Tag Archives: extract

Cannabis Extraction Virtual Conference

The Cannabis Extraction Virtual Conference will take place on June 29. This complimentary event will have four webinar presentations, all back-to-back and on the same day. You won’t want to miss this extraction and concentrates event. Stay tuned for announcements on the agenda, registration page and speaker lineup.

Recent Developments in Supercritical CO₂ Winterization

By Aaron Green
No Comments

Supercritical carbon dioxide (CO2) extraction is a processing technique whereby CO2 is pressurized under carefully controlled temperatures to enable extraction of terpenes, cannabinoids and other plant molecules. Once the extract is obtained the crude is often subjected to an ethanol winterization process to remove chlorophyll, fats and waxes.

Green Mill Supercritical is a Pittsburgh-based manufacturing and engineering company focused on cannabis and hemp extraction. The company offers a range of CO2 extraction equipment where users can tune and control their extraction methods. They recently announced  a technology advance enabling winterization in-process, which has the potential to remove the need for ethanol winterization.

We spoke with Jeff Diehl, director of marketing at Green Mill Supercritical, to learn more about the new process. Jeff was working in the tech industry in San Francisco in 2017 when he was invited to join Green Mill by his cousin, Jeremy Diehl, who is the founder and CTO.

Aaron Green: Before we get to your new technology, can you explain what industry trends you are watching?

Jeff Diehl: A big thing that I watch is the premium extract space. More and more consumers are demanding higher premium extracts. They want differentiated products. They want products that are safe and that have some kind of meaningful connection to the specific plant from which they came. Right now, CO2 plays a small role in the market for those products. Most premium products are generated through hydrocarbon extraction. So, I am watching how people are using CO2 to create the next generation of safe, premium products.

Aaron: What is the normal process for a CO2 extraction today?

Jeff Diehl, director of marketing at Green Mill Supercritical

Jeff: The current CO2 extraction process generally consists of two major phases to producing your final extract. In the first phase, you have extraction where you get your crude product. The second phase is post-extraction where you do cleanup to get your refined oil. Within that post-extraction phase, most operations include an ethanol-based winterization process.

Aaron: What does the winterization step do, exactly?

Jeff: Winterization is about removing waxes. Your main extraction is considered crude because it’s got a lot of materials from the plant that you don’t want. The large majority of unwanted material is waxes. Winterization is the process of using a solvent, traditionally ethanol, to separate the waxes from the cannabinoids. There are multiple challenges inherent in ethanol-based winterization that introduce cost, time and product loss. It’s terribly inefficient. Plus, there will always be residual ethanol left in your final product, and that’s not something consumers appreciate.

Aaron: You’ve recently announced a new process at Green Mill that moves the winterization step into the supercritical CO2 equipment. Can you explain how that works?

Jeff: With our process, which we call Real-Time Winterization, there is no ethanol involved in winterization anymore. It is all done with CO₂ during the primary extraction. That’s the major advance of our process and although it has been attempted before, no one has succeeded at doing it in a viable way. You take a process which is normally four days – one day for CO2 extraction and three days for ethanol winterization – and you do it all in less than a day. We have automated software, sensors and pumps that makes this all possible.

Aaron: How does the quality of the resulting product compare with the new process?

Jeff: You can see the difference right away, if you’re at all familiar with extraction. It just looks clean and bright. Lab analysis has been very positive thus far, but we continue to run tests. Our R&D team has done multiple tests, mostly on hemp and CBD. That’s because we don’t have a license for THC. We’re currently engaging with a licensed partner so that we can collect more data on THC-containing products, so we can give exact numbers. But with CBD, we’ve done multiple tests to validate the method and the technology, and are seeing consistently excellent results in regards to both purity of the product and efficiency of the process.

Aaron: How do yields compare between the processes?

Hemp CBD extract straight out of a Green Mill SFE Pro running Real-Time Winterization.

Jeff: From the data that we’ve seen in the industry, it looks like when you winterize with ethanol, you leave anywhere from 5 to 10% of your cannabinoids behind in the waxes. That’s just lost. With Real-Time Winterization using CO2 we have seen recovery rates as high as 99%. We are continuing to investigate that result with testing to make sure it was not an outlier, but in any case, recovery rates look promising.

Aaron: One of the other issues with ethanol is taxes and the ability to find food grade supply. Do you have any perspective you can share on that?

Jeff: There are a number of advantages to moving away from ethanol. The sheer quantity of ethanol is a factor. There are a lot of regulations and fire requirements around managing large quantities of ethanol. The ethanol winterization process itself is not just one process. There are multiple stages, from mixing, to freezing, to filtering, to removing the solvent. These are all opportunities for things to go wrong, so you’re always managing those risks. Multiple large pieces of equipment, including fume hoods, filter skids, cryo freezers and rotary evaporators, are expensive and require heavy management.

I think Elon Musk said the best process is no process. Anytime in an industrial process when you can remove steps in the process, that’s the direction you want to go in. And, that’s what we’ve done. With this recent work, we have effectively removed post processing for certain categories of end product.

Aaron: Do you have any patents on the new process?

Jeff: We have a patent pending on both the method and the equipment, which is allowing us to talk about this as much as we are.

Aaron: So, how does this work if somebody already owns an existing piece of Green Mill equipment? Is this something that can be retrofitted? Is it a software upgrade?

Jeff: There are two components. One is an equipment upgrade, which can be done retroactively for existing customers, and one is a methodology upgrade, which we assist our customers with. The automation software inherently can handle the settings that you need to run the methodology. In fact, it’s that software and the rest of our existing tech stack, the proprietary pump, the triple inline fractionation, the precision and stability of the overall system, that is what made this winterization advance possible.

Aaron: Where are you rolling this out first? And do you plan to go international?

Jeff: International is definitely in the plan, since we’ve already sold systems abroad. We are currently getting ready to announce the opening of our beta program with the new technology. So, we’re not ready to sell this widely at this time, but we are taking submissions from companies that want to get in early and join us at the forefront of CO₂ extraction innovation.

Aaron: Okay, great. Thanks Jeff, that’s the end of the interview.

extraction equipment

THC Remediation of Hemp Extracts

By Darwin Millard
1 Comment
extraction equipment

Remediation of delta-9 tetrahydrocannabinol (d9-THC) has become a hot button issue in the United States ever since the Drug Enforcement Agency (DEA) released their changes to the definitions of marijuana, marijuana extract, and tetrahydrocannabinols exempting extracts and tetrahydrocannabinols of a cannabis plant containing 0.3% or less d9-THC on a dry weight basis from the Controlled Substances Act. That is because, as a direct consequence, all extracts and tetrahydrocannabinols of a cannabis plant containing more than 0.3% d9-THC became explicitly under the purview of the DEA, including work-in-progress “hemp extracts” that because of the extraction process are above the 0.3% d9-THC limit immediately upon creation.

The legal ramifications of these changes to the definitions on the “hemp extracts” marketplace will not be addressed. Instead, this article focuses on the amount of d9-THC that is available in the plant material prior to extraction and tracks a “hemp extract” from the point it falls out of compliance to the point it becomes compliant again and stresses the importance of accurate track-n-trace protocols at the processing facility. The model developed to support this article was intended to be academic and was designed to follow the d9-THC portion of a “hemp extract” through the lifecycle of a typical CO2-based extract from initial extraction to THC remediation. A loss to the equipment of 2% was used for each step.

Initial Extraction

For this exercise, a common processing scenario of 1000 kg of plant material at 10% cannabidiol (CBD) and 0.3% d9-THC by weight was modeled. This amount, depending on scale of operations, can be a facility’s total capacity for the day or the capacity for a single run. 1000 kg of plant material at 0.3% d9-THC has 3 kg of d9-THC that could be extracted, purified, and diverted into the marketplace. CO2 has a nominal extraction efficiency of 95%, meaning some cannabinoids are left behind in the plant material. The same can be said about the recovery of the extract from the equipment. Traces of extract will remain in the equipment and this little bit of material, if unaccounted for, can potentially open an operator up to legal consequences. Data for the initial extraction is shown in Image 1.

Image 1: Summary Data Table for Typical CO2-based Extraction of Phytocannabinoids

As soon as the initial extract is produced it is out of compliance with the 0.3% d9-THC limit to be classified as a “hemp extract”, and of the 3 kg of d9-THC available, the extract contains approx. 2.8 kg, because some of the d9-THC remains in the plant material and some is lost to the equipment.

Dewaxing via Winterization and Solvent Removal

Dewaxing a typical CO2 extract via winterization is a common process step. For this exercise, a wax content of 30% by weight was used. A process efficiency of 98% was attributed to the wax removal process and it was assumed that 100% of the loss can be accounted for in the residue recovered from the equipment rather than in the removed waxes. Data for the winterization and solvent recovery are shown in Image 2 and 3.

Image 2: Summary Data Table for Typical Winterization of a CO2 Extract
Image 3: Summary Data Table for Solvent Removal from a CO2 Extract

Two things occur during winterization and solvent removal, non-target constituents are removed from the extract and there is compounded loss from multiple pieces of process equipment. These steps increase the concentration of the d9-THC portion of the extract and produce two streams of noncompliant waste.

Decarboxylation & Devolatilization

Most cannabinoids in the plant material are in their acid form. For this exercise, 90% of the cannabinoids were considered to be acid forms. Decarboxylation is known to produce a mass difference of 87.7%, i.e. the neutral forms are 12.3% lighter than the acid forms. Heat was modeled as the primary driver and a process efficiency of 95% was used for the conversion rate during decarboxylation. To simplify the model, the remaining 5% acidic cannabinoids are presumed destroyed rather than degraded into other compounds because the portion of the cannabinoids which get destroyed versus degrade into other compounds varies from process to process.

Devolatilization is the process of removing low-molecular weight constituents from an extract to stabilize it prior to distillation. Since the molecular constituents of cannabis resin extracts vary from variety to variety and process to process, the extracts were assumed to consist of 10% volatile compounds. The model combines the decarboxylation and devolatilization steps to account for complete decarboxylation of the available acidic cannabinoids and ignores their weight contribution to the volatiles collected during devolatilization. Destroyed cannabinoids result in an amount of loss that can only be accounted for through a complete mass balance analysis. Data for decarboxylation and devolatilization are shown in Image 4.

Image 4: Summary Data Table for Decarboxylation and Devolatilization of a CO2 Extract

As the extract moves along the process train, the d9-THC concentration continues to increase. Decarboxylation further complicates traceability because there is both a known mass difference associated with the process and an unknown mass difference that must be calculated and justified.

Distillation

A two-pass distillation was modeled. On each pass a portion of the extract was removed to increase the cannabinoid concentration in the recovered material. Average data for distilled “hemp extracts” was used to ensure the model did not over- or underestimate the concentration of the cannabinoids in the distillate. The variables used to meet these data constraints were derived experimentally to match the model to the scenario described and are not indicative of an actual distillation. Data for distillation is shown in Image 5.

Image 5: Summary Data Table for Distillation of a Decarboxylated and Devolatilized Extract

After distillation, the d9-THC concentration is shown to have increased by 874% from the original concentration in the plant material. Roughly 2.2 kg of the available 3 kg of d9-THC remains in the extract, but 0.8 kg of d9-THC has either ended up in a waste stream or walking out the door.

Chromatography – THC Remediation Step 1

Chromatography was modeled to remove the d9-THC from the extract. Because there are several systems with variable efficiency rates at being able to selectively isolate the d9-THC peak from the eluent stream, the model used a 5% cut-off on the front-end and tail-end of the peak, i.e. 5% of the material before the d9-THC peak and 5% of the material after the d9-THC peak is assumed to be collected along with the d9-THC. Data for chromatography is shown in Image 6.

Image 6: Summary Data Table for d9-THC Removal using Chromatography

After chromatography, a minimum of three products are produced, compliant “hemp extract”, d9-THC extract, and noncompliant residue remaining in the equipment. The d9-THC extract modeled contains 2.1 kg of the available 3 kg in the plant material, and is 35% d9-THC by weight, an increase of 1335% from the distillation step and 11664% from the plant material.

CBN Creation – THC Remediation Step 2

For this exercise, the d9-THC extract was converted into cannabinol (CBN) using heat rather than cyclized into d8-THC, but a similar model could be used to account for this scenario. The conversion rate of the cannabinoids into CBN through heat degradation alone is low. Therefore, the model assumes half of the available cannabinoids in the d9-THC extract are converted to CBN. The entirety of the remaining portion of the cannabinoids are assumed to convert to some form of degradant rather than a portion getting destroyed. Data for THC destruction is shown in Image 7.

Image 7: Summary Data Table for THC Destruction through Degradation into CBN

Only after the CBN cyclization step has completed does the product that was the d9-THC extract become compliant and classifiable as a “hemp extract.”

Image 8: Summary Data Table for Reconciliation of the d9-THC Portion of the Hemp Extract

Throughout the process, from initial extraction to the final d9-THC remediation step, loss occurs. Of the 3 kg of d9-THC available in the plant material only 2.1 kg was recovered and converted to CBN. 0.9 kg was either lost to the equipment, destroyed in the process, attributable to the mass difference associated with decarboxylation, or was never extracted from the plant material in the first place. All of these potential areas of product loss should be identified, and their diversion risk fully assessed. Not every waste stream poses a risk of diversion, but some do; having a plan in place to handle waste the DEA considers a controlled substance is essential. Without a track-n-trace program following the d9-THC and identifying the potential risk of diversion would be impossible. The point of this is not to instill fear, instead the intention is to shed light on a very real issue “hemp extract” producers and state regulators need to understand to protect themselves and their marketplace from the DEA.

The Craft of Extraction: Like Beer Making, It’s All About Control

By Jeremy Diehl
No Comments

Any brewmaster from the more than 7,000 U.S. craft breweries will tell you one of two things: That their art is a science, or that their science is an art. The answer might depend upon the brewer’s individual approach, but a combination of experience, process, precise measurement and intuition is exactly what’s required to create great beer. In a very similar way, the cannabis industry has its own version of the brewmaster: Extraction technicians.

A cannabis extraction technician deploys knowledge from multiple science disciplines to apply industrial solvents, heat and pressure to plant matter through a variety of methods with the aim to chemically extract pure compounds. Extraction techs use their passion for the cannabis and hemp plants, combined with chemistry, physics, phytobiology and chemical engineering to help create a result that’s not quite art, but not quite completely science. By manipulating plant materials, pressure, heat and other variables, the extraction technician crafts the building block for what will become an edible, tincture or extract.

Similarly, brewmasters use their knowledge of multiple science disciplines like chemistry and microbiology, as well as different brewing processes and a variety of ingredients to develop creative recipes that result in consistent, interesting beers. The brewmaster’s work is both science and art, as well. And they also manipulate plant materials, pressure, heat and other variables to achieve their desired results.

Author Jeremy Diehl collects cannabis extract from equipment for testing

“I would certainly consider brewing to be an art and a science, but it takes a very disciplined approach to create consistent, yet ever evolving beers for today’s craft market,” says Marshall Ligare, PhD. Research Scientist at John I. Haas, a leading supplier of hops, hop products and brewing innovations. “We work to ensure brewers can create something different with every new beer, as well as something that helps create an experience as well as a feeling.”

In both brewing and extraction, the art comes in the subjective experience of the craftsman and his or her ability to curate the infinite possibilities inherent in each process. However, both are a science in their requirement of establishing production methodologies that guarantee a consistent, reliable product experience every time to win customer loyalty (and regulatory compliance). In the same way hops determine recipes for beer flavors, the cannabis plant determines extraction recipes, especially considering the role that terpenoids play in the quality, flavor and effects of the end product.

The development of new and appealing cannabis products is beginning to mimic the vast variety of craft beers now found all over the world. In the same way beer connoisseurs seek out the perfect stout, lager or IPA, discriminating cannabis consumers now search for that gem of a single-origin, specialty-strain vaporizer oil or irresistible dab extract.

“I see an exciting new day for quality-focused, craft extraction that tells a story, not only of where the cannabis plant might have been grown and how, but also the care that was taken in the processing of that strain into smokable or edible oil,” says John Lynch, Founder of TradeCraft. “Imagine the impact in the marketplace when product-makers figure out how to do seasonal one-offs where engaged connoisseurs are willing to pay a premium for the art behind limited releases.”

In the same way hops determine recipes for beer flavors, the cannabis plant determines extraction recipes

In either process, you’re essentially creating art with science. Each process works with different strains. Each is concerned with chemical and flavor profiles. Each has its own challenges. In both worlds, quality depends upon consistency. You’re creating art, but you need to replicate that art over and over – which can only occur with strict control of the process. Brewmasters seek control of things like yeast quantity and health, oxygen input, wort nutritional status and temperature, among other things. In their pursuit, extraction technicians seek to control temperature, pressure and flow rate–as well as all the ways these variables interact with each other. What enables this control in both efforts is the equipment used to achieve results.

“A modern brewhouse is very much like a scientific laboratory,” Ligare says. “Brewers treat their setup with the same care and attention a scientist gives to their lab equipment, and are equally concerned with precision, cleanliness and the purity of the result. With each new beer, they want to develop a process that can be controlled and replicated.”

The key to creating a precise process is to use instrument-grade extraction machinery that performs to specifications – and allows you to repeat the process again and again. The value of using high-quality instrumentation to manage and monitor either the brewing or extraction process cannot be overstated. Although it seems counterintuitive, this is where the “craft” comes into play for both brewing and cannabis extraction. Precise instrumentation is what allows the brewer or extraction “artist” to manipulate and monitor the conditions required to meet recipe standards. Along with the quality of the ingredients (hops, cannabis, hemp, etc.), the quality of the equipment utilized to create the product is one critical element impacting the end result. “Imagine the impact in the marketplace when product-makers figure out how to do seasonal one-offs where engaged connoisseurs are willing to pay a premium for the art behind limited releases.”

In cannabis extraction, a second crucial decision is determining which solvent is the best solution for the recipe you’re using and the end result you’re hoping to achieve. This decision is a part of the “craft” of extraction, and determined according to a combination of criteria. There’s no question that each solvent has a business case it serves best, and there is ongoing debate about which approach is best. But overwhelmingly, the solvent that best serves the most business needs is CO2 due to its inherent versatility and ability to have its density tuned to target specific compounds.

“Control is what makes or breaks any craft product,” says Karen Devereux, Vice President of Northeast Kingdom Hemp. “We’re based in Vermont and love how Vermont is known for its quality craft beer, cheese and maple syrup. We wanted to bring that craft approach to hemp extraction, and everyone knows that any craft endeavor is focused on the details and getting them right again and again. You can’t do that without controlling every aspect of the process.”

Greater control of the process can also open up worlds of discovery. The inherent “tunability” of CO₂ enables the extraction technician to target specific compounds, enhancing the potential for experimentation and even whimsy. This can lead to entirely new products much in the way a brewer can control his process to create new, interesting beers.

American portrait photographer Richard Avedon famously declared that art is “about control,” describing the artistic process as “the encounter between control and the uncontrollable.” The same can be said for beer making and cannabis extraction. The more precisely you can control variables, the more options you’ll have for yourself and your customers. The more choices you’ll have with regard to different recipes and products. And the more loyalty you’ll ultimately generate among fans of your products.

Advancements in Extraction & the Growth of the Concentrate Category

By Dr. Dominick Monaco
No Comments

Due to quick progressions in legalization, today’s cannabis industry bears little resemblance to the industry of five years ago. As the cannabis space gains mainstream acceptance, it resembles more “traditional” industries closely. In turn, how we consume cannabis has changed dramatically within this novel legal framework.

A brief visit to a cannabis dispensary quickly illuminates just how much the industry has changed in the past few years.

Within the dynamic of modern cannabis, perhaps no vertical has seen the same advancements as cannabis extracts. It’s precisely the growth of the concentrate category that has given rise to the many branded products that define the legal market.

To give a clear picture of how advancements in extraction have stimulated the concentrate category’s growth, we put together this brief exploration.

Standards & Technology

extraction equipmentBefore legalization, the production of cannabis extracts was a shady affair done in clandestine and often dangerous ways. Especially concerning BHO (Butane Hash Oil), home-based laboratories have long since been notorious fire hazards. Even more, with a total lack of regulation, black-market extracts are infamous for containing harmful impurities.

In the few short years that cannabis has been legal in Nevada, Washington and other states, extract producers have adopted standards and technology from more professional arenas. By borrowing from the food and pharmaceutical industries, concentrate companies have achieved excellence undreamed of a decade ago.

Good Manufacturing Practices

One of the essential elements in the extracts vertical advancements is the adoption of good manufacturing practices. According to the World Health Organization website, “Good Manufacturing Practice (GMP) is that part of quality assurance which ensures that products are consistently produced and controlled to the quality standards appropriate to their intended use.”

When adult-use cannabis was legalized in markets such as Colorado, cannabis companies were able to come out of the shadows and discuss GMPs with legit businesses. In doing so, they implemented professional controls on extract manufacturing in accordance with “quality standards” of state regulatory agencies.

Supercritical CO2 Extraction

As cannabis businesses adopted GMP from other industries, extract producers also embraced more sophisticated technology. Of these, supercritical CO2 has pushed the cannabis concentrates vertical into the future.

IVXX processingAccording to the equipment manufacturer Apeks Supercritical, “CO2 is considered to be a safer method of extraction because the solvent is non-volatile. The extract is purer because no trace of the solvent is left behind. It is also versatile and helps protect sensitive terpenes, by allowing cold separation.” By deriving methods from food production, supercritical equipment manufacturers have given cannabis companies a viable option for the commercial production of extracts.

Supercritical technology has helped push the concentrates vertical forward by providing a clean and efficient way to produce cannabis extracts. Nonetheless, supercritical CO2 equipment is highly sophisticated and carries a hefty price tag. Producers can expect to pay well over $100,000 for commercial supercritical CO2 extraction setup.

Products

Just as standards and technology have evolved in the cannabis extracts vertical, we have also seen products rapidly mature. Notably, the legal environment has allowed manufacturers to exchange ideas and methods for the first time. In turn, this dialogue has led to the development of new products, like isolates and live resin.

Isolates

Just as the name implies, isolates are concentrates made from a singular, pure cannabinoid. In today’s market, CBD isolates have grown increasingly popular because people can consume pure CBD without ingesting other cannabinoids or plant materials, including the legal 0.3% THC found in hemp.

Isolates are made by further purifying cannabis extracts in the process of purification, filtration and crystallization. As seen with other concentrates, isolates are used as the base for many cannabis products, such as gummies.

There is also growing interest in CBG isolate, which is another non-psychoactive cannabinoid when consumed orally.

Live Resin

The cannabis concentrate live resin has taken the industry by storm over the past few years. Live resin is a form of extract that is originally sourced from freshly harvested and frozen cannabis plants. The primary selling point behind this extract is the fact that fresh flowers produce much more vibrant aromas and flavors than dried cannabis. Interestingly, this pungency is tied to the preservation of terpenes in live resin.

Just a few of the dozens of various products types on the market today.

To make live resin, producers “flash freeze” fresh cannabis plants immediately after harvest. Valuable cannabinoids and terpenes are then extracted from the fresh, frozen plant material using hydrocarbon solvents. This whole process is done at extremely cold temperatures, ensuring no thermal degradation to the precious and volatile terpenes.

In lieu of these intricate steps to preserve the flower and extracts, live resin has continuously gained popularity. Namely because vaping with live resin is the best way to sample fresh cannabis terpene profiles in its most authentic fashion

It is amazing to see how much cannabis extracts have grown and progressed with legalization. Due to such amazing advancements in standards, technology, and products, the concentrates category has exploded on the dispensary scene. In today’s market, flowers have been largely sidelined in favor of concentrate-based products like gummies. These products now adorn dispensary shelves in beautiful packaging replete with purity and testing specifications.

It’s an often-overlooked fact that the purity standards of the legal extracts have made reliable cannabis brands possible in the first place. You cannot develop a cannabis brand without consistent products that customers can rely on; all things considered, it can be said that advancements in extraction have not only stimulated the concentrate category but the entire industry as we know it today.

Green Mill Supercritical: An Interview with CEO Wes Reynolds

By Aaron Green
No Comments

Carbon Dioxide (CO2) extraction is a processing technique whereby CO2 is pressurized under carefully controlled temperatures to enable extraction of terpenes, cannabinoids and other plant molecules.

Green Mill Supercritical is a Pittsburgh-based manufacturing and engineering company focused on cannabis and hemp extraction. The company offers a range of CO2 extraction equipment where users can tune and control their extraction methods.

We spoke with Wes Reynolds, CEO of Green Mill Supercritical. Wes recently joined Green Mill as CEO and investor in the company after a long career at the Coca-Cola Company in senior sales and general management roles.

Aaron Green: Wes, thank you for taking the time to chat today. How did you get involved in Green Mill?

Wes Reynolds: I came out of a 20-year career at Coca-Cola, where I lived and worked around the world. I was a sales and general management guy with Coke, and learned a lot about running businesses and how to drive growth. I left Coke in 2017. After that successful career I wanted to be in the cannabis space. I felt like cannabis was a growing space with a lot of opportunity and a lot of misperceptions out there, particularly around the foundations of what I would call the “evil reputation” of cannabis. I just found that abhorrent and wanted to be part of changing it.

Wes Reynolds, CEO of Green Mill Supercritical

So I ran the Florida operations for Surterra, which is now called Parallel, for a year out of Tampa, and we did a great job of growing that business in Florida. As the president of the Florida operation for Surterra, I saw everything seed-to-shelf for the industry. We had a 300,000-square-foot greenhouse in Central Florida, we had dispensaries, we had all the production, distribution and all the marketing. I was really able to learn the industry top to bottom.

When I left Surterra, I started looking at various investment opportunities and thinking about what I might want to do next. I came across Green Mill out of Pittsburgh, and was really impressed with the technology that they had put together. Having run a company where we used CO2 extraction, I had experiences with systems that didn’t work when they were supposed to or didn’t work the way they were promised, which led to lots of downtime, lots of frustration and lots of babysitting. I was impressed with Green Mill’s engineering approach and decided that I’d like to be involved with them. I originally considered just being an investor, but more and more conversations led to a greater understanding of some basic business administrative needs that they had as well. One thing led to another and I agreed to come on as the CEO, and I’m also an investor.

I’m excited about what we’re doing at Green Mill. I think that bar none, we make the best supercritical CO2 extraction equipment out there. We continue to innovate on that every day. We want to push CO2 beyond known limits, which is our stated goal as a company. We believe in CO2 and we’re living our goal in that we really are pushing it beyond known limits. There are new things we’re uncovering every day where we go, “Oh, my God, I didn’t know we can do that with CO2!” So, that’s kind of fun.

Aaron: Can you tell me just a high-level overview of how CO2 extraction works?

Wes: A supercritical CO2 extraction system is a collection of extraction vessels and fractionation vessels or collection vessels. In our case fractionation because we’re doing multiple collections through a single run. Then you need a system of pumps and valves and tubing, etc. to move the solvent in a supercritical state through the packed biomass, and then move the extracted compounds into a set of collection vessels. It sounds very easy. But the key to supercritical CO2 extraction is controlling temperature, flow rate and pressure. The better you can control temperature, flow rate and pressure, the more precise of an outcome you’re going to get. For example, say you run a three-hour extraction run, and you want to run it at 3500 psi. Well, you know, a competitive system might fluctuate 300 to 400 psi on either side of 3500. Whereas our system currently fluctuates more like five to 10 psi on either side of the 3500. So, there is much more control and precision.

Our whole goal, when we’re talking about pushing CO2 beyond known limits, is how do we continue to chase that holy grail of perfect control of temperature, flow rate and pressure? One of our advances so far is a proprietary pump, for example, that’s a liquid displacement pump that we engineer and build. It ensures a very even and consistent flow, independent of the pressure setting. So, that flow rate doesn’t change in our system compared to what you would see with another system. It sounds like a minor thing, except that at the end of a run, if you expected to get a certain set of molecules, you’re going to get a different set of molecules if your temperature and flow rate and pressure are varying, because what you’re doing is disrupting the density of the CO2 as it flows.

It’s about building a system that is precise in that way, I think, that requires enormously skilled engineering effort and design effort on the front end, and then requires us to have advanced production and manufacturing capabilities in our shop in Pittsburgh. Our customers are clearly impressed with the levels of consistency that they’re getting out of their system.

Aaron: You talked about precision and consistency as two items. Is there anything else that makes Green Mill different?

Wes: I’m a brand guy. I believe in brands. I came out of a 20-year Coca-Cola career.

The way that the cannabis industry is going in total, in my opinion, is the consumer is going to get more and more discerning along the way. Up until this point, everybody thinks “oh, we have THC and CBD and we have intensity.” But the more sophisticated and educated consumers get, the more discerning they’re going to be about what products they want to put in their bodies.

What makes Green Mill different is that we’re building a system that allows the operator of that system to create differentiated products for the marketplace. So, it’s not simply “CBD is CBD.” It’s: what plant did you start with? How can you maintain as many of the characteristics of that plant as possible?

We’re going to create the most sophisticated tool possible to allow the operator to create products that can be differentiated in the marketplace for a discerning consumer at a premium price. That way, you can create a market where there might not have been a market before, instead of just “hey, I’ve got X pounds of biomass that I need to extract. Give me your bluntest instrument and let me extract.”

Green Mill Supercritical’s SFE Pro

We currently make five different systems. First is the SFE Pro. We make a seven and a half liter and a 10-liter version, with two-vessel configurations of each of those. Then we have what we call a Parallel Pro, which has four 10-liter vessels and two pumps, with two streams running parallel to each other and emptying into shared collectors. It doubles the extraction rate, and you don’t expand the footprint very much. But 10-liter vessels are the biggest vessels we use. Because when you go too large with the vessel, you are giving up something in terms of the ability to control temperature, flow rate and pressure. Your efficiency starts to drop with higher vessel volume.

One of the things that makes Green Mill different is our extraction rate. Our Parallel Pro can do 145 pounds a day of biomass. We think that’s a significant amount, given the demand that’s out there for unique products. What we’re advocating for is multiple extraction systems instead of giant permanent installations of extraction systems, that end up limiting your flexibility. Big systems also prevent you from creating redundancies in your operating system. So, when your extraction system goes down, you’re done. Versus in our universe, we would say, you might want to have three or four extraction systems in different locations, running different products. Our price points are such that that’s very doable.

Aaron: How does the breakdown look between your cannabis and hemp clients?

Wes: A lot of that is legislative frankly. It has to do with what the environment is like at the moment. About 60% of our customers are small hemp farmers. And then we have the other 40% in the cannabis space that are medical or adult use producers.

CO2 extraction has a lot of applications beyond cannabis. We have a couple of customers using our system for hops extraction, for example. We see an enormous opportunity out there for non-cannabis botanical extraction, but our primary focus is cannabis. That is what we’re designing this system to do.

We find that small hemp farmers love our system because it is reliable and very automated. We have proprietary software that operates the whole system. You load and run various “recipes,” at least we call them recipes. What you are doing is setting flow rate, setting temperatures, setting pressures, etc., then that proprietary software has an unbelievable ability to control everything through the process. I’ve talked to several different operators who have used other machines, and then found themselves on a Green Mill system and couldn’t believe how easy, but also feature-rich it was.

I talk about it like it’s like an oven, you know, you set the oven at 375 degrees. And a really good oven stays right at 375. You still need to be a good chef to be able to make that perfect cheesecake. But without that oven, your hands are tied, so you are constantly trying to check those, “is it still 375? I don’t know!” With our system, if it says 375, it holds at 375. So we’re pretty excited about that.

And we’re going to continue to innovate. For example, we have a proprietary heat exchanger that we use on our systems. It’s actually 3D printed stainless steel. It’s about a 20-pound piece of steel that’s been printed to have a special tubing shape in the center only possible with 3D printing that allows us to heat CO₂ very quickly.

Aaron: That’s very cool. I’m noticing a lot actually, the innovations in cannabis are creating these adjacent market opportunities in botanicals. So, I think that’s interesting you point that out. You mentioned terpenes are one of the things you collect out of the CO2 extraction. Can you talk about the crude that comes off and how people are either monetizing or formulating that crude?

Wes: Our goal is to produce the “purest crude” possible. So, we want “less crude” crude. I think that we’re at the beginning of this, Aaron. We’re nowhere near the end, which is what I find so exciting, because all of our innovation, all of our continued development and all of our experimentation is designed to keep thinking, how do we push this further and further and further and get a more refined crude.

Green Mill Supercritical’s Parallel Pro

We just welcomed Jesse Turner to our team as Director of R&D, who is a well-known extraction guy in the industry. He came from Charlotte’s Web and Willie’s Reserve, and has been doing independent consulting. He’s just a rock star. He’s already off and running on experimenting with different stuff.

I think that we are just at the beginning of seeing more and more of that opportunity to help people realize, “Oh, my gosh, I did not know you could do this!” Terpenes are a good example. I think we are only scratching the surface of what terpenes can do. I mean, a cannabis plant has 400 plus molecules and we know a good bit about probably 10 or 12 of them. So, what are we going to find out about the other 390? And as we do, the Green Mill system will be ideal for separating those molecules that we don’t know today are valuable. So, I think that’s part of what we’re chasing as well.

Aaron: So where do you see CO2 extraction fitting into the cannabis and hemp supply chain?

Wes: For any product on the market that is not a smokable flower it helps to have an extraction process. There may be some products that come out that we don’t know about yet that are not going to qualify in that category. Whether you are talking about vape cartridges, or lozenges, or gummy bears, or whatever it is, they are going to start with extract. I think what consumers want is zero adulteration of their product. So if you take any botanical product, and if it is GMO-free, does not have any pesticides, maybe it is all organic, etc. — there is real consumer appeal to that. Whether you agree with it or not, it is what consumers want.

We believe that we can continue to push CO2 so that there’s no requirement for introduction of any other materials than just CO2, which is a completely inert gas. It’s got no residual effect whatsoever on the product. If we get where we want to go, then eventually you are talking about a pure botanical experience.

Initial upfront capital is higher than you are going to see with ethanol and butane extraction solutions for the same size equipment, but ongoing operating costs of those are much higher, when you weigh it out over a period of time. I think what we are going to find is that people are going to keep coming to CO2 because they realize there are things they can do with it that they can’t do any other way.

The end consumer is really who we want to keep in mind. I think for a long time, this industry was very demand driven. “I have X acres of cannabis product, whether that’s hemp, sativa, indica, whatever it is, and I need to extract this many pounds a day over this period of time.” And we keep asking the question, well, who’s going to buy that product on the other side? What do you want it to look like when you put it out on the market? As opposed to how much raw plant matter do you have? What’s the demand? And that was a difficult conversation. We’re starting to see more people come around to that conversation now. But I think that’s the question we want to keep answering is how do we create those products that are differentiated in the marketplace and that can pass muster in any regulatory environment? People are going to want to know what’s in their product.

Aaron: What trends are you following in the industry?

Wes: As the CEO, I’m particularly interested in the overall development of the landscape of the industry in terms of who’s playing, who’s winning, what’s happening with legislation, MSOs versus SSOs. I’m also interested in the international environment. We have a good bit of interest from multiple countries that have either ordered Green Mill systems or are talking to us about Green Mill systems, including Canada and Latin American countries, some European countries, Australia and New Zealand.“We’re really committed to educational efforts with a very rigorous scientific foundation, but in language that is approachable and people can understand.”

The trends that I’m particularly interested in are more on the business side of the equation, in terms of how this business is going to shake out particularly from a capitalization perspective, as banking laws continue to change, which is a big deal, and the legislative environment gets a little more predictable and a little more consistent.

Aaron: Okay, last question. So what are you personally interested in learning more about?

Wes: Everything, is the short answer! I constantly run this little challenge of trying to understand enough of the science. I’m not a scientist, I’m a sales guy. That was how I grew up: general management and sales. I’ve made my living over many years being wowed by the pros. Depending on the scientists and the very specialized folks to help provide the right answers to things. I’m fascinated by the chemistry and I’m fascinated by the mechanical engineering challenges of what we do at Green Mill. So, I’m always interested in learning about that.

I think there’s a need, and it is helpful to be able to talk about those things in language that the layperson can understand, as opposed to explaining everything in scientific language. I think what I am trying to do is help people put it into a language that they can get, but that is not simple. Language that is correlative to reality. I think there’s so much misunderstanding about how these things work and what’s happening. We’re really committed to educational efforts with a very rigorous scientific foundation, but in language that is approachable and people can understand.

Aaron: Okay, that’s it. Thank you for your time Wes!

Leaders in Extraction & Manufacturing: Part 5

By Aaron Green
No Comments

Cannabis extraction and manufacturing is big business in California with companies expanding brands into additional states as they grow. This is the fifth and final article in a series where we interview leaders in the California extraction and manufacturing industry from some of the biggest and most well-known brands.

In this week’s article, we talk with Kristen Suchanec, VP of Production at Island. Kristen converted her experience in traditional consumer packaged goods to cannabis to help create a brand that is sought after by many. The interview with Kristen was conducted on August 21, 2020.

Aaron Green: Good afternoon Kristen, I am glad we were able to put this interview together. I know you have been very busy!

Kristen Suchanec: I’m so sorry this took so long to actually work! Thank you for bearing with me. I’m happy we are able to talk.

Aaron: Great! I like to start off the conversation with a question that helps our readers get to know you a little better. So, Kristen can you tell me how you got involved at Island?

Kristen Suchanec, VP of Production at Island

Kristen: My background is in manufacturing and planning for consumer packaged goods. I had a friend of a friend and we were just at a happy hour and I asked what he was up to. He was actually our VP of Finance at Island and he handed me a box of pre-rolled joints. They were our Island Minis and I thought it was a great customer experience. I loved the brand and packaging which made it a consumer product versus, you know, this was a few years back where cannabis wasn’t necessarily commoditized or branded. I got really excited about that because I feel like cannabis should be traditional CPG and it should appeal to different people and it should have different brands that appeal to those different groups. So I literally just started a conversation. His brother is our founder and CEO and they needed someone to run production so that was my background and it all kind of lined up and I ended up being employee number five at Island!

Aaron: Wow, employee number five – awesome! OK, great. That is some nice background about how you got involved at the company. The next questions get into product development and manufacturing. The first question is: what’s your decision process for starting a new product?

Kristen: Yea, we are right now owning the lane between cultivation and distribution. So, getting those raw materials for whether it be concentrates or flower and then converting them into that final packaging for everything. So that is what we focus on and spend all of our time with automation and trying to make that process as efficient as possible.

When we’re looking at a new product we’re not necessarily creating a new extraction, we are really looking at the market and the end consumer and what people want. At Island we’ve really focused on vape, pre-roll and packaged flower. Those are the three categories we are working on right now. We are expanding and looking to move more towards vape and live resins and specialty concentrated products that we haven’t really had in our portfolio before. What we would like to do is make sure we have the capability to manufacture that and then take a look at where we think the market is going. We are trying to go in the flower, pre-roll and vape because that is where we spent so much of our time getting pieces of automation so not everything we are bringing in house is manual.

Aaron: Now when you say the capability to manufacture that are you talking about from a packaging perspective or…?

Kristen: Yes, so we won’t do any extraction on site. It’s getting distillate, shatter and flower and then we take that and convert that either into pre-rolled joint, a package of flower or any other final product. So, we are looking at automating that packaging piece.

Aaron: Got it. OK, so the next question — and I think you kind of touched on this as well — are you involved in manufacturing to the extent that you are manufacturing the packaging?

Kristen: Yes absolutely. My whole team’s manufacturing is based out of Oakland. That’s where we do all the conversion of products. I oversee that entire team and have been really involved in a lot of the equipment that we have sourced and iterations that we’ve gone through to make sure that we’re able to automate as much as possible. We’ve really focused on the issue of weighing the material. For our flower line everything is weighed and put into a jar, capped, sealed and labeled for it to come off our lines. We don’t have anyone in packing or anything like that. Our pre-rolls manufacturing is an automated machine where it actually weighs the flower before going into the cone so we’re not having to weigh after the fact and take into account the weight of the cone because that’s so variable so we know that the customer is getting consistency. Then for the vapes, it’ssame thing – the volumetric doses everything.

I have to give my credit to everyone on the floor who is doing the day to day, they find so many new solutions since they are the ones that are hands on.  I am really involved in what new equipment we need, what problems we are looking to solve and what’s causing our bottlenecks so we can continue to improve our process week over week and year over year.

Aaron: We’ll dig into some of those problems in a bit. What is your process for not just starting new product but for developing a new product?

Kristen: Yeah, absolutely. So, I think it’s really interesting to see where the market is going. What’s selling really well and especially over the past year pre rolls have been a huge growth platform for us. And especially now, we’ve seen some changes because of COVID as well. We have single joints. But then we have our Minis, which I’ve mentioned before, which are half gram joints. We’re seeing sales on those actually increased because I think people are sharing joints as people want individual things because of this pandemic.

When we go through this process, we’re really – again – we’re so focused on what the consumer wants, and what we think is going to add to our portfolio. Then when marketing and our product team comes to me, we really focus on our machinery, what we can do with it currently, and if we would need something additional. So,we’re excited about expanding into 510s right now. We’re looking at how we can automate the process of capping – we can fill right now, but not cap. And then we also take a look at packaging.

I think it’s a little different than creating like a whole new product, extraction or anything like that, but we were looking at more sustainable options for packaging for child resistance because we’re trying to move away from barrier bags as much as possible. We’re looking at, okay, how many stickers do we need to put on there? What is the labor time going into each piece of product? And again, how are we eventually going to get some consistency across product lines, etc.

So, it’s really taking all three of those components, making sure we’re getting out the customer that feels like they want. I’m having it either fit into our process or again, then go through and look at what automations meanand automation equipment investment you want to make for long term future investments.

Aaron: Are you developing new products internally, or are you relying on outside manufacturers for that?

Kristen: Not everything we do is internal. We have a big network of, you know, cultivators and extractors we work with, but we’re in the midst of getting our own cultivation and manufacturing in house by working with other companies. So with that we’re doing everything.

Aaron: Do you ever bring in external product development consultants for helping out with your processes?

Kristen: No, we don’t bring in consultants. But we have brought in another brand into our fold via a brand called Neutron Genetics. That is part of our overall portfolio. We work very closely with the founder because he has a lot of trade secrets, a lot of his own processes to make sure you’re getting the best product for that specific brand.

Aaron: In your product development, what does getting stuck look like to you?

Kristen: That’s a good question. I think one of the biggest challenges is working with the plant itself, because it’s not consistent and it’s not homogenous. You could get the same strain from the same cultivator, but it’ll be a different batch. It might be a little stickier or a little larger, etc. When you’re looking at traditional manufacturing and automation, you want consistency, homogenized liquids, same viscosity every time, and we don’t have that because the plant itself is natural and is going to have all these different expressions depending on the batch and how it was grown and how it was trimmed even.“I think it’s really the proper equipment, the proper training and then, again, continuing to evolve as a team.”

So, getting stuck means finding an off-the-shelf solution that might work for, you know, nuts and bolts or some kind of food production and then you’re going to have to convert it to actually work with the cannabis plant. So that’s what makes it so challenging, but also really exciting. In the bud, humidity and air can really throw off a manufacturing process which is really different than just doing beverages for example.

Getting stuck means really having to work with the plant concentrates specifically if you think about just the nature of those whether it be shatter, distillate or very sticky product. So again, working with machinery isn’t always what goes hand in hand. So, getting stuck is dealing with all those different formats and inconsistency using the same product day after day.

Aaron: It sounds like consistency is kind of a main topic here?

Kristen: Yeah, I think it depends on what product format we have. For example, about a year ago, we launched infused pre-rolls for Neutron where we’re putting flower, kief and shatter into a joint. So that’s going to perform differently on a piece of machinery than just straight flower.

I think it all depends on the product. Usually it happens when it’s in that machine, you’re trying to get a good flow and a good consistency. You want to have time studies, you know how long it takes to make each batch. But if a certain flower mix is performing differently, it’s getting the settings of the machine dialed, right? It’s also properly training personnel so people know how to react when things get going. Sometimes things get physically stuck in the machine as well, so to be able to react on that.

I think it’s really the proper equipment, the proper training and then, again, continuing to evolve as a team. So for our pre-roll machine, we are now on our third version of it, just because we kept running into the same roadblocks and I’m hoping that continues to evolve and we just continue to get better equipment year after year.

Aaron: I see, do you ever hire outside consultants when you do get stuck?

Kristen: We’ve worked closely with vendors. I will say that we’re not a machine shop or engineering firm. So we’re not the ones creating a lot of what we use on the floor. We’ve partnered with various vendors, which has been helpful, but we haven’t used external consultants.“When you see the huge potential and then see how much is taken out from illegal activity right now, it is frustrating to see.”

Aaron: Okay, now imagine that you have a magic wand and somebody can come in and help you. What does your magic helper look like?

Kristen: I could probably make a really long list if I’m focusing on just my manufacturing and everything! I think the next thing which we’re already thinking about that magic wand is how to get a perfectly rolled joint without having so much manual human touch to it. And like I said, we’ve really attached to that weighing problem. And we’ve seen solutions out there that you know, claim to twist and have that “perfect roll” and you don’t need to even touch it. But I think the biggest challenge there is it depends how well it’s packed. You know, you don’t want it too tight. You don’t want it too loose for that customer experience. So getting that quality, if I could wave a magic wand where I’m putting in, you know, paper on one side and out comes perfectly rolled joints, that would be my magic wand for sure. Okay, I think there’s a lot of solutions out there but to get that quality and that consumer experience that we want, I haven’t seen working practice yet.

Aaron: Okay, What’s the what’s the most frustrating thing you’re going through with the business right now?

Kristen: Again, that could be a long list! I think from a more macro-level, it’s definitely the competition with the illicit market and just how there’s not enough outlets for legal cannabis right now in the state of California. When you see the huge potential and then see how much is taken out from illegal activity right now, it is frustrating to see. We’re going to get this growth and projection of the right number of dispensary licenses and things like that are definitely a huge frustration as well as with the tax structure right now because it’s obviously contributing to people going to the illicit market.

Aaron: So what are you following in the market? And what do you want to learn more about?

Kristen: Yeah, I think that’s a great question. I think the thing I’m most excited about for the larger population isjust more research to come out about the actual attributes of the plant, or how different cannabinoids react together and can have different effects. How terpenes can affect the high, how things can be used and distantly, recreationally, etc. And really, hopefully evolve and move away from strictly some sativa, hybrid,indica classifications, and really be able to educate the consumer more about the plant so people can have a more a personal relationship to understand how cannabinoids or specific terpenes are going to give them a different effect. And again, I think that’s so interesting because it could be used for therapeutic reasons that people do consume cannabis or it could just make it a better experience for people who want to take this as an escape or a way to relax and everything. So I’m really excited because more research is going to be able to get done and we can really learn more about how all of these things interact in the body and then people can take it to a whole new experience and be more educated all around.

Aaron: Alright that’s the end of the interview Kristen! Nice chatting and meeting you!

Kristen: Alright, thanks Aaron!

Leaders in Extraction & Manufacturing: Part 4

By Aaron Green
No Comments

Cannabis extraction and manufacturing is big business in California with companies expanding brands into additional states as they grow. This is the fourth article in a series where we interview leaders in the California extraction and manufacturing industry from some of the biggest and most well-known brands.

In this week’s article we talk with Michael Schimelpfenig, head of R&D and BHO extraction manager at Bear Extraction House. Michael worked in the cannabis space for about five years prior to landing his role at Bear, having spent several years in the hills of Humboldt County. The interview with Michael was conducted on August 3, 2020.

In next week’s piece, we sit down with Kristen Suchanec, vice president of Production at Island. Stay tuned for more!

Aaron Green: Good morning Michael and thank you for taking the time to chat with me today!

Michael Schimelpfenig: Thanks, excited to be here!

Aaron: I like to start off the conversation with a question that helps our readers get to know you a little better. So, Michael can you tell me how you got involved at Bear Extraction House?

Michael Schimelpfenig, head of R&D and BHO extraction manager at Bear Extraction House.

Michael: You know, I actually landed my role at Bear through a job search on LinkedIn. I had been working in the traditional market for five years and was getting tired of the irregular paychecks and general uncertainty of working in that market. You know, too many helicopter buzzes and all that. I felt like the risk vs reward just wasn’t there. I like Northern California and knew I wanted to find something up in Humboldt County where I had been fortunate to get experience out in the hills. After I applied on LinkedIn, I was contacted in twenty-four hours. I had an interview twenty-four hours after that and the next day I had a job! It’s been a big change going to a legal company. The possibilities are lightyears beyond what you can do in the traditional market. Lots of resources and equipment available that just aren’t there in the traditional market.

Aaron: Fascinating! I spent a week up on Humboldt last year and it is beautiful up there. The next questions will be focused on product development and manufacturing. What is your decision process for starting a new product?

Michael: We get feedback from a lot of different places. Sometimes a new product idea is coming from our CEO, Per. He comes to me with new ideas and asks if we can do something. Often it will start with a general question. Is it possible with the given capabilities? Is it scalable? Some of our new product ideas are based on market input and then others are based on employee input. Sometimes we have pre-existing ideas and just need to sit down to formalize them. Here at Bear we have the capability of making a lot from a little input.

We’re always playing with ideas. We have lively R&D meetings each week where we throw ideas around. Take byproducts from a product development run for example. Maybe it’s not a byproduct, but maybe a separate new product altogether! Sometimes we’ll start off wanting to make something and, in the process, create something unexpected that we are then able to turn into a product. Creating new products is just as important as improving optimizations. Ideas come from all over the place.

We focus these ideas through the R&D committee. Common questions include: How do we develop the product? What are the costs? Is it marketable? We have to view things from an economic standpoint and we wont proceed until we can figure out what the product can be and what we can make money from. Our R&D committee is made up of our COO, Jeff, our lead extractor, our oven room manager and our post-production manager who focuses on product separation. When we kick a new project off It all takes lots of scheduling and coordination.

Aaron: Are you developing new products internally?

Michael: We do 100% in-house product development and manufacturing. We are formalizing and creating a more focused approach to R&D and are bringing in some academics now. They are young minds with backgrounds in organic chemistry and thermodynamics. This is important because it’s the science behind the process that helps to generate the products. We believe the added talent should help to provide some grounding to the R&D. Before we made a lot of products by accident. The ultimate goal is uniform manufacturing and that requires an understanding of molecular processes.

Aaron: Answer the next question however you like. What does being stuck look like for you?“If a product isnt behaving the way we expect, we will do testing to determine cannabinoid and terpene levels to gain better understanding.”

Michael: Well, there are a couple ways to get stuck. Sometimes you can get stuck with a limited product portfolio. A year and a half ago all we made was live resin. Now we have different levels of live resin and six different vape carts. If you are not changing and developing new products, you are stuck.

When the web of production stops going that is definitely what I consider getting stuck. You can get stuck if sourcing material is difficult to find or cost prohibitive. We will pivot and adjust manufacturing material if that happens. We are also exploring best avenues for sourcing high quality trim and working with farmers to specifically grow strains and exotic genetics. But overall, getting stuck happens. Being stuck, on the other hand, is a lack of creativity.

Aaron: If you get stuck is it usually the same place? Or is it different each time?

Michael: We have redundancies for equipment and components. If we are getting stuck in the same place it is usually due to a lack of source material. Sometimes we get material that degrades prior to extraction. It’s a matter of contacting supplier to coordinate with them on the best approach forward. If a product isnt behaving the way we expect, we will do testing to determine cannabinoid and terpene levels to gain better understanding. In the end, sometimes we just have to pivot to other products with things we have.

Aaron: Thanks for that. Now, imagine you have a magic wand that can take care of your issues. What does your magic helper look like?

Michael: My magic helper would be someone to help with reporting. Someone that can take care of METRC indexing and preparing final R&D reports. Like a magic data processor. Someone to handle the minutiae.

Aaron: Whats most frustrating thing you are going through with the business?

Michael: There’s never enough time! We continue to manufacture at full capacity all the time. With that demanding of a schedule it can be difficult to manage time between day-to-day processes and being able to look at bigger picture.

Aaron: Now for our final question: What are you following in the market and what do you want to learn about?

Michael: I’m following the guys out there that are heavy into crystallization. There are some huge THCA diamonds coming from East Coast Gold. I would like to know what their solution is. What is their magic liquid and process? I am a big fan of diamond growth. You can grow extremely pure isolates that way. We grow our own diamonds and have had them tested greater than 99.99% THCA. I think high level purity THCA from diamonds is preferred versus distillate. There is a difference in the smoke between them too. Having a process for making large quantities of diamonds would open us up to sticking our foot in edibles and topicals too. There is control that comes with having a purity level like that. Dosage is difficult without it. I am also interested in improving extract purity and isolating terpenes. I like solvent-less products. It means it came from a high-quality source. I would be just as happy smoking good flower as concentrate derived from the same flower.

Aaron: Alright that concludes our interview! Thank you again for the time today, Michael!

Michael: Thank you.

Leaders in Extraction & Manufacturing: Part 3

By Aaron Green
No Comments

Cannabis extraction and manufacturing is big business in California with companies expanding brands into additional states as they grow. This is the third article in a series where we interview leaders in the California extraction and manufacturing industry from some of the biggest and most well-known brands.

In this weeks article we talk with Joaquin Rodriguez, chief operations officer at GenX Biotech. Joaquin was introduced into the cannabis industry through a close personal relationship and has spent seven years researching and navigating the cannabis market before jumping into his career with GenX Biotech. The interview with Joaquin was conducted on August 4, 2020.

Next week, we’ll interview Michael Schimelpfenig, head of R&D and BHO extraction manager at Bear Extraction House. Stay tuned for more!

Aaron Green: Hi Joaquin! I appreciate you taking the time to chat today. I’m glad we were able to connect!

Joaquin Rodriguez: Absolutely! I’m looking forward to it.

Aaron: Me too! So, I like to start off the interview with a background question so people get a chance to know about you better. How did you get involved with GenX Biotech?

Joaquin Rodriguez, chief operations officer at GenX Biotech

Joaquin: I went to school at Cal Poly for mechanical engineering and spent some time in the oil industry. In 2011 I was introduced to who would be the future founder of GenX Biotech, Shea Alderete. I spent 7 years diving into cannabis industry to better understand the landscape and Prop 215 (Californias Compassionate Use Act of 1996) and then Prop 64. In late 2017, I joined GenX Biotech to spearhead the acquisition of licensing and scale up distillate manufacturing.

Aaron: Awesome. My next questions are focused on product development. What is your decision process for starting a new product at GenX Biotech?

Joaquin: Our founder, Shea Alderete, is an innovator in product development. He specializes in formulations and new formulas for vape products. We are big on gathering empirical data. In any new product we will run a small batch and test first with heavy cannabis users to gauge their reaction to the product. We will then test with light cannabis users and finally new cannabis users so we get the full spectrum of user experiences. Throughout the process, we are gathering empirical data on things like taste and perceived therapeutic effects.

Aaron: Are you personally involved in manufacturing? Tell me about your process.

Joaquin: I am, yes. We specialize in large scale distillate manufacturing to make THC oil and we formulate batches using cannabis-derived terpenes. This what we call Sauce, a full spectrum high-terpene extract obtained from a butane hash oil (BHO) process. This is a separate extraction method from our alcohol extraction process.

Aaron: Very insightful! What is your process for developing new products?

Joaquin: GenX Biotechs core mission is to bridge the gap between cannabis culture and the science behind cannabis. We focus more on therapeutic effects as well as recreational. We keep a pulse on the industry as a whole to see what people are doing and saying as well as new extraction methods. When we capture that data we evolve and adapt and create new formulations based on that preference and test it out. Its a constant game of does this look good? taste good? make you feel good? how is the potency?” Its really a big collaboration with our end users.

We will also collaborate with other brands and manufacturers to stay ahead of the curve, share information that can make us a better company, more power in numbers is what we say. As an example, Wonderbrett is known for their high-quality flower. They have a high-end product and high-end brand recognition. We would, for example, strategize and collaborate together to utilize a unique cannabinoid and terpene profile and test that with our vape products in the market. It’s more of a collaboration than a white label relationship. In this way, Wonderbrett can expand into the extracts space via their brand. We do this with other brands as well where well use their raw material and joint market the brands on the final product.

Aaron: Fantastic. Are you developing new products internally?

Joaquin: We develop all our products 100% internally.

Aaron: Do you ever bring in external product development consultants?

Joaquin: Not for products, however there are certain situations, like hardware development, where we will work with outside groups that specialize in equipment manufacturing to create something specific and one off for us. We are currently working on bringing to the market an FDA-approved inhaler technology device that is a non-combustible metered delivery device that we are really excited about. In addition, we have an incubator program with our LA partners to introduce new brands to the market which is a great asset for consulting brands looking for a home and multistate resources.

Aaron: Very cool, that’s the first I have head of inhalers in the market. For my next question feel free to answer however you like. What does being stuck look like for you?

Joaquin: Getting stuck can happen in a few different areas. With respect to manufacturing, the main bottleneck issues are consistent quality of the raw biomass materials. Mother nature does not duplicate the same results exactly every time and fluctuations can affect the cost and quality of raw goods. Other things like wear and tear on manufacturing equipment are not normally an issue as everything is stainless steel and pretty stable. But things like valves, gaskets and grommets tend to wear down with consistent use. When those fail, a whole operation can be shut down. We keep a stockpile of those on hand to make sure we stay in production.

“I support the leaders that help increase the overall knowledge for consumer and patents to know the difference between a quality product and a boof product.”Aaron: If you get stuck is it usually the same place? Or is it different each time?

Joaquin: Like I said, if we get stuck its usually in the sourcing of raw materials. Cultivators can have a bad crop or weather might affect their crop. It almost always comes down to the relationship with your cultivators. They fuel the industry and are the back bone of the whole supply chain. If they have any issues it affects everyone down line.

Aaron: Do you ever hire outside consultants when you get stuck?

Joaquin: Not really. We rely on our experience and years of operating and going through our own failures to navigate any issues with manufacturing. Collectively we work together to pivot and adapt to the ever-changing legal cannabis landscape. We do on occasion outsource to a 3rd party to help acquire raw goods. On the other hand, we separately consult for other people and groups looking to build out labs!

Aaron: That’s an excellent position to be in! For the next question imagine there’s a magic wand. What does your magic helper look like?

Joaquin: Someone that can come in and help with taxation. Triple taxation is tough. There’s the cultivation tax, manufacturing tax, state tax and local taxes. Long Beach recently lowered their local tax from six to one percent, so that is encouraging, but there needs to be a fair taxation for this industry to really thrive.

Aaron: Whats the most frustrating thing you are going through with the business?“I’m really excited for the continued education and deregulation of cannabis and its medical applications.”

Joaquin: I think that would be sales downline. With Prop 215 and the transition to prop 64, legal outlets have been heavily truncated. There are now approximately 600 legal retail outlets down from a high of about 4500 prior to prop 64. The competition landscape is really high and its hard to get product on the shelves without proper capital to keep the brand going. It is advantageous to partner with an established distro in order to get involved with their downline and run lean and mean.

Aaron: Now for our final question. What are you following in the market and what do you want to learn about?

Joaquin: I’m really excited for the continued education and deregulation of cannabis and its medical applications. It never should have been illegal to begin with, but with government corruption and greed it was targeted and use for multiple agendas. I support the leaders that help increase the overall knowledge for consumer and patents to know the difference between a quality product and a boof product. You have seen the results of the vape scare and there’s a good reason for it. Most people don’t want to pay the high ticket for legally compliant product so they turn to the illegal side where no regulation or testing is conducted to ensure they are getting safe, quality products.

In addition, the demand is so strong that illegal producers are able to put whatever they want in their products and sell them as if they are legit, provided they have the knock-off packaging, and those operators further harm those people because the state they are selling in hasn’t adapted to the times and has prohibited the availability of legal cannabis. Their inaction and support of the continued “war on cannabis” makes them just as guilty in the results of those people who have fallen ill or been hospitalized.

There have been lots of new studies published that are slowly making their way into social media and reaching consumers so that is encouraging. Another important element is the education of bud tenders because they are the face of the brand when the customer or patient is at a legal dispensary so they need to be educated on what makes for a quality product and how it can help or achieve a desired result for a customer or patient.

Aaron: Well, that concludes the interview Joaquin. Thanks for taking the time today to talk. This is all awesome feedback for the industry. Thanks so much for these helpful insights into product development in the cannabis industry.

Joaquin: Thanks, glad to help!

extraction equipment

Moneybowl: How Data Analytics Can Improve Extraction Processes

By Dr. Markus Roggen, Sajni Shah, Stella Zhu
No Comments
extraction equipment

When data analytics was first introduced in the sports industry, it was met with a lot of criticism. But then it began to show results; a popular example being the story of Oakland Athletics Manager Billy Beane, depicted in the movie Moneyball starring Brad Pitt. In the cannabis industry today, we face familiar hurdles. Everyone is focused on extracting as much CBD oil as they can, but not many are optimizing the process. We even hear that data analytics is too difficult, that it does not help and no one has time for it. In contrast, the sports industry nowadays widely uses statistics and analytics, because it has proved to be effective. They use data analytics to choose their players for a team so that they have the best chance to win the championship. NBA teams have entire departments focused on data analytics, so why doesn’t the cannabis industry? Focusing on basketball, what if the approach taken to pick players for an all-star team was employed in the cannabis industry? Imagine your instruments as players and their parameters as their skills. Now, all you need is data analytics to help you decide how best to optimize your team. Paying attention to the numbers, could help you win in the cannabis industry.

extraction equipmentWhen thinking about players in basketball, one factor of interest is the “Players Offensive Rating”, which is the amount of points produced by a player per 100 possessions. In this scenario, you want the player to have a higher offensive rating as it means that they have a better chance of scoring points when they have the ball. Similarly, in cannabis production, you would want your instrument to yield as much product (points) per hour (possession) as possible as well. So, the cannabis extraction analogy for offensive rating is “Yield Per Hour”. By increasing the yield per hour, the instrument can extract more product in the same time frame, increasing overall output and reducing product cost per gram. In this scenario, the biggest extractor is not necessarily the fastest, and any supercritical COextractor will be slower than, for example, ethanol extractors.

Another important factor that’s considered in basketball is “Shooting Efficiency,” which looks at the number of successful baskets made by a player in comparison to the number of shots taken and where the shot was taken from. Having a player with a high shooting efficiency would result in a good chance for that team scoring points over their competitors. This principle is similar in cannabis, while a high yield (number of shots) is great, you also want a high purity (baskets made) of your target compounds or “Percent Purity”. This means you will get a higher percentage of the compounds you want, such as cannabinoids, for every gram of oil extracted. Here, the supercritical CO2 extractor shows its superiority over ethanol, as density modulation of the supercritical CO2 allows for the separation of terpenes or cannabinoids from the rest.You can see that a team that has a better synergy has a higher winning rate. For the same reason, the cannabis extraction process can be optimized by adjusting the parameters of the instrument. 

For one last example, let’s look at “Number of Steals” as well. This is the number of times a defensive player successfully tackles the ball from an opposing player before they manage to shoot a basket. If this is high, opponents have fewer opportunities to shoot and score points. Similarly, “Percent Recovery” in the cannabis industry is important to ensure that the target compounds in your flower are being extracted. The solvent should have the chance to extract the compounds (steal from the opposition), before the run ends (the opposition shoots). A high recovery gives a higher overall output for the materials that were input, generating more product overall. In theory, if you wait long enough every solvent can reach full recovery, but for supercritical CO2 in particular there is a practical ceiling around 80% recovery.

While thinking about these variables in isolation is the first step, it is just as important to see how the variables interplay with each other. A concept is introduced here called “synergy”. A team member must establish a good cooperation with the entire team according to their own characteristics. For example, taller and stronger players whose “Offensive Rating” is higher are more suitable for guards, while those with a high “Shooting Efficiency” are more suitable for forwards. You can see that a team that has a better synergy has a higher winning rate. For the same reason, the cannabis extraction process can be optimized by adjusting the parameters of the instrument. For example, if you increase the extraction speed, which is “Yield per Hour”, you may need to compromise on “Percent Purity” as the increased speed may not allow for the optimal extraction of target compounds. Similarly, you may also need to compromise on “Percent Recovery” as a slower extraction rate will do a better job at having a higher recovery. Thus, in order to improve the overall process of extracting oil, there needs to be a focus on analyzing the synergies between different factors to guarantee optimal parameters for your benefit.

These examples highlight some of the basic data analytics that can be conducted on your instruments. However, there’s still one challenge to consider, most professional NBA teams have entire departments just for data analytics. How can you possibly accomplish conducting these analytics for your entire cannabis LP in addition to your regular job roles? That’s where we come in. Other than the “Yield per Hour”, “Percent Purity” and “Percent Recovery” listed above, CBDV can perform customized data analysis based on your company’s data. Let our team help you integrate the “boring” and “half-baked” data, and present you with a visual and clear data analysis report. Let us help you lead your team to win that championship in cannabis!


Acknowledgements

  • David “Davey” Jones
  • Dr. Tara Zepel