Tag Archives: epigenetics

Dr. Zacariah Hildenbrand
Soapbox

Cannabis and the Environment: Navigating the Interplay Between Genetics and Transcriptomics

By Dr. Zacariah Hildenbrand
No Comments
Dr. Zacariah Hildenbrand

It is that time of year where the holidays afford us an opportunity for rest, recuperation and introspection. Becoming a new father to a healthy baby girl and having the privilege to make a living as a scientist, fills me with an immeasurable sense of appreciation and indebtedness. I’ve also been extremely fortunate this year to spend significant time with world-renowned cannabis experts, such as Christian West, Adam Jacques and Elton Prince, whom have shared with me a tremendous wealth of their knowledge about cannabis cultivation and the development of unique cannabis genetics. Neither of these gentlemen have formal scientific training in plant genetics; however, through decades of experimentation, observation and implementation, they’ve very elegantly used alchemy and the principles of Mendelian genetics to push the boundaries of cannabis genetics, ultimately modulating the expression of specific cannabinoids and terpenes. Hearing of their successes (and failures) has triggered significant wonderment and curiosity with respect to what can be done beyond the genetic level to keep pushing the equilibrium in this new frontier of medicine.

Lighting conditions can greatly impact the expression of terpenes (and cannabinoids) in cannabis.Of course genetics are the foundation for the production of premium cannabis. Without the proper genetic code, one cannot expect the cannabis plant to express the target constituents of interest. However, what happens when you have an elite genetic code, the holy grail of cannabis nucleotides if you will, and yet your plant does not produce the therapeutic compounds that you want and/or that are reflective of that elite genetic code? This ‘loss in translation’ can be explained by transcriptomics, and more specifically, epigenetics. In order for the genetic code (DNA) to be expressed as a gene product (RNA), it must be transcribed, a process that is modulated by epigenetic processes like DNA methylation and histone modification. In other words, the methylation of the genetic code can dictate whether or not a particular segment of DNA is transcribed into RNA, and ultimately expressed in the plant. To put this into context, if the DNA code for the enzyme THCA synthase is epigenetically silenced, then no THCA synthase is produced, your cannabis cannot convert CBGA into THCA, and now you have hemp that is devoid of THC.So what is the best lighting technology to enhance the expression of terpenes? 

With all of that being said, how do we ensure that our plants thrive under favorable epigenetic conditions? The answer is the environment; and the expression of terpenes is an ideal indicator of favorable environmental conditions. While amazing anti-inflammatories, anti-oxidants and metabolic regulators for humans, terpenes are also extremely powerful anti-microbial agents that act as a robust a line of defense for the plant against bacteria and pests. So, if the threat of microbes can induce the expression of terpenes, then what about other environmental factors? I am of the opinion that the combination of increased exposure to bacteria and natural sunlight enhances the expression of terpenes in outdoor-grown cannabis compared to indoor-grown cannabis. This is strictly my opinion based off of my own qualitative observations, but the point being is that lighting conditions can greatly impact the expression of terpenes (and cannabinoids) in cannabis.

A plant in flowering under an LED fixture

So what is the best lighting technology to enhance the expression of terpenes? Do I use full spectrum lighting or specific frequencies? The answer to these questions is that we don’t fully know at this point. Thanks to the McCree curve we have a fundamental understanding of the various frequencies within the visible light spectrum (400-700nm) that are beneficial to plants, also known as Photosynthetically Active Radiation (PAR). However, little-to-no research has been conducted to determine the impacts that the rest of the electromagnetic spectrum (also categorized as ‘light’) may have on plants. As such, we do not know with 100% certainty what frequencies should be applied, and at what times in the growth cycle, to completely optimize terpene concentrations. This is not to disparage the lighting professionals out there that have significant expertise in this field; however, I’m calling for the execution of peer-reviewed experiments that would transcend the boundaries of company white papers and anecdotal claims. In my opinion, this lack of environmental data provides a real opportunity for the cannabis industry to initiate the required collaborations between cannabis geneticists, technology companies and environmental scientists. This is one field of research that I wish to pursue with tenacity and I also welcome other interested parties to join me in this data quest. Together we can better understand the environmental factors, such as lighting, that are acting as the molecular light switches at the interface of genetics and transcriptomics in cannabis.

An Introduction to Cannabis Genetics, Part III

By Dr. CJ Schwartz
4 Comments

Polyploidy in Cannabis

Polyploidy is defined as containing more than two homologous sets of chromosomes. Most species are diploid (all animals) and chromosomal duplications are usually lethal, even partial duplications have devastating effects (Down’s syndrome). Plants are unique as in being able to somewhat “tolerate” chromosomal duplications. We often observe hybrid vigor in the F1, while the progeny of the F1 (F2) will produce mostly sickly or dead plants, as the chromosomes are unable to cleanly segregate.

polyploidy
Polyploids are generated when chromosomes fail to separate (non-disjunction) during pollen and egg generation. The chromosomes normally exist in pairs, thus having only one, or three, interferes in pairing in subsequent generations.

Chromosomal duplications, either one chromosome or the whole genome, happen frequently in nature, and actually serves as a mechanism for evolution. However the vast majority (>99.99%) results in lethality.

Thus there is polyploidy in Cannabis, and a few examples are supported by scientific evidence. The initial hybrid may show superior phenotypes and can be propagated through cloning, but there may be little potential for successful breeding with these plants.

Epigenetics and Phenotypic Consistency in Clones

One mechanism of turning off genes is by the DNA becoming physically inaccessible due to a structure resembling a ball. In addition, making molecules similar to DNA (RNA) that prevents expression of a gene can turn off certain genes. Both mechanisms are generally termed epigenetics.

These mice are all genetically identical yet they manifest different phenotypes for fur color.
These mice are genetically identical, yet their coat color phenotype is variable. Something above or beyond (epi) the gene (genetic) is controlling the phenotype.

Epigenetic regulation is often dependent on concentrations of certain proteins. Through the repeated process of cloning, it is possible that some of these proteins may be diluted, due to so many total cell divisions and epigenetic control of gene expression can be attenuated and results in phenotypic variability.

Sexual reproduction, and possibly tissue culture propagation, may re-establish complete epigenetic gene regulation, however the science is lacking. Epigenetic gene regulation is one of the hottest scientific topics and is being heavily investigated in many species including humans.

Hermaphrodites and Sex Determination

Cannabis is an extremely interesting genus (species?) for researching sex determination. Plants are usually either monoecious (both male and female organs on a single plant), or dioecious, separate sexes. Sex determination has evolved many times in many species. Comparing the mechanisms of sex determination in different organisms provides valuable opportunities to contrast and compare, thereby developing techniques to control sex determinations.

The sex organs on a Cannabis plant identified.
The sex organs on a Cannabis plant identified.

Cannabis is considered a male if it contains a Y-chromosome. Females have two X chromosomes. Even though female Cannabis plants do not have the “male” chromosome, they are capable of producing viable pollen (hermaphrodite) that is the source of feminized seeds. Therefore, the genes required to make pollen are NOT on the Y-chromosome, but are located throughout the remainder of the Cannabis genome. However, DNA based tests are available to identify Male Associated Sequence (MAS) that can be used as a test for the Y-chromosome in seedlings/plants.

Natural hermaphrodites may have resulted from Polyploidization (XXXY), or spontaneous hermaphrodites could be a result of epigenetic effects, which may be sensitive to the environment and specific chemical treatments.

Feminized seeds will still have genes segregating, thus they are not genetically identical. This shouldn’t lead to a necessary decrease in health, but could. A clone does not have this problem.

The other issue is that “inbreeding depression” is a common biological phenomenon, where if you are too inbred, it is bad…like humans. Feminized seeds are truly inbred. Each generation will decrease Heterozygosity, but some seeds (lines) may be unhealthy and thus are not ideal plants for a grower.

GMO– The Future of Cannabis?

Is there GMO (genetically modified organism) Cannabis? Probably, but it is likely in a lab somewhere…deep underground! Companies will make GMO Cannabis. One huge advantage to doing so is that you create patentable material…it is unique and it has been created.

The definition of a GMO is…well, undefined. New techniques exist whereby a single nucleotide can be changed out of 820 million and no “foreign” DNA remains in the plant. If this nucleotide change already exists in the Cannabis gene pool, it could happen naturally and may not be considered a GMO. This debate will continue for years or decades.

Proponents of GMO plants cite the substantial increase in productivity and yield, which is supported by science. What remains to be determined, and is being studied, are the long-term effects on the environment, ecosystem and individual species, in both plants and animals. Science-based opponent arguments follow the logic that each species has evolved within itself a homeostasis and messing with its genes can cause drastic changes in how this GMO acts in the environment/ecosystem (Frankenstein effect). Similarly, introducing an altered organism into a balanced ecosystem can lead to drastic changes in the dynamics of the species occupying those ecological niches. As in most things in life, it is not black and white; what is required is a solid understanding of the risks of each GMO, and for science to prove or disprove the benefits and risks of GMO crops.