Tag Archives: dioxide

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 4

By Phil Gibson
No Comments

This is Part 4 in The 3-Legged Stool of Successful Grow Operations series. Click here to see Part 1, here to see Part 2, and here to see Part 3. Stay tuned for Part 5, coming next week.

Integrated Pest Management (IPM)

Aeroponic & hydroponic systems can operate with little to no soil or media. This eliminates the pest vectors that coco-coir, peat moss/perlite and organic media can harbor as part of their healthy biome approach. Liquid nutrient systems come at the nutrient approach from a different direction. Pure nutrient salts (nitrogen, potassium, magnesium and trace metals) are provided to the plant roots in a liquid carrier form. This sounds ideal for integrated pest management programs, but cultivators have to be aware of water and airborne pathogens that can disrupt operations. I will summarize some aspects to consider in today’s summary.

The elimination of soil media intrinsically helps a pest management program as it reduces the labor required to maintain a grow and the number of times the grow room doors are opened. Join that with effective automation with sensors and software, and you have immediate improvements in pest access. Sounds perfect, but we still have staff to maintain a facility and people become the number one source of contamination in a grow operation.

Figure 1: Example of Pythium Infected & Healthy Roots

Insects do damage directly to plants as they grow and procreate in a grow room. They also carry other pathogens that infect your plants. For example, root aphids, a very common problem, are a known carrier of the root pathogen, Pythium.

Procedures

One of the most common ways for pests to access your sealed, sterile, perfectly managed facilities are in the root stock of outsourced clones. If you must start your grow cycles with externally sourced clones, it is strongly recommended that you quarantine those clones to make sure that they do not import pest production facilities into your operation. Your operation management procedures must be complete. If you take cuttings from an internal nursery of mother plants, any pathogens present in your mother room will migrate through cuttings into your clones, supply lines, and subsequently, flower rooms.

Figure 2: Healthy Mothers & Clones, Onyx Agronomics

Start your gating process with questioning your employees and visitors. Do they grow at home or have they been to another grow operation in the last week? In the last day? You may be surprised by how many people that gain access to your grow will answer these questions in the affirmative.

Developing standard operating procedures (SOPs) that are followed by every employee and every visitor will significantly reduce your pest access and infection rates, and hence, increase your healthy harvests and increase your profitability. Procedures should include clothing, quarantining new genetics and cleaning procedures, such as baking or irradiating rooms to guarantee you begin with a sterile facility. This is covered more in the complete white paper.

Engineering Controls

Figure 3: Access Control: Air Shower, FarmaGrowers

Technology is a wonderful thing but no replacement for regimented procedures. Considered a best practice, professional air showers, that bar access to internal facilities, provide an aggressive barrier for physical pests. These high velocity fan systems and exhaust methods blow off insects, pollen and debris before they proceed into your facility. From that access port into your grow space, positive air flow pressure should increase from the grow rooms, to the hallways, to the outside of your grow spaces. This positive airflow will always be pushing insects and airborne material out of your grow space and away from your plants.

Maintaining Oxidation Reduction Potential (ORP)

ORP is a relative measurement of water health. Perfect water is clear of all material, both inert and with life. Reverse osmosis (RO) is a standard way to clear water but it is not sufficient in removing microscopic biological organisms. UV and chemical methods are needed in addition to RO to clear water completely.

ORP is an electronic measurement in millivolts (mV) that represents the ability of a chemical substance to oxidize another substance. ORP meters are a developing area and when using a meter, it is important to track the change in ORP values rather than the absolute number. This is due to various methods that the different meters use to calculate the ORP values. More on this in the white paper.

Oxidizers

Figure 4: AEssenseGrows Aeroponic Nozzles

There are two significant ways to adjust the ORP of a fertilizer/irrigation (fertigation) solution. The first is by adding oxidizers. Examples are chemical oxidizers like hydrogen peroxide (H2O2), hypochlorous acid (HOCl), ozone (O3) and chlorine dioxide (ClO2). Adding these to a fertigation solution increases the ORP of the fertigation solution by oxidizing materials and organic matter. The key is to kill off the bad things and not affect the growth of plants. Again here, the absolute ORP metric is not the deciding factor in the health of a solution and the methods by which each chemical reaction occurs for each of these chemicals are different. This is compounded by the fact that different ORP meters will show different readings for the same solution.

Another wonderful thing about automation and aeroponic and hydroponic dosing systems is that they can automatically maintain oxidizing rates and our white papers explain the methods executed by today’s automation systems.

Water Chilling

Another way to adjust ORP is to reduce the water temperature of the reservoirs. Maintaining water temperature below the overall temperature of your grow rooms is imperative for minimal biological deposition and nutrient system health. Water chillers use a heat exchanger process to export heat from liquid nutrient dosing reservoirs and maintain desired temperatures.

The benefit of managing ORP in aeroponic and hydroponic grow systems is highly accelerated growth. This is enhanced in aeroponics due to the effectively infinite oxygen exchanging gases at the surface of the plant roots. Nutrient droplets are sprayed or vaporized in parallel and provided to these root surfaces. Maximizing the timing and the best mineral nutrients to the root combustion is the art of grow recipe development. Great recipes drive superior yields and when combined with superior genetics and solid environmental controls, these plants will deliver spectacular profits to a grow operation.

Another Hero Award

Before closing this chapter, we have many cultivators that are producing stellar results with their operational and IPM procedures, so it is hard to choose just one leader. That said, our hats are off to RAIR Systems again and their director of cultivation, Ashley Hubbard. She and her team are determined to be successful and drive pests out of their operations with positive “little critters” and the best water treatment and management that we have seen. You are welcome to view the 7-episode walkthrough of the RAIR facility and their procedures here.

To download the complete guide and get to the beef quickly, please request the complete white paper Top Quality Cultivation Facilities here.

Stay tuned for Part 5 coming next week where we’ll discuss Genetics.

Soapbox

Clean Grow Still Failing? Check for Endophytic Mold

By Bernie Lorenz, PhD
3 Comments

The journal Frontiers in Plant Science recently shared an important article from researchers at Simon Fraser University in British Columbia, highlighting the “Pathogens and Molds Affecting Production and Quality of Cannabis Sativa.”

As a chemist focused on the science of preventing and mitigating mold in greenhouse and indoor cannabis grow facilities, this piece was fascinating to me. Like many others, it details and explains prevalent mold like Penicillium, Cladosporium and Aspergillus – things I see in grows every day.

But wait, there’s more fungi

The research and resulting article also brought up another type of fungi – endophytic mold. Endophytic mold usually lives symbiotically with plants, or is at least beneficial for both plant and fungi.

But not always.

In the past, the industry has believed that damaging mold spores were found on the outside of the flower. When moved, that flower would release the spores and send them flying – often creating massive cross-contamination issues for indoor grows.

Hope Jones, PhD, CEO of Adivina & ECS

“While cannabis is an incredibly powerful plant in terms of its medicinal properties, it is unfortunately highly susceptible to many pest and pathogens,” says Hope Jones, PhD, CEO, Adivina & ECS. “And it is this susceptibility that is so challenging to many inexperienced or undisciplined grow operations.”

Now, however, we know that there’s another culprit to add to the list: the inner parts of the plant can also be a source of endophytic cross contamination and mold.

Since it grows inside of the plant, this fungus creates high spore counts that can cross contaminate from outside, into the flower.

Treating mold in a facility

Here’s the good news:

This seemingly bad news – that there’s a new fungus to worry about, and it is inside the flower – may actually help cannabis grows struggling with mold, and those who are following the proper protocols already.

A petri dish of mold growth from tested cannabis Photo credit: Steep Hill

Effective mitigation protocols can include things like treating HVAC systems, controlling humidity, using products like chlorine dioxide to treat irrigation lines, enforcing protective clothing and shoe covers for employees, reducing the amount of in-and-out for employees around grow rooms.

These are important upstream and environmentally-focused integrated pest management (IPM) programs that will usually keep facilities clean and relatively mold-free.

But if these programs are in place, and there’s still an issue, Endophytic fungi may be to blame.

If you are having ongoing mold issues but have ruled out cross-contamination and a facility without proper protocol, look to the mother plant.

“Small mistakes in agricultural practices are amplified with cannabis,” Dr. Jones continues. “And today’s propagation practices of traditional cloning add to this vulnerability. Cannabis is an annual plant and by keeping mothers in a perpetual state of vegetative growth for years, and taking repetitive cuttings produces clones in a highly stressed state. This stressed state diminishes genetic potential and weakens a plant’s ability to fight disease and pests.”

Testing for and addressing endophytic fungi

If these concerns are ringing a bell, remember, there is also a way to test for Endophytic mold.

Checking cuttings from suspected mother plants over a period of time is the best way to see if the Endophytic mold is present.

A section of the mother plant cutting is placed into a solution (for example, as outlined by the article, a very concentrated hypochlorite followed by 70% Ethanol) that will kill all of the microorganisms that are present on the surface of the plant tissues.

A large tissue culture facility run in the Sacramento area that produces millions of nut and fruit trees clones a year.

From there, an unadulterated dissection of the internal tissues can be extracted and cultured for quantification and identification of endophytic fungi.

“Tissue culture offers a form of genetic rebooting returning the plant to its natural genetic potential and thereby strengthening its natural ability to defend against environment assault,” says Dr. Jones. “It also allows the breeder to conduct pathogenic disease testing which provides the entire industry with a higher level of scientific certainty and analysis.”

If you find this mold inside of the mother plant, your facility’s mold problem could be a systemic issue, not an environmental one.

If you do find that Endophytic mold is causing issues, of course, you may have to destroy the mother plant.

This should not mean the end of a strain. Tissue culture on a cutting is an option that can eliminate the unwanted fungi and save the genetics. Using those genetics to regrow a mother will start fresh and avoid the intrinsic mold that was plaguing the strain prior.

Growing knowledge

The practice of checking mother plants for Endophytic mold is not yet commonplace in cannabis, but the hemp business is leading the way.

They’re testing to create very clean plants, so you don’t have issues during cultivation.

Major growers in the U.S. could save millions in lost harvests with mold mitigation. If your current IPM program isn’t doing the trick, you may want to follow in hemp’s footsteps and look inside the plant.