Cannabis Facility Construction (CFC), based in Northbrook, Illinois, has taken a rather unique approach to facility design and building in the cannabis market. According to a press release published today, the company takes unused buildings and remodels them into facilities designed specifically for the cannabis industry.
CFC, which is a division of Mosaic Construction, retrofits unused, abandoned buildings, turning them into cannabis cultivation and processing facilities, as well as dispensaries. According to that press release, they have developed buildings on 28 different facilities to date, covering over 328,970 square feet.
According to Ira Singer, Principal at CFC, they provide a turnkey service for licensed operations to retrofit old buildings, including staying compliant with state cannabis regulations. “Since the cannabis industry is emerging as a growth market, investors need to appreciate there is an art and a science to converting raw materials of cannabis and finished products,” says Singer. “CFC’s medicinal processing centers are outfitted to master the product in all its forms and uses, and to meet all state regulations and local fire and safety codes. Its three-stage approach encompasses its Design-Build expertise for processing facilities; construction management; security infrastructure and planning; and permitting and compliance support.”
For example, they helped investors from Highland Park, Illinois take an unused building in Garden City, Michigan and convert it into a 48,000 square foot cultivation, processing and dispensary facility. CFC also does business with Greenhouse, a medical cannabis company with facilities throughout Illinois.
The outside environment can vary widely depending on where your facility is located. However, the internal environment around any activity can have an effect on that activity and any personnel performing the activity, whether that’s storage, manufacturing, testing, office work, etc. These effects can, in turn, affect the product of such activities. Environmental control strategies aim to ensure that the environment supports efforts to keep product quality high in a manner that is economical and sensible, regardless of the outside weather conditions.
For this article, let us define the “environment” as characteristics related to the room air in which an activity is performed, setting aside construction and procedural conditions that may also affect the activity. Also, let us leave the issue of managing toxins or potent compounds for another time (as well as lighting, noise, vibration, air flow, differential pressures, etc). The intent here is to focus on the basics: temperature, humidity and a little bit on particulate counts.
Temperature and humidity are key because a non-suitable environment can result in the following problems:
Operator discomfort
Increased operator error
Difficulty in managing products (e.g. powders, capsules, etc)
Particulate generation
Degradation of raw materials
Product contamination
Product degradation
Microbial and mold growth
Excessive static
USP <659> “Packaging and Storage Requirements” identifies room temperature as 20-25°C (68-77 °F) and is often used as a guideline for operations. If gowning is required, the temperature may be reduced to improve operator comfort. This is a good guide for human working areas. For areas that require other specific temperatures (e.g. refrigerated storage for raw materials), the temperature of the area should be set to those requirements.
Humidity can affect activities at the high end by allowing mold growth and at the low end by increasing static. Some products (or packaging materials) are hydroscopic, and will take on water from a humid environment. Working with particular products (e.g. powders) can also drive the requirement for better humidity control, since some powders become difficult to manage in either high or low humidity environments. For human operations without other constraints, a typical range for desirable humidity is in the range of 20 to 70% RH in manufacturing areas, allowing for occasional excursions above. As in the case of temperature, other requirements may dictate a different range.
In a typical work environment, it is often sufficient to control the temperature, while allowing the relative humidity to vary. If the humidity does not exceed the limits for the activity, then this approach is preferred, because controlling humidity adds a level of complexity (and cost) to the air handling. If humidity control is required, it can be managed by adding moisture via various humidification systems, or cooling/reheating air to remove moisture. When very low humidity is required, special equipment such as a desiccant system may be required. It should be noted that although you can save money by not implementing humidity control at the beginning, retrofitting your system for humidity control at a later time can be expensive and require a shutdown of the facility.
Good engineering practice can help prevent issues that may be caused by activities performed in inappropriately controlled environments. The following steps can help manage the process:
Plan your operations throughout your facility, taking into account the requirements for the temperature and humidity in each area and know what activities are most sensitive to the environment. Plans can change, so plan for contingencies whenever possible.
Write down your requirements in a User Requirement Specification (URS) to a level of detail that is sufficient for you to test against once the system is built. This should include specific temperature and RH ranges. You may have additional requirements. Don’t forget to include requirements for instrumentation that will allow you to monitor the temperature and RH of critical areas. This instrumentation should be calibrated.
Solicit and select proposals for work based on the URS that you have generated. The contractor will understand the weather in the area and can ensure that the system can meet your requirements. A good contractor can also further assist with other topics that are not within the scope of this article (particulates, differential pressures, managing heating or humidity generating equipment effects, etc).
Once work is completed, verify correct operation using the calibrated instrumentation provided, and make sure you add periodic calibration of critical equipment, as well as maintenance of your mechanical system(s), to your calibration and maintenance schedules, to keep everything running smoothly.
The main point is if you plan your facility and know your requirements, then you can avoid significant problems down the road as your company grows and activity in various areas increases. Chances are that a typical facility may not meet your particular requirements, and finding that out after you are operational can take away from your vacation time and peace of mind. Consider the environment, its good business!
When processing cannabis, in any form, it is critical to remember that it is a product intended for human consumption. As such, strict attention must also be paid to food safety as well. With more and more states legalizing either medical or recreational cannabis, the potential for improper processing of the cannabis triggering an illness or death to the consumer is increasing.
The FDA Food Safety Modernization Act (FSMA) is the new food safety law that has resulted in seven new regulations, many which directly or indirectly impact the production and processing of cannabis. Under FSMA regulations, food processors must identify either known or reasonably foreseeable biological, chemical or physical hazards, assess the risks of each hazard, and implement controls to minimize or prevent them. The FSMA Preventive Controls for Human Foods (PCHF) regulation contains updated food “Good Manufacturing Practices (cGMPs) that are in many cases made a requirement in a state’s medical or recreational cannabis laws. These cGMPs can be found in 21 CFR 117 Subpart B.
It is imperative that cannabis manufacturers have a number of controls in place including management of suppliers providing the raw material.Food safety risks in cannabis processing could originate from bacteria, cleaning or agricultural chemicals, food allergens or small pieces of wood, glass or metal. The hazards that must be addressed could be natural, unintentionally introduced, or even intentionally introduced for economic benefit, and all must be controlled.
It is unlikely that high heat, used in other food products to remove bad bacteria would be used in the processing of cannabis as many of its desirable compounds are volatile and would dissipate under heating conditions. Therefore, any heat treatment needs to be carefully evaluated for effectiveness in killing bacterial pathogens while not damaging the valuable constituents of cannabis. Even when products are heated above temperatures that eliminate pathogens, if the raw materials are stored in a manner that permits mold growth, mycotoxins produced by molds that have been linked to cancer could be present, even after cooking the product. Storage of raw materials might require humidity controls to minimize the risk of mold. Also, pesticides and herbicides applied during the growth and harvesting of cannabis would be very difficult to remove during processing.
It is imperative that cannabis manufacturers have a number of controls in place including management of suppliers providing the raw material. Other controls that must be implemented include proper cannabis storage, handling and processing as well as food allergen control, and equipment/facility cleaning and sanitation practices. Processing facilities must adhere to Good Manufacturing Practices (GMP’s) for food processing, including controls such as employee hand washing and clothing (captive wear, hair nets, beard nets, removal of jewelry, and foot wear) that might contribute to contamination. A Pest Control plan must be implemented to prevent fecal and pathogen contamination from vermin such as rodents, insects, or birds.
Processing facilities must be designed for proper floor drainage to prevent standing water. Processing air should be properly filtered with airflow into the cannabis processing facility resulting in a slightly higher pressure than the surrounding air pressure, from the clean process area outwards. Toilet facilities with hand washing are essential, physically separated from the process areas. Food consumption areas must also be physically separate from processing and bathroom areas and have an available, dedicated hand sink nearby. Employee training and company procedures must be effective in keeping food out of the processing area. Labels and packaging must be stored in an orderly manner and controlled to prevent possible mix-up.Cleaning of the processing equipment is critical to minimize the risk of cross contamination and microbial growth.
Written food safety operational procedures including prerequisite programs, standard operating procedures (SOP’s), etc. must be implemented and monitored to ensure that the preventive controls are performed consistently. This could be manual written logs, electronic computerized data capture, etc., to ensure processes meet or exceed FSMA requirements.
A written corrective action program must be in place to ensure timely response to food safety problems related to cannabis processing problems when they occur and must include a preventive plan to reduce the chance of recurrence. The corrective actions must be documented by written records.
Supply chain controls must be in place. In addition, a full product recall plan is required, in the event that a hazard is identified in the marketplace to provide for timely recall of the contaminated product.
Cleaning of the processing equipment is critical to minimize the risk of cross contamination and microbial growth. The processing equipment must be designed for ease of cleaning with the minimum of disassembly and should conform to food industry standards, such as the 3-A Sanitary Standards, American Meat Institute’s Equipment Standards, the USDA Equipment Requirements, or the Baking Industry Sanitation Standards Committee (BISSC) Sanitation Standards ANSI/ASB/Z50.2-2008.
Serious food borne contaminations have occurred in the food industry, and cannabis processing is just as susceptible to foodborne contamination. These contaminations are not only a risk to consumer health, but they also burden the food processors with significant costs and potential financial liability.
Anyone processing cannabis in any form must be aware of the state regulatory requirements associated with their products and implement food safety programs to ensure a safe, desirable product for their customers.
In late November, California released their proposed emergency regulations for the cannabis industry, ahead of the full 2018 medical and adult use legalization for the state. We highlighted some of the key takeaways from the California Bureau of Cannabis Control’s regulations for the entire industry earlier. Now, we are going to take a look at the California Department of Public Health (CDPH) cannabis manufacturing regulations.
According to the summary published by the CDPH, business can have an A-type license (for products sold on the adult use market) and an M-type license (products sold on the medical market). The four license types in extraction are as follows:
Type 7: Extraction using volatile solvents (butane, hexane, pentane)
Type 6: Extraction using a non-volatile solvent or mechanical method
(food-grade butter, oil, water, ethanol, or carbon dioxide)
Type N: Infusions (using pre-extracted oils to create edibles, beverages,
capsules, vape cartridges, tinctures or topicals)
Type P: Packaging and labeling only
As we discussed in out initial breakdown of the overall rules, California’s dual licensing system means applicants must get local approval before getting a state license to operate.
The rules dictate a close-loop system certified by a California-licensed engineer when using carbon dioxide or a volatile solvent in extraction. They require 99% purity for hydrocarbon solvents. Local fire code officials must certify all extraction facilities.
In the realm of edibles, much like the rule that Colorado recently implemented, infused products cannot be shaped like a human, animal, insect, or fruit. No more than 10mg of THC per serving and 100mg of THC per package is allowed in infused products, with the exception of tinctures, capsules or topicals that are limited to 1,000 mg of THC for the adult use market and 2,000 mg in the medical market. This is a rule very similar to what we have seen Washington, Oregon and Colorado implement.
On a somewhat interesting note, no cannabis infused products can contain nicotine, caffeine or alcohol. California already has brewers and winemakers using cannabis in beer and wine, so it will be interesting to see how this rule might change, if at all.
The rules for packaging and labeling are indicative of a major push for product safety, disclosure and differentiating cannabis products from other foods. Packaging must be opaque, cannot resemble other foods packaged, not attractive to children, tamper-evident, re-sealable if it has multiple servings and child-resistant. The label has to include nutrition facts, a full ingredient list and the universal symbol, demonstrating that it contains cannabis in it. “Statute requires that labels not be attractive to individuals under age 21 and include mandated warning statements and the amount of THC content,” reads the summary. Also, manufacturers cannot call their product a candy.
Foods that require refrigeration and any potentially hazardous food, like meat and seafood, cannot be used in cannabis product manufacturing. They do allow juice and dried meat and perishable ingredients like milk and eggs as long as the final product is up to standards. This will seemingly allow for baked goods to be sold, as long as they are packaged prior to distribution.
Perhaps the most interesting of the proposed rules are requiring written standard operating procedures (SOPs) and following good manufacturing practices (GMPs). Per the new rules, the state will require manufacturers to have written SOPs for waste disposal, inventory and quality control, transportation and security.
According to Donavan Bennett, co-founder and chief executive officer of the Cannabis Quality Group, California is taking a page from the manufacturing and life science industry by requiring SOPs. “The purpose of an SOP is straightforward: to ensure that essential job tasks are performed correctly, consistently, and in conformance with internally approved procedures,” says Bennett. “Without having robust SOPs, how can department managers ensure their employees are trained effectively? Or, how will these department managers know their harvest is consistently being grown? No matter the employee or location.” California requiring written SOPs can potentially help a large number of cannabis businesses improve their operations. “SOPs set the tempo and standard for your organization,” says Bennett. “Without effective training and continuous improvement of SOPs, operators are losing efficiency and their likelihood of having a recall is greater.”
Bennett also says GMPs, now required by the state, can help companies keep track of their sanitation and cleanliness overall. “GMPs address a wide range of production activities, including raw material, sanitation and cleanliness of the premises, and facility design,” says Bennett. “Auditing internal and supplier GMPs should be conducted to ensure any deficiencies are identified and addressed. The company is responsible for the whole process and products, even for the used and unused products which are produced by others.” Bennett recommends auditing your suppliers at least twice annually, checking their GMPs and quality of raw materials, such as cannabis flower or trim prior to extraction.
“These regulations are only the beginning,” says Bennett. “As the consumer becomes more educated on quality cannabis and as more states come online who derives a significant amount of their revenue from the manufacturing and/or life science industries (e.g. New Jersey), regulations like these will become the norm.” Bennett’s Cannabis Quality Group is a provider of cloud quality management software for the cannabis industry.
“Think about it this way: Anything you eat today or any medicine you should take today, is following set and stringent SOPs and GMPs to ensure you are safe and consuming the highest quality product. Why should the cannabis industry be any different?”
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.