelines
Instant data capture by scanning barcodes
Facilitates quick client registration and sample access
3600 data traceability
Saves time and resources for locating samples and other records
Inventory and order management
Supports proactive planning/budgeting and real time accuracy
Custodian management
Promotes overall laboratory organization by assigning custodians for samples and tests
Maintains the Chain-of-custody (CoC)
Test management
Accommodates pre-loaded test protocols to quickly assign tests for incoming samples
Accounting for sample and inventory quantity
Automatically deducts sample and inventory quantities when consumed in tests
Package & shipment management
Manages incoming samples and samples that have been subcontracted to other laboratories
Electronic data import
Electronically imports test results and metadata from integrated instruments
Eliminates manual typographical errors
Report management
Generates accurate, customizable, meaningful and test reports for clients
Allows user to include signatures and additional sections for professional use
21 CFR Part 11 compliant
Authenticates laboratory activities with electronic signatures
ISO 17025 accreditation
Provides traceable documentary evidence required to achieve ISO 17025 accreditation
Audit trail capabilities
Adheres to regulatory standards by recording comprehensive audit logs for laboratory activities along with the date and time stamp
Centralized data management
Stores all the data in a single, secure database facilitating quick data retrieval
Workflow management
Promotes better data management and resource allocation
High-configurability
Enables modification of screens using graphical configuration tools to mirror testing workflows
State compliance systems
Integrates with state-required compliance reporting systems and communicates using API
Adheres to regulatory compliance
Creates Certificates of Analysis (CoA) to prove regulatory compliance for each batch as well as batch-by-batch variance analysis and other reports as needed.
Data security & confidentiality
Masks sensitive data from unauthorized user access
Cloud-based LIMS encrypts data at rest and in-transit while transmission between the client and the server
Global accessibility
Cloud-based LIMS provides real-time access to laboratory data from anytime anywhere
Real-time collaboration
Cloud-based LIMS enhances real-time communication within a laboratory, between a laboratory and its clients, and across a global organization with multiple sites
Table 1. Key functionality and benefits of LIMS for cannabis testing laboratories
Upon mapping the present day challenges faced by cannabis testing laboratories, adopting laboratory automation solutions becomes imperative. Cloud-based LIMS becomes a valuable tool for laboratory data management in cannabis testing laboratories. In addition to reducing manual workloads, and efficient resource management, it helps labs focus on productive lab operations while achieving compliance and regulatory goals with ease.
Last week at the MJBizCon, a major cannabis industry event held annually in Las Vegas, urban-gro launched the first technology line for cannabis growers utilizing Internet-of-Things (IoT). urban-gro, a cultivation technology company for commercial-scale growers, announced the launch of announced Soleil® Technologies, an integrated portfolio of hardware, software, and services that uses IoT.
“The solution suite includes per-plant sensing, environmental monitoring, machine diagnostics, fertigation management, lighting controls, inventory management, and seed-to-sale tracking,” reads the press release. IoT is essentially a network of devices embedded with sensors and software that allow the devices to connect and exchange data. IoT devices are used extensively in the food industry, including for integrated pest management, restaurant food safety and management and tracking product conditions such as temperature and humidity throughout the supply chain, among other uses.
Soleil consists of three primary lines:
Soleil 360 is the cloud-based software-as-a-service (SASS) platform that integrates all Soleil solutions.
Soleil Sense is the brand for all of urban-gro’s low-power wireless sensors that deliver data with the scale, precision and resolution needed for analytics and machine learning.
Soleil Controls is urban-gro’s product set for climate and irrigation controls, lighting systems, and other focused controls.
The core, low-power sensor that makes this unique was licensed from Edyza, a wireless innovator that specializes in low-power wireless grids that scale. urban-gro then developed on top of that sensor, including its cloud-based management, analytics, what the sensors detect and cover, etc., to make it ideal for cannabis growers.
According to Brad Nattrass, urban-gro’s chief executive officer, finding an IoT solution that can easily scale was a key goal for their business. “When evaluating the most advanced market-ready sensor technology available, it was crucial that we deliver a solution that can easily scale to thousands of sensors in order to satisfy the needs of large-scale commercial cultivators,” says Nattrass. “The introduction of Soleil demonstrates urban-gro’s commitment to going beyond simply supplying equipment, to truly serving our clients as an ongoing technological innovator and advisor, enabling cultivators to leverage today’s more advanced technologies to rise above the competition.”
“Cultivators will be able to monitor substrate moisture and EC (electrical conductivity) levels on a per plant basis, as well as track key environmental metrics like temperature, humidity, air movement, and probability of infestation,” reads the press release. “With multiple device options, cultivators can choose between several deployment options.” With the data hosted on the cloud, users can access it through web browsers, Android and iOS devices.
According to Jay Nichols, a representative of urban-gro, they have hired (and is hiring) code developers, product developers, etc. in order to expand this unit. Plant sensors are just one piece of the system, with the goal to automate the entire cultivation process, including controlling lights, pest management, irrigation and fertigation. They say it will be available in late Q1/early Q2.
According to a press release published this morning, BioTrackTHC successfully implemented their Universal Cannabis System (UCS) in Washington State, a temporary solution for the state’s seed-to-sale cannabis tracking system, while the new system is yet to be deployed.
BioTrackTHC had a contract with Washington State for four years, which expired just weeks ago at the beginning of November. Back in June, after a few minor hiccups, the state announced that MJ Freeway would be the successive software platform used for the state’s seed-to-sale traceability system.
The deadline for the new software to be ready for deployment was set for November 1st, when the BioTrackTHC contract would expire and the MJ Freeway contract would begin. Between when the contract was awarded and the deadline for implementation, MJ Freeway made headlines for a series of security hacks and systems failures. Subsequently, MJ Freeway said they could not deliver the software platform until January of 2018, leaving a two-month gap where businesses have no state-mandated software to use for the tracking system.
The contingency plan that the state laid out consisted of business owners manually inputting data in excel spreadsheets. When first pressed for a Band-Aid solution, representatives of BioTrackTHC cited security concerns related to MJ Freeway’s hacks as reason for being hesitant to extend their contract through the interim period.
In an open letter to the Washington cannabis industry back in October before the end of their contract, Patrick Vo, president and chief executive officer of BioTrackTHC, laid out an explanation for what went wrong and provided an alternative solution, essentially a private sector version of their government-mandated traceability software system.
Announced this morning, the new system, UCS, is being used by over 1,600 of the 1,700 cannabis licensees in Washington. The UCS has so far submitted 39,000 individual excel spreadsheets to the Washington State Liquor and Cannabis Board (WSLCB). “After the WSLCB announced that their replacement system would not be ready in time and that the only other option was for all 1,700 licensees to submit their seed-to-sale data via manual spreadsheets, BioTrackTHC created the UCS—a privatized clone of the government system—within a few days and deployed it minutes after the termination of the old system to minimize the impact on all licensees,” reads the press release.
The UCS allows business owners to streamline data recording, instead of manually entering information into spreadsheets. It is also integrating with 3rd party software competitors such as WeedTraQR, GrowFlow, Mr. Kraken, TraceWeed, GreenBits, S2Solutions and DopePlow. “After the WSLCB’s announcement, we knew that we had only a few days to provide a universal system to which the whole industry could submit compliance data and enable communication across the supply chain between licensees and their seed-to-sale system,” says Vo. “Our priority was to ensure that licensees could continue to operate in the absence of a government seed-to-sale system. Not having that system in place could have left Washington licensees vulnerable to noncompliance in a variety of ways, not to mention the potentially crippling volume of extra work needed to manually track a business’ entire inventory.”
Washington State’s new traceability software system by MJ Freeway is expected to deploy in January of 2018.
Cannabis testing laboratories around the country are expanding quickly, taking on new clients and growing their business incrementally. Many of these labs are receiving a large number of test requests from growers for potency testing, terpene profiling, pesticide screening, residual solvent screening, heavy metal testing, microbial analysis and even genetic testing. To keep pace with the number of test requests received, efficient data, sample and test management is imperative.
Considering the magnitude of cannabis testing, data management using spreadsheets is a serious impediment to quality assurance. Data being recorded in spreadsheets is error-prone and difficult to manage. Furthermore, using spreadsheets does not allow labs to adhere to regulatory guidelines that demand strict accounting for every gram of the sample, right from reception, consumption for testing, to disposal.
To overcome such data management challenges and improve the operational efficiency of cannabis testing laboratories, a Laboratory Information Management System (LIMS) plays a significant role. LIMS are much more capable than spreadsheets and paper-based tools for managing analytical and operational activities. LIMS enhances the productivity and quality by eliminating the manual data entry. With its built-in audit trail capability, LIMS helps labs adhere to regulatory standards.
LIMS can provide companies with a method to manage samples, records and test results, and ensures regulatory compliance by increasing traceability. LIMS can also be integrated with other lab instrumentation and enterprise systems, enabling easier transmission of information across the lab and the organization, reducing manual efforts and improving decision-making.
Multiple resources are also available to assist labs in preparing for quality assurance and accreditation, LIMS being one of them. LIMS can help cannabis labs with instrument integration, and automate reporting to help improve efficiencies and reduce errors. LIMS, such as CloudLIMS Lite, a cloud-based LIMS, automates cannabis-testing workflows right from sample collection, data recording, managing test chain of custody, sample weight accounting to report generation. With data security and audit trails, a LIMS provides traceable documentary evidence required to achieve ISO 17025 accreditation for highly regulated labs. Above all, cloud-enabled systems are often low in the total cost of acquisition, have maintenance outsourced, and are scalable to help meet the ever-changing business and regulatory compliance needs.
Cloud-based products are secure, easy to deploy and scalable. A cloud product is typically hosted on a server with a guaranteed uptime of 99.5%, allowing for a reliable system, accessible 24×7. Cloud-based LIMS have automatic data backup mechanism that allow for quick turnarounds in case of a server failure or in the eventuality of a natural disaster.
With LIMS in place, cannabis labs can manage sample and requisition-centric records, track sample quantity and location, integrate the test data, and provide online reports to clients. This in turn, reduces the turnaround time for testing and improves the operational efficiency. Besides, audit trail of each and every activity performed by the lab personnel is recorded in the system to ensure that the lab follows regulatory compliance.
Editor’s Note: This is a condensed version of a poster that was submitted and displayed at this year’s Cannabis Science Conference in Portland, Oregon. The authors of the original poster are Arun Apte, Stephen Goldman, Aditi Gade and Shonali Paul.
MJ Freeway, a seed-to-sale traceability software company with a number of government contracts, has been making headlines this year for all the wrong reasons. A series of security breaches, website crashes and implementation delays have beleaguered the software company throughout 2017.
Just this morning, the Philadelphia Inquirer reported the company’s services crashed Saturday night and Monday afternoon. That article also mentions an anonymous hacker tried to sell sensitive information from the Washington and Nevada hacks in September. Back in April, when Pennsylvania awarded the state’s contract to MJ Freeway for its tracking system, Amy Poinsett, co-founder and chief executive officer of MJ Freeway told reporters “I think I can confidently say we are the most secure cannabis company in this particular industry.” It is safe to say this is now being called into question.
Earlier this week, New Cannabis Venture’s Alan Brochstein reported that MJ Freeway is unable to meet Washington’s October 31st deadline to integrate their software with the state, forcing customers to manually report data.
According to an email we obtained, all of MJFreeway’s clients in Spain experienced an online outage, but that services were restored within 24 hours. In an email sent to clients in Spain, the company told customers that the problems were the result of a system failure. “Our initial analysis indicates that this was a system failure and unfortunately none of the data was able to be successfully retrieved from the backup archive due to an error but we can assure you that none of your data was extracted or viewed at any moment,” reads the email. “We are extremely distressed regarding the event that occurred with the system and the service interruption that occurred yesterday. We recognize that this is a situation that is very serious and negatively impacts your club.” The email says that MJ Freeway is addressing those problems in a few ways, one of which being ongoing audits of their data backups. “The event has led us to reconstruct our “hosting environment” in Europe to use the latest technology from Amazon Web Services with the best redundancy, flexibility and security, using the highest stability measures in the AWS environment,” reads the email. While the site will be restored fully, according the email, historical data is lost. The company is working with their clients to help them get data back into the system.
After a delay due to their proficiency testing program roll out, the Colorado Marijuana Enforcement Division (MED) will now require all medical infused products and concentrates be tested for potency and homogeneity, starting November 1st, 2017.
After November 1st, all production batches of concentrates from medical product manufacturers will need to have a potency test before being sold, transferred or processed. The same goes for medical infused products, such as edibles and topicals. The homogeneity test refers to making sure THC or other active ingredients are distributed evenly throughout the product.
According to Alex Valvassori, author of a regulatory compliance-focused blog post on Complia’s website, these new testing requirements could lead to a surge in pricing, passed on to patients. He also recommends dispensaries take a close look at labels coming in from suppliers. They need to make sure potency data is listed clearly on the label to stay compliant.
Production batches created before November 1st are not required to meet the new testing regulations, but any and all batches after that date will be required to perform those tests.
Maintaining an environment that supports cultivation and keeps plants healthy is not an easy task. In cannabis growing, there are a variety of factors that greenhouse managers and personnel must monitor to ensure that their plants are in a healthy environment that fosters growth and development. Temperature, humidity, lighting and CO2 levels are a few of the conditions that need to be tailored to each cannabis greenhouse operation. However, it can be difficult to constantly monitor the status of your equipment and the greenhouse environment, especially after hours or during the off-season.
A remote monitoring system that’s properly selected and installed can help greenhouse managers keep their cannabis plants healthy, multiply their yields and increase return on investment. This type of system also helps operators identify patterns and trends in environmental conditions and get insight into larger issues that can prevent problems before they arise.
Here are some tips on key conditions to monitor and what you need to consider when selecting a monitoring system for your cannabis greenhouse operation:
Temperature
Temperature plays a crucial role in any cannabis grow operation. The climate in your greenhouse must be warm enough to nurture photosynthesis and the growth of cannabis plants. Setting the incorrect temperature will significantly impact the potential yield of the plant and the rate at which it develops. A temperature too low will slow the growth of the cannabis, but too hot can lead to heat stress for your plants. The ideal temperature for a standard greenhouse is between 70 and 80 degrees Fahrenheit. However, depending on the stage of plant and desired growth densities, the temperature of the greenhouse needs to be adjusted accordingly.
Humidity Levels
Humidity directly affects plant photosynthesis and transpiration, so controlling humidity is vital in greenhouse growing. The ideal relative humidity (RH) for cannabis growth is around 60%. A low humidity level can cause water to evaporate too quickly for photosynthesis, while a humidity level that is too high can cause poor growth and possible mold and fungal disease. Monitoring the moisture content in the air of your greenhouse will help the plants during the transpiration process, increasing absorption of nutrients and overall health of the cannabis.
Lighting
Your cannabis may be getting an abundance of natural light during the summer months, but maintaining adequate sunlight during the winter months can be a challenge. As a solution to this, many greenhouse managers equip their facilities with additional lights to supplement natural light during off-seasons or off-hours. To achieve the best possible yield, a cannabis plant in the budding stage should receive twelve hours of light each day, while other stages could require additional lighting. For example, the growth stage could require your cannabis to be exposed to sunlight for up to eighteen hours a day.
CO2 Levels
Like any other plant, cannabis requires CO2 to breathe. Greenhouse managers must set and monitor the CO2 levels in their facility to make sure that there is an adequate amount for the plants to develop, grow and be healthy. The amount of carbon dioxide required for your cannabis depends of the size of the facility and the amount of light the plants are receiving. However, a standard grow area for cannabis can maintain a CO2 range from 1000 to 1500 parts per million (PPM). A level below that threshold can result in slower growth of the plants, while a level above would lead to unused and wasted CO2.
Irrigation and Soil Moisture
One way to ensure a good yield from your cannabis is to water it regularly and monitor your soil moisture. Overwatering your plants can have the same effect, if not worse, than letting the soil become too dry. Plants’ roots need oxygen to survive, unlike leaves that breathe CO2, and when the soil is waterlogged the roots can’t provide their function. The lack of oxygen interferes with the roots’ nutrient uptake and photosynthesis causing the cannabis plant to wilt. The exact moisture content of the soil depends on the size of your greenhouse, temperature and humidity. Whether you hand water or are using a drip irrigation system, being aware of your soil moisture is vital to the long-term health of your cannabis.
Air Circulation
Your greenhouse environment should mimic the ideal conditions in which cannabis plants flourish. With an indoor facility, you have the ability to control air circulation by venting hot air out and blowing fresh air in. Creating a circulation of air inside your greenhouse will increase your cannabis plant’s growth speed and yield. Additionally, an exhaust system helps control the temperature and humidity, while also preventing the invasion of mold and pests that thrive in hot, stagnant air.
Greenhouse Security
When growing something of value, like cannabis, there will always be a threat of intruders. Whether your greenhouse is in a populated area or around hungry wildlife, any intruder could be detrimental to your overall yields and profit. Remote monitoring systems can give you peace of mind and instantly alert you when there is an unwanted presence in your greenhouse.
Knowing all the possible threats to your cannabis greenhouse helps you evaluate your specific needs, and ultimately identify the proper remote monitoring system.
Selecting the Right Monitoring System
Other factors to consider when choosing a monitoring system right for your operation include:
Base unit and sensors
Wireless or hardwired sensors
Communications to your site (Phone, cellular, Wi-Fi, etc.)
Alarm notification
Programming and status checks
Data logging
Return on investment
Base Units and Sensors
Each condition in your greenhouse that you want to monitor requires its own input on the base unit of the monitoring system. You must match your needs with the number of inputs available. A good fit for a smaller cannabis greenhouse may be a lower-cost, non-expandable monitoring system. However, larger facilities have many monitoring points and more people to alert when there’s a problem. If your cannabis operation is poised for growth, purchasing an expandable system could add value to the initial purchase because you wouldn’t have to replace your entire system in the future.
Your monitoring system should also have an internal rechargeable battery backup to ensure continuous monitoring and alerts in the event of a power outage. It is also recommended to have each base unit in a sheltered enclosure to protect it from moisture, dirt and other hazards.
Placement of sensors is also crucial. For example, temperature sensors in your greenhouse should be placed throughout the facility. They should be next to your thermostat and in the center of your greenhouse, preferably away from direct sunlight.
Wireless or Hardwired Sensors
Remote monitoring systems offer the option to have sensors hardwired directly to the base unit or sensors wirelessly connected. A hardwired monitoring system connects the sensors to the base device with wires. Generally, trenching long distances for wires is time consuming and costly. So alternatively, a wireless system uses built-in radio transmitters to communicate with the base unit. Some monitoring systems can accommodate a combination of hardwired and wireless sensors.
Communications to Your Site
Monitoring devices that use cellular communications must be registered on a wireless network (like Verizon or AT&T) before you can send or receive messages. Because cellular devices perform all communications over a wireless network, it is important that there be sufficient signal strength at the greenhouse. It is a good idea to check the signal quality in the area before purchasing a cellular product. If the cellular network has less than desirable coverage, it is possible to install an external antenna to help increase cellular signal.
Alarm Notifications
When monitoring systems identify a change in status, they immediately send alerts to people on the contact list. If you don’t want all of your personnel to receive notifications at the same time, certain devices can be programmed to send alerts in a tiered fashion. It is important to consider the reach of the communications, so that you’ll be notified regardless of your locations. Multiple communications methods like phone, email and text provide extra assurance that you’ll get the alert. Also, note of the number of people the system can reach and if the system automatically cycles through the contact list until someone responds. Make sure the system allows for flexible scheduling so that it doesn’t send alarms to off-duty personnel.
Programming and Status Check
If you’re responsible for maintaining a commercial greenhouse facility, you want a system that will provide real-time status of all monitored conditions on demand. There are a few different ways to access your sensor readings. Options include calling to check status, viewing a web page, either on a local network or on the cloud, or accessing the information via an app on your mobile device. With a cloud-based system, the devices supervise themselves. This means if the internet or cellular connection goes down, the device will send an alarm to alert the appropriate personnel.
If you don’t select a cloud-based system, you will be limited to logging in through a local area network, which will allow you to make programming changes, access status conditions and review data logs. If internet connectivity is not available at your location, you will want to choose a cellular or phone system rather than Ethernet-based option.
Data Logging
Data history is valuable in identifying patterns and trends in your cannabis greenhouse conditions. Manually monitoring and recording environmental parameters takes a significant amount of personnel time and detracts from other important workplace demands. However, many monitoring systems automatically save information, recording tens of thousands of data points, dates and times. Cloud-based logging provides an unlimited number of records for users to view, graph, print and export data trends.
Analyzing data samples may lend insight to larger issues and prevent problems before they arise. For example, if the data log shows power fluctuations occurring at a regular time, it could be indicative of a more serious problem. Or, if the data shows signs of a ventilation fan or supplementary lighting beginning to malfunction, they can be repaired or replaced before total failure occurs.
Return On Investment
When deciding how much you should pay for a remote monitoring system, tally up the entire cost, fully installed with additional peripherals and sensors and any labor fees for installation. Then consider the value of your cannabis plant inventory and greenhouse equipment. Finally, factor in the cost of downtime, should an environmental event shut down your operation for a period of time.
Final Thoughts
Choosing the right greenhouse monitoring system and sensors could mean the difference between life and death for your cannabis plants. Understanding the conditions you need to watch and monitoring systems’ capabilities are they best way to protect your investment.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.