Tag Archives: EPA

Cannabis Economics & Creating Efficiencies for Profit Margin

By Laura Breit
2 Comments

News of cannabis glut and falling wholesale prices has been dominating the airwaves of late, despite some recent reports showing that prices are remaining steady. As legalization continues to spread across the nation, the industry is poised to become commoditized, especially in those areas where it has been legal for a longer period of time. Whether specializing in retail cannabis products or industrial hemp, companies in the cannabis industry should be taking note of the sweeping economic implications of a maturing marketplace.

As is true in any industry, rapid growth and significant investments are sometimes followed by a slowdown (think dot-com, but less extreme). There are measures that companies can take in order to avoid negative outcomes, and a step in the right direction includes focusing on the bottom line and planning for future growth. Company leaders need to educate themselves on the competitive landscape and take the long view toward solutions for their operations.

Sounds easy enough, but how do we actually do this? One key step is to pay attention to overall expenses and create efficiencies wherever possible in order to remain competitive. This means that during the facility and systems design phase, all outcomes need to be taken into account. One of the most important – and cost conscious – things to consider is energy usage. Energy Star, the EPA-backed program for energy efficiency, says that facilities can “reduce their energy use by up to 30 percent through low or no-cost measures.” Generally, this means that efficiencies are built-in to the design with energy cost savings and sustainability in mind.

One of the largest energy outputs for a cannabis operation includes the facility’s HVAC and electrical systems. We have found that when clients step back to consider a range of alternatives, they have a more comprehensive base for this important decision. Considering outside factors, such as growth projections and specific goals, cannabis companies can make a more educated decision on the system that will provide the best economic outcome for their business. Often, those that plan ahead and look past the initial system cost, find longer term savings and lower energy usage over time.

A plant in flowering under an LED fixture

As an example, we had a client looking to build an indoor cannabis cultivation operation. They had originally chosen to build their facility with high pressure sodium lighting to save money up front. Because this method of lighting typically has a lower first cost, it appeals to many companies that are starting out and wary of their budget. However, this particular client was poised for growth and looking to make sustainable choices that would impact their bottom line and meet their goals for environmentally sound business practices. We were able to create a model for them to illustrate the long-term benefits of installing LED lighting. This type of lighting allows growers to keep room temperatures higher, without compromising plant health with issues like tip burn. In addition, LED lights are more efficient and reduce the cooling load. This means mechanical systems were able to be downsized reducing first costs, and these systems also consumed less energy, reducing operational costs. Despite a higher first cost of the LED lights, the company ended up saving enough money in the reduced mechanical equipment size, as well as in the reduction of energy use from the lights and the mechanical equipment. The first costs between an HPS system and an LED system were much more comparable than originally expected, and they were able to keep their operational costs to an absolute minimum. This type of scenario has proven true over and over when models are built to show longer-term cost benefits for electrical and HVAC systems, using analysis from an experienced team of designers and engineers.

While the greater economic outlook for the cannabis industry is in flux, a thoughtful approach can help operations avoid negative outcomes. As more and more companies continue to enter the space, investments roll in and supply rises, we will all watch to see if demand will match this growth. Taking note of incremental methods for impacting the bottom line, such as smart HVAC and electrical system selection, can mean the difference between success and failure (and profit margins!) in this turbulent landscape.

Managing Cannabis Waste and Protecting Your Business from Risk

By David Laks
2 Comments

Cannabis producers know that they cannot treat plant waste like common yard waste. They need to develop a detailed waste disposal plan in order get a license to operate.

Failing to follow the approved plan and improperly disposing of dry waste materials and waste products from oil extraction leads to fines, liabilities or even having your license rescinded.

Learning to deal with cannabis waste appropriately is crucial to the success of an operation. There are a number of strict controls in place for dealing with any kind of hazardous waste, which can’t just be sent to a landfill or composting facility.

In the US, the EPA and state governments provide guidelines for disposing of hazardous waste properly, and other countries have federal and local requirements as well. The EPA, like other environmental bodies, differentiates between two types of waste: solid and liquid.

Solid waste disposal: The guideline for identifying solid waste is that it’s “unrecognizable and unusable.” This means no one should be able to look at a bag of waste and know immediately that it is cannabis. Many cannabis operations have a facility on site for grinding down the waste into smaller bits. If the waste is non-hazardous, it is mixed with other non-cannabis organics such as garden trimmings and then composted or sent to the appropriate landfill. If it’s hazardous, it’s mixed with cat litter, sand, plastic or sawdust and sent to the appropriate landfill.

Liquid waste disposal: Liquid waste is a bit more complicated. It must be disposed of properly or sent to a hazardous waste treatment facility. Cannabis operations must partner with a shipping company to dispose of the hazardous waste appropriately, unless they transport it themselves.

It can be confusing to manage the risks of proper disposal of cannabis waste. Keep it simple by following these three tips:

  1. Become an expert in all the legal restrictions – and follow them. Federal restrictions will guide you overall, but local (i.e., state and municipal) restrictions are equally important and may vary.
  2. Seek out experienced, reputable disposal companies – and hire the best one.Look for one that is familiar with handling hazardous waste in general and cannabis waste in particular.
  3. Familiarize yourself with the guidelines for proper tracking, transportation and sign-offs – and follow them.Completing all appropriate documentation ensures you have a paper trail to protect you in the event of an audit. Much of the documentation creates a written record so inspectors can confirm appropriate handling.

Waste disposal policies should be reviewed regularly as state and municipal regulations can change. At the same time, it would be wise to review your environmental insurance policy to ensure your business is covered for any accidental releases.

It can be tempting to take shortcuts – saving both money and time – when it comes to hazardous waste disposal. But properly disposing of hazardous materials can demonstrate your organization’s credibility and financial wellbeing, and it can also save you from unnecessary risk.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 3

By Carl Silverberg
No Comments

Part 1 in this series went into a discussion of resource management for cannabis growers. Part 2 presented the idea of land use and conservation. In Part 3 below, we dive into pesticide use and integrated pest management for growers, through an environmental lens.

Rachel Carson’s book Silent Spring in 1962, is often credited with helping launch the environmental movement. Ten years later, VP Edmund Muskie elevated the environment to a major issue in his 1972 Presidential campaign against Richard Nixon. 57 years after Ms. Carson’s book, we’re still having the same problems. Over 13,000 lawsuits have been filed against Monsanto and last month a jury in Alameda County ruled that a couple came down with non-Hodgkin’s lymphoma because of their use of Roundup. The jury awarded them one billion dollars each in punitive damages. Is there a safer alternative?

“Effectively replacing the need for pesticides, we use Integrated Pest Management (IPM) which is a proactive program designed to control the population of undesirable pests with the use of natural predators, a system commonly known as “good bugs (such as ladybugs) fighting bad bugs”, states the website of Mucci Farms, a greenhouse grower. While this applies to cannabis as well, there is one major problem with the crop that isn’t faced by other crops.

Rachel Carson’s Silent Spring- often credited with starting the environmental movement of the 20th century.

While states are moving rapidly to legalize it, the EPA is currently not regulating cannabis. That is in the hands of each state. According to a story in the Denver Post in 2016, “Although pesticides are widely used on crops, their use on cannabis remains problematic and controversial as no safety standards exist.” Keep in mind that it takes a lot more pesticides to keep unwarranted guests off your cannabis plant when it’s outdoors than when it’s in a controlled environment.

We’re accustomed to using endless products under the assumption that a range of governmental acronyms such as NIH, FDA, OSHA, EPA, USDA are protecting us. We don’t even think about looking for their labels because we naturally assume that a product we’re about to ingest has been thoroughly tested, approved and vetted by one of those agencies. But what if it’s not?

Again, cannabis regulation is at the state level and here’s why that’s critical. The budget of the EPA is $6.14 billion while Colorado’s EPA-equivalent agency has a budget of $616 million. According to the federal budget summary, “A major component of our FY 2019 budget request is funding for drinking water and clean water infrastructure as well as for Brownfields and Superfund projects.” In short, federal dollars aren’t going towards pesticide testing and they’re certainly got going towards a product that’s illegal at the federal level. That should make you wonder how effective oversight is at the state level.

What impact does this have on our health and what impact do pesticides have on the environment? A former Dean of Science and Medical School at a major university told me, “Many pesticides are neurotoxins that affect your nervous system and liver. These are drugs. The good news is that they kill insects faster than they kill people.” Quite a sobering thought.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”Assuming that he’d be totally supportive of greenhouses, I pushed to see if he agreed. “There’s always a downside with nature. An enclosure helps you monitor access. If you’re growing only one variety, your greenhouse is actually more susceptible to pests because it’s only one variety.” The problem for most growers is that absent some kind of a computer vision system in your greenhouse, usually by the time you realize that you have a problem it’s already taken a toll on your crop.

Following up on the concept of monitoring, I reached out to Dr. Jacques White, the executive director of Long Live the Kings, an organization dedicated to restoring wild salmon in the Pacific Northwest. Obviously, you can’t monitor access to a river, but you certainly can see the effects of fertilizer runoff, chemicals and pesticides into the areas where fish live and eventually, return to spawn.

“Because salmon travel such extraordinary long distances through rivers, streams, estuaries and into oceans they are one of the best health indicators for people. If salmon aren’t doing well, then we should think about whether people should be drinking or using that same water. The salmon population in the area around Puget Sound is not doing well.”

We talked a bit more about pesticides in general and Dr. White summed up the essence of the entire indoor-outdoor farming and pesticides debate succinctly.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”

If you extrapolate that thought, the same applies to agriculture. Greenhouse farming, while subject to some problems not endemic to outdoor farming, quite simply puts a lot fewer chemicals in the air we breathe, the water we drink and the food we eat.

Radojka Barycki picture

Food Safety: Do You Know What Is In Your Water?

By Radojka Barycki
No Comments
Radojka Barycki picture

Water is essential for life and it is an important part of agriculture and food manufacturing. Water has many uses in the cannabis industry. Among the most common uses are irrigation, ingredient/product processing and cleaning processes.

Water can be the carrier of pathogenic microorganisms and chemicals that can be transferred to food through agriculture and manufacturing practices. Poor quality water may have a negative impact in food processing and potentially on public health. Therefore, development and implementation of risk management plans that ensure the safety of water through the controls of hazardous constituents is essential to maintain the safety of agricultural and manufactured food or cannabis products.

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans.Although there no current regulations regarding the water used in cannabis cultivation and processing, it is highly recommended that the industry uses potable water as standard practice. Potable water is water that is safe for drinking and therefore for use in agriculture and food manufacturing. In the United States, the Environmental Protection Agency (EPA) sets the standards for water systems under the Safe Drinking Water Act (SDWA.)The regulations include the mandatory levels defined as Maximum Contaminant Levels (MCLs) for each contaminant that can be found in water. Federal Drinking Water Standards are organized into six groups: Microorganisms, Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides. The agriculture and food manufacturing industry use the SDWA as a standard to determine water potability. Therefore, water testing forms part of their routine programs. Sampling points for water sources are identified, and samples are taken and sent to a reputable laboratory to determine its quality and safety.

Microbiological Testing

Petri dish containing the fungus Aspergillus flavus
Petri dish containing the fungus Aspergillus flavus.
Photo courtesy of USDA ARS & Peggy Greb.

Determining the safety of the water through microbiological testing is very important. Pathogens of concern such as E. coli, Salmonella, Cryptosporidium parvum and Cyclospora sp. can be transmitted to food through water. These pathogens have been known to be lethal to humans, especially when a consumer’s immune system is compromised (e.g. cancer patients, elderly, etc.) If your water source is well, the local state agency may come to your facility and test the water regularly for indicator organisms such as coliforms. If the levels are outside the limit, a warning will be given to your company. If your water source is the city, regular testing at the facility for indicator microorganisms is recommended. In each case, an action plan must be in place if results are unfavorable to ensure that only potable water is used in the operations.

Chemical Testing (Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides) 

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans. Although, there are several regulations governing the discharge of chemicals into storm water, fields and even into city water treatment plants, it is important that you test your incoming water for these chemicals on a regular basis. In addition, it is important that a risk assessment of your water source is conducted since you may be at a higher risk for certain components that require testing. For example, if your manufacturing facility is near an agricultural area, pesticides may enter the surface water (lakes, streams, and rivers) or the aquifer (ground water) through absorption into the ground or pollution. In this case, you may be at higher risk for Tetrahalomethanes (THMs), which are a byproduct of pesticides. Therefore, you should increase the testing for these components in comparison to other less likely to occur chemicals in this situation. Also, if your agriculture operation is near a nuclear plant, then radionuclides may become a higher risk than any of the other components.

GMPFinally, in addition to the implementation of risk management plans to ensure the safety of water, it is highly recommended that companies working in food manufacturing facilities become familiar with their water source to ensure adequate supply to carry on their operations, which is one of the requirements under the 21 CFR 117. Subpart B – Current Good Manufacturing Practices (cGMPs) for food manufacturers under the Preventive Controls for Human Foods Rule that was enacted under the Food Safety Modernization Act in 2015. Also, adequate supply is part of the Good Agricultural Practices (GAP) The EPA has created a program that allows you to conduct a risk assessment on your water source. This program is called Source Water Protection. It has six steps that are followed to develop a plan that not only protect sourcing but also ensures safety by identifying threats for the water supply. These six steps are:

  1. Delineate the Source Water Protection Area (SWPA): In this step a map of the land area that could contribute pollutants to the water is created. States are required to create these maps, so you should check with local and/or state offices for these.
  2. Inventory known and potential sources of contamination: Operations within the area may contribute contaminants into the water source. States usually delineates these operations in their maps as part of their efforts to ensure public safety. Some examples of operations that may contribute to contaminants into the water are: landfill, mining operations, nuclear plants, residential septic systems, golf courses, etc. When looking at these maps, be sure that you verify the identified sources by conducting your own survey. Some agencies may not have the resources to update the maps on a regular basis.
  3. Determine the susceptibility of the Public Water Source (PWS) to contaminate sources or activities within the SWPA: This is basically a risk assessment. In here you will characterize the risk based on the severity of the threat and the likelihood of the source water contamination. There are risk matrices that are used as tools for this purpose.
  4. Notify the public about threats identified in the contaminant source inventory and what they mean to the PWS: Create a communication plan to make the State and local agencies aware of any findings or accidents in your operation that may lead to contamination of the PWS.
  5. Implement management measures to prevent, reduce or eliminate risks to your water supply: Once risks are characterized, a plan must be developed and implemented to keep risks under control and ensure the safety of your water.
  6. Develop contingency planning strategies that address water supply contamination or service interruption emergencies: OSHA requires you to have an Emergency Preparedness Plan (EPP). This plans outlines what to do in case of an emergency to ensure the safety of the people working in the operation and the continuity of the business. This same approach should be taken when it comes to water supply. The main questions to ask are: a) What would we do if we find out the water has been contaminated? b) What plan is in place to keep the business running while ensure the safety of the products? c) How can we get the operation back up and running on site once the water source is re-stablished?

The main goal of all these programs is having safe water for the operations while keeping continuity of the business in case of water contamination.

Dr. Allison Justice

What Does it Really Mean To Be Organic in Cannabis?

By Dr. Allison Justice
2 Comments
Dr. Allison Justice

If you ask an organic chemist, it’s any molecule with a carbon attached. If you ask a consumer of USDA Certified Organic vegetables, they might say it is food produced without chemicals pesticides, that it is safer and cleaner and even more nutritious. Possibly another consumer will say it’s just a hoax to pay more for food, but what does the USDA Certified Organic Farmer say?

Most will agree it is a very rigorous process of record keeping, fees, rules and oversight. The farmers have limited choices for pesticides and fertilizers; they incur higher labor costs, suffer potentially lower yields and generally have higher input costs. However, at the end of the day the farmer does get a higher price point.

With so many misconceptions about organic food, it is difficult to know what is actually organic by definition. First let’s think about what the word pesticide means. A pesticide is “a substance used for destroying insects or other organisms harmful to cultivated plants or to animals.” By definition, a vacuum used to suck off spidermites is a pesticide, so instead we should say that no synthetic pesticides are used. These are pesticides that enter and reside for long periods of time within the plant, which are potentially harmful to the end consumer. Though organic food does not contain synthetic pesticides, the perception of the food being healthier is also not always accurate. Growers often use foliar applied teas or manures, which increase the chance of the product containing E. coli or other harmful microbes. In addition, certain sanitizing agents or gamma irradiation is not allowed, so the post-harvest cleaning is not always as thorough as for conventional foods. When cannabis is sold as a dried product, the consumer cannot wash the flower as they might do before eating an apple. As growers, we should make sure we are disinfecting the flower before harvest and keeping the plant/processes clean throughout curing.

I often hear cannabis growers saying they are producing an organic product, but this simply cannot be true. The term “organic” is a labeling term for agricultural products (food, fiber or feed) that have been produced in accordance to the federal government’s USDA organic regulations. Due to our (cannabis growers) ongoing disagreements with the federal government, this is not a term we can put on our product. However, we can still grow to the same standards as USDA-certified farmers. How can we do this? By using OMRI (Organic Materials Review Institute) approved products. OMRI is a third-party, nonprofit organization that lets growers know if a product can be used in certified Organic production. You can find this seal on many fertilizers or pesticides.

Next, if it is a pesticide product that is not OMRI approved, check to see if it is registered by the EPA (Environmental Protection Agency). The EPA will provide ingredients and crops that are approved, amounts which can be used safely and storage/disposal practices on the label. Products that are put through the EPA registration are evaluated for their environmental, human and residual risks. Companies pay a hefty fee for this process, and much research goes into providing this information – ALWAYS READ THE LABEL!

A couple of exceptions to an EPA registration are pesticides that are 25B-exempt and biological control. 25B-exempt pesticides are pesticides that pose minimal or no risk to humans. A complete list of these products can be found here. Examples of these pesticides include rosemary, garlic, spearmint, etc.

Biological control is a method for controlling pests by the use of natural enemies. Biological control agents are allowed in organic production. If you are still wondering which pesticides or fertilizer are OK to use in cannabis and you do not live in a state with already enforced regulation, check out allowed lists in states that do.

So we know we cannot be considered a USDA organic cannabis farmer, but we CAN strive to meet the same standards:

  • Follow your state’s regulations; they are there for a reason!
  • Use OMRI products, 25B-exempt products and BCAs.
  • Keep an eye out for upcoming third-party certification companies, such as Clean Green or MPS (beware of the ones that want you to only use their products), because we need more than the state to regulate what we put onto our crop.
  • Finally, always think about the microbial load you’ve put on your plants. Although many can be very beneficial and help to produce high quality crops, many species can be harmful to the end user.

DEA To Consider Rescheduling Cannabis, Could Mean Policy Shift

By Aaron G. Biros
No Comments

In a letter sent to lawmakers last week, the Drug Enforcement Agency (DEA) announced plans to make a decision on rescheduling cannabis by mid-2016. The announcement could represent the culmination of a shift in the federal government’s attitude toward cannabis legalization.Dea_color_logo

Currently, cannabis is a Schedule I narcotic, meaning the government views it as lacking medical benefits and have a high potential for abuse. The rescheduling of cannabis has the potential to open the floodgates for research, including much needed clinical trials.

Derek Peterson, chief executive officer at Terra Tech, a cannabis-focused agriculture company, believes this bodes well for the growth potential of the cannabis industry. “From the perspective of quality and safety standards, I find it unlikely that rescheduling it would negatively impact the degree to which cannabis is examined,” says Peterson. “It’s unnecessarily high position on the DEA drug schedule does nothing but limit the industry’s potential for growth, stall any meaningful pharmaceutical testing and increase law enforcement’s ability to prosecute non-violent drug offenders,” adds Peterson.

The rescheduling could also potentially allow for the prescribing of cannabis for patients. Stephen Goldner, founder of Pinnacle Labs and president of Regulatory Affairs Associates, is hopeful this will lead to a greater shift in public attitude towards cannabis. “The DEA’s announcement is a clear message to all States and possibly even to United Nations policy makers: even the DEA is willing to reconsider cannabis,” says Goldner. “Since the DEA is reconsidering cannabis, state politicians and local police departments can also be flexible and move away from prohibition, towards the regulation of cannabis.”

The rescheduling of cannabis could have a tremendous impact on the growth of the cannabis industry, including more clinical trials, medical research and physician participation. It could also open the door for more federal agency involvement, as the Schedule I status inhibits any EPA research on cannabis pesticide use or FDA guidance on food and drug good manufacturing practices. When reached for comment, the FDA’s press office said they could not speculate on any involvement in the matter.

Pesticide Position Paper: Prepared by Comprehensive Cannabis Consulting (3C)

By Adam Koh, Nic Easley
4 Comments

Those that follow the legal cannabis industry are undoubtedly aware of the struggles of Colorado to regulate pesticide use on cannabis. At the time of this writing, there have been 19 recalls of products contaminated by pesticides in as many weeks. Authorities could not in all cases identify exactly how many units of products may have been tainted, but based on the numbers available, roughly 200,000 individual cannabis products, if not more, have been pulled from dispensary shelves. Along with these recalls have come a large amount of coverage and commentary from various news outlets, industry stakeholders, and even those companies who have had products pulled from shelves.

As this is a controversial and contentious subject, it can be difficult to parse and evaluate the various points of view being offered. In what follows, we will outline the issues at hand objectively: first providing a brief overview of federal and state pesticide regulations and how they pertain to cannabis; addressing claims of whether pesticide usage is “safe” or not; and, finally, offering our opinion of how the cannabis industry should address the pesticide conundrum considering the current regulatory environment and the state of our knowledge.

Before diving in, we are also aware that there is controversy around cannabis testing methodologies, and that the reliability of cannabis testing labs in general has been called into question by a number of the companies that have faced recalls. While we cannot comment on the operations of particular labs, we do support the application of consistent standards, proficiency evaluations, and stringent regulatory oversight to testing labs themselves, so that their results can be assured of being beyond reproach.

Still, 3C’s stance is that quality cannot be tested into a product. To have growers continue to produce contaminated cannabis only to see it recalled repeatedly is unsustainable for the industry; indeed, it threatens its very existence, as we discuss below. That is why we focus in this paper on the cultivation of the plant, as correcting problems on the production side is the only way to ultimately resolve the dilemma in which the industry finds itself.

Pesticide Regulation in the US Relative to Cannabis Cultivation

Cannabis’ pesticide problems stem in large part from the fact the pesticide regulation takes place at the federal level, under the auspices of the EPA. All pesticides undergo years of research and development before they can be sold to farmers and employed on crops. That research addresses questions such as where and how a pesticide can be employed, on what crops, in what concentrations, with what frequency, and how long before harvest can a pesticide be applied. Questions of worker safety are also addressed, such as those concerning what Personal Protective Equipment (PPE) might be required and how long workers must avoid treated areas (Re­Entry Intervals), among other concerns.

The fruits of such studies are then distilled to the contents of a pesticide’s label, which must be registered with and approved by the EPA before a pesticide can be distributed for sale. Federal and state laws require that pesticides be applied according to label directions, making the label a legal document of sorts. “The label is the law,” is a phrase common among agricultural professionals with which the legal cannabis industry is becoming acquainted.

The sticking point in regard to cannabis is that, due to its federal illegality, no research has been performed on the use of pesticides on cannabis. Due to the lack of research, no pesticides registered currently with the EPA are labeled for use on cannabis. Since all pesticides must be applied according to label specifications, this essentially prohibits pesticide use in cannabis production. However, some labels are written in such a broad manner that the use of those pesticides could not be construed as a breach of the legally­ binding use directions. Additionally, certain pesticides are of such low­toxicity that the EPA has deemed that their registration is not required; these are known as minimum­ risk products under section 25(b) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). At this time, the Colorado Department of Agriculture (CDA), in an attempt to offer guidance to cannabis growers, is maintaining a list of such products that, either due to broad label language or 25(b) status, may be used on cannabis without that use being a violation of the label.

Are Pesticides Safe for Use on Cannabis?

Since the first plants to be quarantined after discoveries of improper, off­-label pesticide use to the most recent recalls, some of the Colorado cannabis companies caught up in those enforcement actions have made public statements claiming that their products are safe. These statements are dangerously misleading, as they do not take into account the issues laid out above, nor the facts that follow.

Frequently, attempts to justify such claims point out that pesticides are employed on our food and therefore must be okay to apply to cannabis as well. This is a classic case of comparing apples to oranges; or, in this case, comparing apples and oranges to cannabis. Such data cannot be bridged for the simple reason that apples and oranges (and most other agricultural food crops) are not smoked. Smoking remains the primary method of cannabis ingestion, but cannabis products are also vaporized (concentrates), consumed (edibles), applied to the skin (topical creams and patches), and taken sublingually (tinctures, sublingual strips).

As noted, the studies that pesticides must undergo prior to being approved by the EPA involve measuring acceptable residues based on the method of consumption of the final product. Since most food is consumed and digested, few pesticides on the market have undergone pyrolysis studies, which examine how the chemical structures of pesticides degrade when burned. This means that while the fungicide myclobutanil, the active ingredient in Eagle 20EW, may be approved for use on grapes, that approval is meaningless in regard to cannabis, as grapes are not smoked and the relative safety of myclobutanil residues was not tested in regard to such a consumption method.

While studies may eventually reveal that certain pesticides may be used on cannabis without ill effects to the end users, such research has not been performed and no one can say with certainty what the effects of consuming cannabis containing pesticide residues might be. Even the CDA qualifies the list of products that may be used without violating labeling guidelines with the following statement, “These products have not been tested to determine their health effects if used on marijuana that will be consumed and thus the health risks to consumers is unknown.”

Again, no one can currently say what pesticides, if any, can be safely employed on cannabis; anyone claiming definitively that their products are safe despite off­-label pesticide use is making a statement that at this time lacks any scientific basis whatsoever.

Another claim made numerous times by companies defending their off­-label pesticide use is that no one has yet fallen ill from pesticide use on cannabis. While this is true, we must remember that we are in uncharted territory, and no large­scale public health studies have been done to determine what, if any, effects result from consuming cannabis to which pesticides were applied. We hope that no ill effects will surface, but the fact of the matter is that chronic health issues may take years to show themselves and a public health crisis may yet emerge.

Recommendations for the Cannabis Industry

We are advocates for cannabis legalization and want to see this industry grow and develop into one that is beneficial for all involved. We believe that cannabis can continue to be a force for positive change in numerous areas of society, from medicine to criminal justice to agriculture, and beyond. But, in order for it to do so, we must navigate issues such as those around pesticide use in an intelligent and responsible manner.

Our primary recommendation should be preceded by the statement that the use of chemical pesticides of the type triggering Colorado’s recalls is not needed in cannabis production. We make this statement based on years of experience working in, managing, and advising cultivation operations of all types, methodologies, and scales on how to grow successfully without illegal pesticides. Cannabis has survived and flourished throughout human history without pesticides, and will continue to do so if we cultivate it correctly.

As such, we recommend that growers n​ot​ employ any pesticides in a manner that violates label directions, and only use 25(b) products that have undergone pyrolysis testing to ensure that they are not releasing harmful compounds when burned. Furthermore, applications should only be made during the vegetative stage, prior to the emergence of flowers. Overall, if there is any doubt as to whether a product or material is safe, it should not be used until legitimate, peer­-reviewed research has been performed by a reputable institution.

Successful pest control can be achieved via intelligent facility design, robust environmental controls, workflow protocols, and strict cleanliness standards, in addition to preventative applications of appropriate minimum­ risk pesticides. There is no magic bullet that will solve all pest problems, which is why experienced agricultural professionals rely on Integrated Pest Management (IPM), defined as “an ecosystem­-based strategy that focuses on long­term prevention of pests or their damage through a combination of techniques such as biological control, habitat manipulation, modification of cultural practices, and use of resistant varieties.” Overall, the adoption of Good Agricultural Practices (GAP) is much needed in the industry, and cannabis growers should look to agricultural operations that promote the four pillars of GAP standards (economic viability, environmental sustainability, social acceptability, and safety and quality of the final product) for guidance in formulating best practices in this new field.

This recommendation is not simply a matter of principle, but one that will preserve your business. In addition to costly and brand­-damaging recalls, we have already seen the first product liability lawsuits filed last year against LivWell by cannabis consumers over off­label pesticide use. Another issue is that of worker safety. Most cannabis cultivation takes place indoors, where pesticide residues can linger in garden areas and on equipment, creating toxic work environments. Unfortunately, based on the widespread nature of pesticide use in the legal cannabis industry, we feel confident in stating that thousands of workers employed in legal cannabis cultivation operations have applied chemical pesticides without proper PPE or safety training. Businesses employing pesticides off­-label will likely find themselves subject to liability claims from workers, as well as consumers, in the relatively near future.

Conclusion

In closing, the bottom line is that applying pesticides off­-label is a violation of state and federal law and could result in criminal and civil sanctions, should regulators and affected parties choose to pursue them.

It must also be noted that off­-label pesticide use threatens the industry as a whole. Point six of the Cole Memorandum states that the federal government will not make the enforcement of the Controlled Substances Act a priority as long as the “exacerbation of (…) public health consequences associated with marijuana use” is prevented. The emergence of a public health problem would be a violation of the Cole Memo ­and it could be argued that the current situation unfolding in Denver is already a violation ­ and could trigger federal intervention against states that have legalized cannabis. In this light, the Denver Department of Environmental Health, which is driving the recalls, has not “launched a campaign against legal cannabis,” as a company recently subject to a recall claimed, but is actually acting as a bulwark against a potentially serious Cole Memo violation that could shutter the entire industry.

Based on the current situation, the cannabis industry must come together to denounce and eliminate off­-label pesticide use. In order to ensure the health of patients, consumers, workers, and the industry itself, we must seize this opportunity to grow without chemicals that are currently illegal, potentially very harmful, and ultimately not even necessary.