Tag Archives: facility

Building An Integrated Pest Management Plan – Part 6

By Phil Gibson
No Comments

This is the sixth and final in the series of articles designed to introduce an integrated pest management framework for cannabis cultivation facilities. To see Part One, an overview of the plan and pest identification, click here. For Part Two, on pest monitoring and record keeping, click here. For Part Three, on preventative measures, click here. For Part Four, control methods, click here. For Part Five, pest control action thresholds, click here.

This is Part 6: Emergency Response

When all prevention efforts have failed and your escalation procedures must be implemented, your emergency response document takes the stage.

Figure 1: We never want to see these at our door

It sounds obvious, but your emergency response document is your team’s guide to structure your response to an emergency. This begins with the simple definition of what is an emergency for your business. Emergencies can be to your personnel (personal injury) or your infrastructure (broken pipes/floods, power failure), and finally, a pest or pathogen outbreak that threatens the entire facility (insects/fungus, molds). Be sure to get the advice of your local service providers on the important things to put in to your response plan. This article is far from an exhaustive list, but it can get you started quickly with the basics for example purposes.

Personal Injury

Personal injuries are the events where you would call your local fire or police resources after stabilizing trauma events. Examples are chemical exposure, cuts, lacerations or broken bones from falls or crush events, burns, electric shock or earthquake or weather events. Injury response is to assess, call for medical assistance if appropriate, provide first aid and stabilize the injured, move to safety if possible, treat the injury and after the event is over and still fresh in everyone’s mind, consider what can be done to avoid the repeat of this or similar events in the future. Work those changes into your standard operating procedures.

Emergency Response to Facility Events

Figure 2: Cultivation IPM Prevention with Beneficial Insects

Whether the event is broken pipes or flooding, power failure or interruption, fire, HVAC failure or weather event, emergencies come in all sizes possible. It is likely that you built up a plan for emergency response as part of your city permitting process. Be sure to use those experts to refine your plan to include your operations.

Broken pipes start with the basics of turning off the source feeds and fixing the plumbing. If the water is actually rich fertilizer nutrients, cleaning and disinfectant is necessary as part of the drying and mop up process.

Environmental damage from fire, HVAC or weather event, lead to immediate treatment to try and save the current crops. This would include manual watering/misting, portable heater/cooler/CO2 burners. Verifying that backup power supplies turned on as planned. Are emergency fixes sufficient to power or run the systems necessary for plant life until power is returned?

Cultivation Events

Figure 3: Emergency Response Team Investigating Treatments

This entire paper has been about pest management, so emergency is expected to mean a pest or pathogen outbreak. We defined the escalated response actions up to the point of direct action and chemical interventions in chapters four and five. Your emergency response plan takes those actions to a site wide effort. Identify the pest and location/s that are causing the crisis, isolate the infested plants, remove the infected materials, clean, disinfect, and purify the contacted surfaces. Follow your plan and contact your emergency leaders.

Emergency Response Team

Your emergency response document identifies each of your team leaders and executives that are to be contacted in the event of an emergency. These leaders should be identified in the document with contact details and methods/on-call schedules for days and times of responsibility (after normal hours and holidays included). Someone is always on-call. The personal injury, facility and cultivation lead responsible should be identified and aware that they are the assigned resource and to treat emergencies as a priority.

Figure 4: IPM Preparation – Put It All Together for Success!

In Conclusion

We have covered an example integrated pest management philosophy from prevention through observation to limiting expansion to treatment and review. This continuous monitoring and learning process is a living document of standard operating procedures for any facility.

The attention of your team, their scouting observations, and attention to detail give you an opportunity to address and restrict any pest outbreak before it destroys your crop. Teach your operators well and reward them for their attention to your plan.

Clean and sterilize your facilities regularly. Preventing the emergence of pests will pay for the investment in a multitude of ways in both savings and profits. Plan your response thresholds and use traps to monitor your escalating protections. Target your treatments and remediations to match the threats to your harvests. As a last resort, apply approved chemical treatments judiciously to minimize the impact on non-target organisms.

Evaluate the effectiveness of your plan on an annual basis. Put your improvements to work for you to minimize your pest footprint and to increase your profits in every harvest.

For a copy of the complete Integrated Pest Management guide, download the document here.

Building An Integrated Pest Management Plan – Part 1

By Phil Gibson
No Comments

This is the first part of a series of articles designed to introduce an integrated pest management framework for cannabis cultivation facilities. Part one details an overview of the plan as well as pest identification. Part two comes out next week and will delve into the world of pest monitoring and record keeping. Stay tuned for more!

Figure 1: Integrated Pest Management Cycle

Background

Integrated Pest Management (IPM) is a philosophy of pest prevention and control that integrates cultural, mechanical, physical and chemical practices to control pest populations within an acceptable degree of economic tolerance.

IPM encourages growers to take a step-wise approach to determine the most appropriate means necessary for avoiding pest-related economic injury through careful consideration of all available pest control practices.

When practicing IPM, less invasive non-chemical practices are given priority, until escalation necessitates otherwise.

This is Part 1: Pest Identification & Monitoring/Communications

Personal experience in a facility is a great place to start. Review your history and identify a list of pests that you have experienced in this or previous grows. Point out which pests currently exist where they were or are currently and possible sources of the contamination/infestation.

Figure 2: Healthy Aeroponic Mother Stock

Map out your facility with clear entry/exits, plumbing & drainage and air flow access to visually see and understand potential access points for crawling, flying or airborne pests.

From your nursery mother room to cloning and vegetation areas, what are the transfer methods as you move from one area to another. Are pests present in these areas? Where could they have come from? Oftentimes, a cultivator may not have the space for their own mother and cuttings/cloning space. In these cases, where did the outsourced clones come from? What are the IPM controls in place for these genetic sources? Are they carriers of the challenges transferred to your own facility? It is important to identify the possible source of pest potentials

Does your flower room have white flies or fungus gnats? Locating these and identifying the likely source is a good place to start if you have an ongoing infestation.

Figure 3: Example Aeroponic Facility Layout For IPM Planning

Powdery mildew is a routine challenge if air into your facility is not filtered and sterilized to eliminate these spores.

What is the Source of Your Irrigation/Fertigation Water?

Water is a crucial element for high-value indoor farms such as those that grow cannabis. However, water can also be a source of disease-causing microorganisms that can negatively impact the growth and yield of crops. Monitoring, filtering and sterilizing the biological contents of water is therefore crucial in ensuring the health and quality of high-value crops.

Unfiltered water can contain a range of pathogens such as bacteria, viruses, fungi and parasites that can cause root, stem and bud rot. These diseases can cause significant losses in crop yield and quality, which can be devastating for indoor farmers growing high-value crops.

Figure 4: Precision Aeroponics at FarmaGrowers GMP Facility, South Africa

Monitoring the quality of water that is brought into the indoor farm is the first step in ensuring that the water is free from harmful pathogens. This involves regular testing of the incoming water for parameters such as pH, dissolved oxygen, TDS, nutrient content and microbial load. This allows cultivators to identify aspects of the incoming water they need to address before the water is provided to their crops to prevent potential problems.

Is your plumbing building biofilm that is feeding into your irrigation lines? Obviously, there are many potential sources when you go through an inventory of the risks for your facility. From that initial step, you will build your management team and label who should be contacted when a pest is found. Do you have an IPM specialist or is this a resource that needs to be contracted to address an infection?

Building this communications tree is your first step to fewer pest issues and higher yields and potency.

For the complete white paper on Integrated Pest Management Recommendations, download the document here. Part two comes out next week and will delve into the world of pest monitoring and record keeping. Stay tuned for more!

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 6

By Phil Gibson
No Comments

This is Part 6 and the final chapter in The 3-Legged Stool of Successful Grow Operations series. Click here to see Part 1, here to see Part 2, here to see Part 3, here for part 4 and here for Part 5.

Standard Operating Procedures (SOPs)

Figure 1: Precision aeroponics at FarmaGrowers GMP Facility, South Africa

Every objective has to have a vision and a vector of where you want to go and what you want to achieve. “Winging it” is okay for an innovative artistic endeavor where creativity is spontaneous and one-of-a-kind art is produced. Unfortunately, that is not how one creates a top-quality cultivation operation.

Customers expect guarantees of consistency; quality assurance means a purchase is safe to consume. Medicinal products around the world require Good Manufacturing Practices (GMP) certification. These are really just SOPs that document repeatable procedures to guarantee that the most recent batch offers the same results as the first certified effort. This brief covers the importance of documented operating procedures for a successful grow business with high quality customer results.

Figure 2: The objective – trichome covered flowers, DanCann, Denmark

Almost nobody gets excited about discussing quality, but experienced manufacturers know that quality control reduces waste and improves operations. Everyone learns that they have to implement feedback, improvement and quality control procedures to guarantee profitability and longevity in any business.

So, what is an SOP? A standard operating procedure defines ‘a task’ to be performed ‘at a location by a person or a role on a specific schedule.’ These definitions will include role definition, responsibilities, personnel training, equipment & service procedures, material handling, quality assurance controls, record keeping, approved procedures & instructions, documentation, references and appendices, all of which define your business and how it is to operate.

Now, you might ask, we are just growing plants, is all this really necessary? The short answer is, it depends. If you expect to export globally, do business in Europe and other markets, get licensed by Health Canada or some day be approved to ship to other States, then yes. If you are a regional craft cannabis supplier, maybe not, but there are many tasks that are required to grow where a better documented process can benefit your operation and the quality of the product delivered to your consumers.

Figure 3: Flower maintenance, DanCann, Denmark

We provide a bulleted list of recommendations in the full white paper but to touch on a few highlights that every operator should keep in mind, SOPs define the following structures for your business.

Personnel training is done for ‘this task, in this way’ & ‘this role is responsible’

Job descriptions reduce misunderstandings and increase worker ownership in your facility. Documenting your activities minimizes task overlap and conflicts that can lead to no one executing on something that may be important but not urgent. You want to eliminate employees thinking “I didn’t know it was my responsibility.”

Consultants or visitors must be aware of and follow the same requirements as your employees if you are to maintain the quality of your grow. Specific training should be given to anyone that handles or works around toxic chemicals. Safety sheets are not just paper; They keep people alive.

Equipment & Service Procedures

Be direct and specific in your task definitions, i.e., “Use 5ml of soap, clean until no plant matter or debris remains.”

Figure 4: Full GMP certified facility, FarmaGrowers, South Africa

Ideally, grow facilities, equipment and access will be designed with cleaning in mind from the start. This is not always possible but it is the mark of successful manufacturing or production companies.

Cleaning, cleaning, cleaning: think sterile, food safety and consumer consumption protections. SOPs should define cleaning methods and materials. This cleaning is done on schedule and aligned to your preventative maintenance and calibration requirements. Precise results require precise structure for any long-term operation.

We recommend that you integrate pictures and videos in the instructions for your procedures and training so that nothing is left to chance or misinterpreted.

Material Handling, Containers, Labels, Quality Assurance

Personnel contamination/cross-contamination are the death of any grow operation. Do everything you can to limit stray or wandering plant material, dust or debris from migrating from one grow room or area to another. Isolation is a good way to limit outbreaks to a specific room to minimize losses.

Figure 5: Documented SOPs must be followed & reviewed regularly

If something nasty happens to one of your rooms. Good labeling enforced by your quality assurance team is a simple way to increase the likelihood that employees will do a task as intended. This adds to your repeatability as people change jobs or roles are redefined.

Approved Procedures & Instructions

Quality assurance is all about repeatability and intended outcomes. Documenting procedures and intended use enables every new employee to follow the experience of the masters and duplicate their success. Testing, sampling and logging your results along the way enables you to know that you are on schedule and on process, so you can predict your results every time.

Part of your continuous improvement approach will be to deal with exceptions that are not covered by your procedures. Learning about those exceptions and capturing your experience with an improved method will lead to better outcomes the next time around.

Documentation, References, Appendices

Figure 6: Flower sealed & ready for export, DanCann, Denmark

You’ve done all of this hard work to capture your operation, so you need a complete library of your reference work and approach that employees can access. It does your operation no good if you capture your methods and no one ever looks at them again. Training cycles and reviewing your defined procedures is key to a consistent high-quality result.

Hero Award

Standard Operating Procedures (SOPs), Good Manufacturing Procedures (GMP) and Good Agricultural & Collection Practices (GACP), are all terms that will become more familiar as cannabis production joins into one global market. Professional results will be required and national or international certifications will be the guarantees that any global customer can trust that a product meets the standards they expect.

We have many customers in North America and around the world. but DanCann Pharma is the most aggressive when it comes to meeting international standards and results. Producing flower that is so pure that no irradiation is required for export, the DanCann operation is fully certified for production throughout Europe and they are sold-out of capacity for the coming year. They are currently expanding their operations in Denmark and are a solid example to follow for a well-defined repeatable operation. FarmaGrowers in South Africa is a close second in this race with multiple export certifications of their own. The future looks bright for both of these global operations.

For the complete white paper on Top Quality Cultivation Facilities, download the document here.

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 4

By Phil Gibson
No Comments

This is Part 4 in The 3-Legged Stool of Successful Grow Operations series. Click here to see Part 1, here to see Part 2, and here to see Part 3. Stay tuned for Part 5, coming next week.

Integrated Pest Management (IPM)

Aeroponic & hydroponic systems can operate with little to no soil or media. This eliminates the pest vectors that coco-coir, peat moss/perlite and organic media can harbor as part of their healthy biome approach. Liquid nutrient systems come at the nutrient approach from a different direction. Pure nutrient salts (nitrogen, potassium, magnesium and trace metals) are provided to the plant roots in a liquid carrier form. This sounds ideal for integrated pest management programs, but cultivators have to be aware of water and airborne pathogens that can disrupt operations. I will summarize some aspects to consider in today’s summary.

The elimination of soil media intrinsically helps a pest management program as it reduces the labor required to maintain a grow and the number of times the grow room doors are opened. Join that with effective automation with sensors and software, and you have immediate improvements in pest access. Sounds perfect, but we still have staff to maintain a facility and people become the number one source of contamination in a grow operation.

Figure 1: Example of Pythium Infected & Healthy Roots

Insects do damage directly to plants as they grow and procreate in a grow room. They also carry other pathogens that infect your plants. For example, root aphids, a very common problem, are a known carrier of the root pathogen, Pythium.

Procedures

One of the most common ways for pests to access your sealed, sterile, perfectly managed facilities are in the root stock of outsourced clones. If you must start your grow cycles with externally sourced clones, it is strongly recommended that you quarantine those clones to make sure that they do not import pest production facilities into your operation. Your operation management procedures must be complete. If you take cuttings from an internal nursery of mother plants, any pathogens present in your mother room will migrate through cuttings into your clones, supply lines, and subsequently, flower rooms.

Figure 2: Healthy Mothers & Clones, Onyx Agronomics

Start your gating process with questioning your employees and visitors. Do they grow at home or have they been to another grow operation in the last week? In the last day? You may be surprised by how many people that gain access to your grow will answer these questions in the affirmative.

Developing standard operating procedures (SOPs) that are followed by every employee and every visitor will significantly reduce your pest access and infection rates, and hence, increase your healthy harvests and increase your profitability. Procedures should include clothing, quarantining new genetics and cleaning procedures, such as baking or irradiating rooms to guarantee you begin with a sterile facility. This is covered more in the complete white paper.

Engineering Controls

Figure 3: Access Control: Air Shower, FarmaGrowers

Technology is a wonderful thing but no replacement for regimented procedures. Considered a best practice, professional air showers, that bar access to internal facilities, provide an aggressive barrier for physical pests. These high velocity fan systems and exhaust methods blow off insects, pollen and debris before they proceed into your facility. From that access port into your grow space, positive air flow pressure should increase from the grow rooms, to the hallways, to the outside of your grow spaces. This positive airflow will always be pushing insects and airborne material out of your grow space and away from your plants.

Maintaining Oxidation Reduction Potential (ORP)

ORP is a relative measurement of water health. Perfect water is clear of all material, both inert and with life. Reverse osmosis (RO) is a standard way to clear water but it is not sufficient in removing microscopic biological organisms. UV and chemical methods are needed in addition to RO to clear water completely.

ORP is an electronic measurement in millivolts (mV) that represents the ability of a chemical substance to oxidize another substance. ORP meters are a developing area and when using a meter, it is important to track the change in ORP values rather than the absolute number. This is due to various methods that the different meters use to calculate the ORP values. More on this in the white paper.

Oxidizers

Figure 4: AEssenseGrows Aeroponic Nozzles

There are two significant ways to adjust the ORP of a fertilizer/irrigation (fertigation) solution. The first is by adding oxidizers. Examples are chemical oxidizers like hydrogen peroxide (H2O2), hypochlorous acid (HOCl), ozone (O3) and chlorine dioxide (ClO2). Adding these to a fertigation solution increases the ORP of the fertigation solution by oxidizing materials and organic matter. The key is to kill off the bad things and not affect the growth of plants. Again here, the absolute ORP metric is not the deciding factor in the health of a solution and the methods by which each chemical reaction occurs for each of these chemicals are different. This is compounded by the fact that different ORP meters will show different readings for the same solution.

Another wonderful thing about automation and aeroponic and hydroponic dosing systems is that they can automatically maintain oxidizing rates and our white papers explain the methods executed by today’s automation systems.

Water Chilling

Another way to adjust ORP is to reduce the water temperature of the reservoirs. Maintaining water temperature below the overall temperature of your grow rooms is imperative for minimal biological deposition and nutrient system health. Water chillers use a heat exchanger process to export heat from liquid nutrient dosing reservoirs and maintain desired temperatures.

The benefit of managing ORP in aeroponic and hydroponic grow systems is highly accelerated growth. This is enhanced in aeroponics due to the effectively infinite oxygen exchanging gases at the surface of the plant roots. Nutrient droplets are sprayed or vaporized in parallel and provided to these root surfaces. Maximizing the timing and the best mineral nutrients to the root combustion is the art of grow recipe development. Great recipes drive superior yields and when combined with superior genetics and solid environmental controls, these plants will deliver spectacular profits to a grow operation.

Another Hero Award

Before closing this chapter, we have many cultivators that are producing stellar results with their operational and IPM procedures, so it is hard to choose just one leader. That said, our hats are off to RAIR Systems again and their director of cultivation, Ashley Hubbard. She and her team are determined to be successful and drive pests out of their operations with positive “little critters” and the best water treatment and management that we have seen. You are welcome to view the 7-episode walkthrough of the RAIR facility and their procedures here.

To download the complete guide and get to the beef quickly, please request the complete white paper Top Quality Cultivation Facilities here.

Stay tuned for Part 5 coming next week where we’ll discuss Genetics.

From Factory to Flower – 4 GMP Insights for the Grow House

By Tom Blaine
No Comments

At first glance, the layout of a grow room and a factory production line might seem to have little in common. But whether a facility is producing plants or parts, adopting good manufacturing practices (GMP) can benefit plant quality, harvest consistency and production economics.

What is GMP?

Simply defined, GMP refers to a production system made up of processes, standards and safeguards designed to consistently meet a defined quality standard. In the grow house, establishing, documenting and implementing GMPs can help guard against problems ranging from plant contamination to inconsistent harvests. GMPs can be organized into five key categories, each which contribute to cultivation:

  • People: The people working in the grow house understand their responsibilities
  • Processes: Production processes are clearly documented and consistent across harvests
  • Procedures: Guidelines are documented and communicated to all employees
  • Premises: Grow rooms and equipment are clean and maintained
  • Products: Materials used in cultivation (fertilizers, lighting, growing media, etc.) are assessed

Optimizing each of these five P’s in production can help cultivators protect their business and their margins even as flower prices in both legacy and emerging states continue to trend downward. Below, we look at four GMP insights that can help cultivators coordinate the five Ps to achieve quality, consistency and economic objectives harvest after harvest, without massive investments in capital, even during turbulent market conditions.

#1 Know your numbers and their value

Avoid the temptation to lump production costs into very broad categories, i.e., “cost of goods.” Understanding the exact cost of all inputs that go into a grow is a precedent to cost-effective production. The price of the plant material, energy consumed, labor, nutrients, fertigation and other inputs involved in the grow should be calculated to determine the actual cost of a grow room. If rooms are set up consistently, you can multiply to get an aggregate production cost across the facility.

Growing media

Look beyond the price tag when calculating costs and consider the value each input brings to the grow. Nutrition is a good example. Understanding the concentration of specific nutrients in a product can be a better way of evaluating its value than simply looking at the cost of the goods. And consider whether added nutrients are actually adding value to the product produced. More isn’t always more. In most cases, simple salts will supply the plant with what it needs to grow.

Growing media is another opportunity to evaluate the cost/benefit of cultivation inputs. How much yield can be achieved with a particular medium compared to a different choice? For example, a bag of coco may initially appear to be the low-cost choice for cultivation. Upon a deeper evaluation, though, the cost per plant of coco is generally higher when you factor in the amount of media used for each plant (and that doesn’t even factor in the labor to fill the pots).

# 2 Reduce time waste

Among the various inputs in each growing cycle, labor represents a significant cost.  Are labor hours being put to the best use and not wasted? American industrialist and innovator in mass production Henry Ford stated, “Time waste differs from material waste in that there can be no salvage. The easiest of all wastes and the hardest to correct is the waste of time, because wasted time does not litter the floor like wasted material.”

One way to see the cost of wasted labor dollars is to set up a camera and record a day of activity in the grow room during each step of a grow cycle. Or simply observe the responsibilities that are requiring workers’ time on a typical day. Watching employees’ work in the grow room may reveal how a room’s set-up is contributing to or hindering production. Are employees spending their time on tactics that add value or are they being slowed down by manual processes, such as filling containers, watering and relocating plants in the facility? Are there steps and process that could be automated, such as fertigation? Seeing how employees’ time is being used can identify opportunities to direct efforts toward functions that add value or cut costs. What would be the economic benefit of reducing a half-day of set-up time in the grow house or automating some processes?

GMPBeyond better allocation of human capital, understanding how time is used in the growing operation can suggest changes to materials used in the grow. For example, selecting a growing media that comes in plugs and blocks with pre-drilled holes for efficiently dropping in new plants can reduce time spent filling pots or configuring containers. Automating functions like fertigation and watering can not only reduce labor time but increase the precision of delivery when it comes to water and nutrients.

#3 Introduce incremental improvements

Many manufacturers rely on pilot plants to mitigate risk before process scale-up takes place across an enterprise. The same approach can benefit the grow house. Resist the temptation to overhaul the system and instead focus on introducing one change at a time. This disciplined approach will allow you to evaluate if a change is actually delivering value and should be applied more broadly. The wisdom of a cautious approach to improvements is reflected in a quote by innovation magnate Steve Jobs, co-founder of Apple. Observing that not every innovation will be a win, Jobs stated, “Sometimes when you innovate you make mistakes. It is best to admit them quickly and get on with improving your other innovations.”

When introducing a new element into the grow, pilot it in one “sample” area before adding it to the entire operation. Then give the innovation time to be evaluated before deploying it more widely. This measured approach can help reduce the risk that accompanies making a change to processes and will allow you to evaluate the relative benefit of any change or innovation. And as changes are introduced one at a time, it is easier to determine which changes are contributing value.

#4 Satisfy the market, not just the spec

Regulatory bodies set the compliance criteria for purity or quality standards in manufacturing, but the ultimate mark of approval is awarded by customers in the marketplace. A harvest may meet all of the quality specs, but if customers don’t want to buy it, achieving GMP metrics is a moot effort. The marketplace will always have the final say on a product’s commercial viability.

Understand what the market wants and be able to replicate it consistently harvest after harvest. Manufacturing a product that meets the market’s desired performance attributes is essential to sustaining and growing operations. Production quality is only as good as the last harvest and any degradation in product quality will diminish buyers’ trust. History shows that the challenge of achieving consistent production quality and reliability isn’t just a problem for cultivators. Among several factors that doomed the short-lived Edsel sedan introduced in 1957 were problems arising from assembly workers having to use different tools and techniques. A lack of consistency in producing cars or cultivars can turn off customers and profitability.

A tension exists between achieving production consistency and the opportunity to introduce changes that improve the grow. By integrating improvements into the production system one measured change at a time, cultivators can assess which improvements to continue and what needs to be tweaked. But as manufacturing has long demonstrated, continuous improvement is an ongoing journey.

As cultivators consider the 5 Ps of people, processes, procedures, premises and products, applying these four GMP insights can help growers in emerging and legacy markets navigate changing market conditions and drive continuous improvement.

extraction equipment

Starting a Cannabis Extraction Lab? Here Are Some Key Considerations

By Martha Hernández
1 Comment
extraction equipment

Cannabis sativa contains over 500 different bioactive compounds that can be separated through an extraction process. This is carried out in an extraction lab and the end result is the production of cannabis extracts with a high concentration of specific cannabinoids (such as THC or CBD) with up to 99% purity levels. Cannabis can get easily contaminated with pesticides, heavy metals, residual solvents or other contaminants and thereby pose a risk to the health and safety of consumers. In-house testing allows manufacturers to ensure that the cannabis products they put out to the market are not only potent but also are free of all sorts of contaminants.

The cannabis extraction market worldwide was valued at $9.7 billion in 2020. According to data from Grandview Research, the market size is expected to hit $23.7 billion by 2027, growing at a CAGR of 16.6%. While setting up a cannabis extraction facility can be cost-intensive at the start, the running costs are minimal, making this a profitable venture in the long run. However, you will need to consider these 7 important factors.

1. Location

7 Important Factors to Consider When Setting Up a Cannabis Extraction Facility
A schematic representation of the 7 important factors to consider when setting up a cannabis extraction facility (Figure courtesy of CloudLIMS)

Cannabis is a highly regulated industry, regardless of the country. In the U.S, it is illegal at the federal level, and therefore there’s a need for judicious selection of location to avoid run-ins with the federal government. If you are in the U.S, you will need to check the specific laws in your state. These rules dictate how close an extraction facility can be to a daycare facility, children’s park, school, residential areas, etc. The rules may also spell out how many cannabis facilities can be located in one area and how close to each other they can be. At the end of the day, you also want to ensure that the location that you settle for is readily accessible, secure and close to resources.

2. Regulatory Compliance

A cannabis extraction facility needs to meet regulations that apply to the manufacturing and production of consumable goods to ensure that the safety of workers and end consumers is guaranteed. Here are a few that are of priority:

current Good Manufacturing Practices (cGMP): The CGMP is a regulatory standard enforced by the FDA. It defines the creation, implementation and monitoring of manufacturing processes to meet the quality and safety threshold. It requires manufacturers to use technology and have systems in place to ensure product safety and effectiveness. Cannabis extraction facilities should be GMP certified for operational standardization and for performing transnational business.

National Fire Protection Association (NFPA): Extraction labs use flammable materials which can easily trigger fires. NFPA, which is a non-profit organization, has created standards and codes to minimize injuries, death, and economic losses attributable to fire accidents. The standard describes how labs should be set up and how flammable liquids should be stored and transported to prevent accidental fires.

Local Fire Codes: These are a set of codes/requirements that must be adhered to in all commercial and industrial buildings to prevent fires. They include the availability and proper use of the following:

  • Fire extinguishers
  • Extension cords
  • Smoke detectors
  • Fire exits
  • Fire signage
  • Fire assembly points
  • Sprinkler heads and pipes
  • Fire alarms

Here are some important fire codes that should be followed in a cannabis extraction facility:

  • NFPA 1: The Fire Code Handbook
  • NFPA 30: The National Code for Flammable and Combustible Liquids
  • NFPA 45: Fire Protection for Labs Using Chemicals
  • NFPA 70: The National Electrical Code
  • NFPA 58: The Liquid Petroleum Gas Code

Occupational Standards for Health and Safety (OSHA): Cannabis extraction facilities are compelled by federal law to comply with OSHA requirements for occupational health and safety, and specifically regarding biological and chemical compounds that lab staff may come into contact with during their work. OSHA standard 29CFR1910.1200 requires labs to have a written hazard safety standard for all chemicals, and the standard should be accessible to all employees at all times. Labs are required to have an inventory of all hazardous chemicals with associated details recorded in a Safety Data Sheet (SDS).

3. Staff Management

Lab staff need to train on all hazards in the facility and be given first aid measures in case of an accident. The staff will need to sign that they have received training on the same.

4. Waste Management

Cannabis waste in an extraction facility includes plant trimmings, leftover extraction chemicals, disposed of samples and other debris left behind. Waste needs to be segregated according to hazardous or non-hazardous categories and disposed of accordingly. The lab needs to put measures in place for proper waste segregation so that the waste does not get mixed.

5. Worker Safety

Worker safety in an extraction facility is of paramount importance and should be based on the kinds of risks that each staff gets exposed to in the line of duty. This makes it necessary to have a Job Hazard Analysis (JHA) to assess hazards and put measures in place to avert accidents and injuries.

Laboratory Software for CBD/THC laboratories
A laboratory software for CBD/THC laboratories to schedule staff training and manage staff competency (Figure courtesy of CloudLIMS)

6. Equipment Selection and Management

Cannabis extraction equipment can cost anywhere between $5,000 to $100,000, depending on the type and scale of extraction. When choosing the equipment, you need to factor in the cost efficiency, output, and the final product. All equipment used in an extraction lab should be Underwriters Laboratories Listed (UL-Listed). The equipment also needs to undergo regular maintenance to ensure maximum efficiency and productivity, and to prevent accidents and minimize wear and tear. National Recognized Testing Laboratory (NRTL) certification is necessary to achieve this.

7. Supply Chain Management

Supply chain management refers to the strict monitoring of the entire workflow to ensure effectiveness, eliminate wastage, and boost productivity and profitability. This means tracking raw materials from the time they are received by the extraction facility to when they are released as cannabis extracts. A Laboratory Information Management System (LIMS) comes in handy to support supply chain management in an extraction facility.

Role of a LIMS in Setting Up a Cannabis Extraction Facility

A laboratory software for CBD/THC laboratories, also known as a Laboratory Information Management System (LIMS), helps automate workflows, and thereby improve efficiency and productivity in an extraction facility. A laboratory software for CBD/THC laboratories streamlines in-house testing processes and guarantees that the final extracts produced are potent and free of impurities. A LIMS also comes in handy in managing Standard Operating Procedures (SOPs) and human resources, tracking samples and lab inventory, scheduling equipment calibration and maintenance, and ensuring compliance with the necessary regulations.

When setting up a cannabis extraction facility, sufficient time needs to be allocated to the planning to ensure all-important considerations are in place. This starts with finding an ideal and compliant location, ensuring regulatory compliance, ensuring worker safety, efficiently managing staff, inventory, and waste, and the careful selection of equipment. A laboratory software for CBD/THC laboratories ties these factors together to ensure a smooth workflow and maximum productivity of the facility.

Your Cultivation Plan is the Most Important Factor to Increase Your Yield

By David Perkins
No Comments

Having a well-built grow room with adequate lighting, the ability to properly control the environment, proper nutrient feedings, a good pest management plan, well trained employees and an experienced cultivation manager are very important to the overall output of cannabis plants. However, even if you have all those measures in place, there’s no guarantee of success. One factor that is often overlooked is how many harvests you can get per year, as clearly the more harvests you can get in a given time period, the more likely your chances of success are in this competitive industry. This is why having a good cultivation plan in place, with proper foresight and planning, is so essential to success.

Increasing yield or production output in a cannabis cultivation facility can often be as simple as having the right cultivation plan in place to ensure that you are harvesting the maximum number of times per year. All it requires is a well thought out plan, and best of all, that does not cost any money if you have someone with enough cultivation experience assisting you and will earn back more than the cost of paying a consultant to get such a plan in place.

In this article I will explain why changing nutrients, grow media or even a cultivation manager may not necessarily increase yield, quality or your chance of success. What you should be focusing on is your cultivation plan and the scheduling of your cultivation cycles.

  1. Why changing nutrient companies may not necessarily increase your yield
Nutrient dosers are used to inject fertilizer directly into irrigation lines

For the most part, nutrient companies use the same ingredients in their product lines and often buy them from the same source, but they combine them in different forms and ratios to create their “unique” product. You can go to a grow store, pick five different nutrient products, read the labels and compare the different nutrients in each one. You will find for the most part that they are very similar. Generally speaking, you could pick any one of those five nutrient companies and have great results. Mixing nutrients into a nutrient tank needs to be done precisely and if your employees are not doing it properly this can lead to plant health issues. In larger cultivation facilities, often nutrient dosers are used to inject fertilizer into the irrigation lines without having to mix nutrients. However, if the dosers are not set to the proper ratios, this can also lead to plant health issues.

There are a few companies that I really like that have a different approach to plant nutrition, which saves time and can prevent human error associated with mixing and applying liquid nutrients. Soilscape solutions, Organics Alive and Beanstock Agriculture all have nutrient lines that are intended to be used with soil or soilless media that can be amended into the soil which provide a slow steady release of nutrients that the plants can uptake as needed. This avoids the risk of human error in repeatedly applying liquid nutrients to the plants.

  1. Why changing grow medium and nutrients will not necessarily improve your yield but may increase yourquality

Whether it is rock wool, coco fiber, a soilless mix or living soil, everything has a limit. Giving your plants the proper amount of water and the frequency at which you water, along with having sufficient room for the roots to grow are key factors to ensuring plant health. If your plants aren’t getting watered properly, no matter what media you are growing in, you will be having problems. Changing things like grow media won’t result in instant success, as there will always be a learning curve when making changes to your cultivation. If you cannot adapt quickly enough, you can quickly create major problems.

plebanisoil
Changing things like grow media won’t result in instant success, as there will always be a learning curve when making changes to your cultivation.

You would be better off to master the grow media you are currently working; you will have more chance of success making slight alterations to your current media than you will if you switch your grow media altogether. There are so many different nutrient lines, soil companies, coco coir companies and the truth is any of them can lead to success.

Changing grow media and nutrients do play a large role in quality though. With cannabis being legalized in many states, the overall quality of cultivation inputs have increased, especially nutrients. However, in general, with some exceptions, the quality of cannabis has not necessarily increased along with the increase in quality of nutrients. One exception: I would argue that switching from salt nutrients and rock wool, to organic living soil will result in an improvement to the flavor, quality and terpenes of the cannabis.

A lot of people use rock wool with salts because it’s easier to scale up than if you are growing in soil, but some quality is also sacrificed. Soil is heavy and messy and most people throw their soil away which takes a lot of money and labor to do. Reusing your soil is one of the best ways to save time, money and increase quality. I had a friend that grew the same variety, same lights, same ventilation but grew hydroponically with salt-based nutrients and he would always say the cannabis I grew, organically, tasted better. The same was true when we grew the same variety outdoors. He used salt-based fertilizer, I used amended soil with water. There wasn’t really a comparison in flavor and the yield was not compromised either! This was his opinion not mine.

I think the vast majority of consumers have not seen the type of quality that someone in Northern California who has been smoking and growing for 20 plus years has seen. Quality is relative to what you have been able to acquire. Most people especially nowadays will never see the quality that used to be common when we didn’t treat the sacred herb like a commodity. When you do it for the love of the plant it shows. Remember, quality is relative to your experience and if salty weed is all you know, you are probably missing out.

  1. Why changing your Cultivation manager may not necessarily increase your yield

Every cultivation facility should have an experienced cultivation manager who is knowledgeable in the areas of nutrient requirements, pest management, environmental requirements, managing employees and overall facilities operations. If a grow room cannot sustain the proper environmental set points, blaming the problems and issues that arise on the cultivation manager is not fair. It is a common problem in the cannabis industry – the owners of a company are not seeing the results that they want and think that by replacing the cultivation manager it will solve all their problems. In reality, often the problem results from upper management or owners of the company not providing the cultivation manager the tools necessary to perform their job at the highest level. Another common problem is when owners fire the cultivation manager and replace them with lower-level employees to manage the facility. The problem with this is those employees do not have enough experience nor the attention to detail to successfully run a cultivation facility. The result is that yield and quality suffer tremendously.

  1. You should be harvesting every 60-70 days
If you are cultivating strains that finish flowering in 60 to 70 days you should be getting five harvests per year.

The reality is there is no one specific thing you can try or buy that will result in success. It is everything combined, the HVAC system, lights, genetics being grown, water quality, air quality, root zone temperature, ability to control environment, having a clean facility, disease free plants, knowledgeable cultivation manager etc. that are required to operate a successful cultivation.

But all of that is less important to yield than a good cultivation plan. Cultivation methods directly tie into the overall production of a facility. But, regardless of whether you’re growing in soil, hydroponics, using LED or HPS, have low or high plant counts, if you don’t have the ability to harvest a grow room, clean and replant within a very short amount of time (ideally one or two days) then you’re going to be losing out on profit.

If you’re cultivating strains that finish flowering in under 60 days you should be getting six harvests per year. If you are cultivating strains that finish flowering in 60 to 70 days you should be getting five harvests per year. To do this, you will need to have the appropriate amount of plants that are ready to be flowered to refill your grow room or greenhouse ready to flower. With a little bit of planning and foresight you will be able to do this, and you will be on your way to producing your highest yield potential.

If you are struggling to have enough plants that are ready to flower once you are done harvesting and cleaning your grow room, having trouble planning your cultivation schedule to maximize production, or struggling to maintain a mother and clone room to supply your own plants or planning for the appropriate amount of labor, contact Floresco Consulting and talk with one of our cultivation advisors to get you back on track. We can guide you to ensure you are harvesting, cleaning and replanting every 60 days. Contact us today to get your facility producing at its maximum potential.

Flower-Side Chats Part 10: What’s Next for Audacious

By Aaron Green
No Comments

Flower continues to be the dominant product category in US cannabis sales. In this “Flower-Side Chats” series of articles, Aaron Green interviews integrated cannabis companies and flower brands that are bringing unique business models to the industry. Particular attention is focused on how these businesses navigate a rapidly changing landscape of regulatory, supply chain and consumer demand.

Audacious (OCTQB: AUSA) is an Aurora (TSX: ACB) spinoff formerly known as Australis Capital, Inc. They have focused on an asset-light expansion strategy whereby they leverage their expertise in designing cannabis facilities in exchange for favorable cost plus arrangements for a percentage of the facilities’ production.

We interviewed Marc Lakmaaker, SVP of Capital Markets at Audacious. Prior to joining Audacious, Marc worked with Terry Booth at Aurora. His background is in investor relations.

Aaron Green: Marc, how did you get involved in the cannabis industry?

Marc Lakmaaker: I was working for an investor relations agency. and one of my colleagues left and she had a cannabis client that I took over, which was Bedrocan, Canada. I started working with them. They were then acquired by Tweed, which became Canopy. The guy I was working with at the time at Bedrocan was Cam Battley, who then went to Aurora. As soon as he joined Aurora, he said, “I need some help.” So, I came in house and worked there until July 2019. When I left, I set up my own agency, but by that time, I’d been working with Terry Booth for a few years. Then, this past December, Terry got in touch with me and said he needed my help. It was after the concerned shareholders had won the shareholder battle around Australis and the rest is history. So, I’ve now been working with Audacious, which was Australis, since December of last year, roughly.

Green: Just quickly on Australis: So, Audacious is basically a spin off of Aurora, correct?

Lakmaaker: Correct. So, at the time, Aurora had a couple of US assets on its balance sheet, a piece of land an annuity through a company Michigan. We were listed on the TSX. We were going to list or had just listed on the NYSE and were arranging for loan facility with a syndicate of banks. They said, “even though these assets are dormant, you can’t have any US assets on your balance sheet.” So, we spun Australis off – a little bit how Canopy had spun off Canopy Rivers. But it was really the idea that Australis is going to become the foothold for Aurora in the US cannabis market because Aurora has back-in rights.

The management team was put in place and started making some investments in the cannabis space, but kind of drifted away, sort of more into FinTech. First, it was FinTech related to cannabis and then FinTech, full stop. That’s when the shareholders were like, “we don’t agree with this.” Then the proxy battle started in which the dissident shareholders, or the concerned shareholders, won overwhelmingly. The Board left. The management team left. A new management team was put in place, a new Board in place, and it was kind of a restart.

So, we feel like we’re a bit of a startup. But a very rapidly moving startup. We’ve done an incredible amount of work in just the last seven to ten months. There was a lot of housekeeping to do. A lot of stuff related to restructuring the company, dealing with the departing management teams, dealing with bringing new management, etc. There were some deals that had to be unwound… Housekeeping if you will.

Green: Australis went down the FinTech route. What are the plans for Audacious now?

Lakmaaker: We’ve already started. We pivoted right away. In early January, we announced two acquisitions. One of ALPS, and the other one of Green Therapeutics. ALPS is really what is enabling us to execute on our strategy. It’s a very different strategy. It’s an asset light model, because we figured out that in order to grow quickly in this market without spending huge amounts of shareholder money, you need to be able to get into markets in a capital-light fashion. ALPS is the world’s preeminent greenhouse design company. Not just greenhouses, but also indoor facilities. They’ve got a 35-year track record in fruits and vegetables. They’ve got an eight-year-plus track record in cannabis – and built some of the best facilities in the world. They’ve got a lot of IP.

Marc Lakmaaker, SVP of Capital Markets at Audacious (formerly Australis)

The proof point of that is our relationship with Belle Fleur. It’s a social equity license holder in Massachusetts. We helped them build their facility. We’re not contractors, but we do the design and engineering. We help them with partner selection. We do the construction management. We bring in a general contractor. Then we do the commissioning, and optionally, post-commissioning services, making sure that the facilities are dialed in. In return for all that IP, because what people know that what they get at the end of it is high quality, consistent cannabis and very low operating costs, we ask our clients to dedicate a certain percentage of their canopies to grow with our cultivars. Those we will buy back on a cost plus arrangement and we use that to launch our brands into whatever jurisdiction.

So, in Massachusetts, we’re working with Belle Fleur. We’re getting 10% of their canopy. We’re buying it back at cost plus 5%. So, we don’t have to sink money into building the facility. We’re not carrying the cost of capital there. We’re also not paying wholesale prices. And these relationships are locked in for a long time. I can’t remember if it was five or 10 years. So, it’s a very, it’s a different strategy, but it’s not contrarian – it’s very de-risked, that allows us to launch into new countries.

Then for Green Therapeutics, we’ve got a number of award-winning brands like Provisions and Tsunami. We’re kind of phasing out GT Flowers and there will be something else in its place. We also acquired Loose, which caters to a younger demographic, with a high potency shot beverage line that is now for sale in California.

We also have a partnership with PBR, the Professional Bull Riders Association. There’s some statistics around that that just absolutely blew me away – 83 million permanent fans! That’s 25% of the US population. I think the average income is $70,000. That’s well above the national average and the general split is fairly even too; it’s 53/47, male/female. Proper American sport! They have hundreds of hours of exposure on CBS. They’ve got 2 billion imprints on social media. So, with PBR, we launched Wreck Relief, which has several recognized and approved pain products in the lineup.

Green: What markets are you in right now?

Lakmaaker: Right now we’re in Nevada with cannabis products. This is our home market where our head offices are in Las Vegas. We’re in California. We just bought a dispensary in San Jose that comes with a partnership with Eaze. On top of that, we’re operationalizing in Missouri and Oklahoma, and officially building in Massachusetts.

Then through ALPS because they does both cannabis and non-cannabis, we’re in a number of states. We’re looking to get more of the supply deals. We’re also doing a lot of vegetable facilities throughout the entire world. We’re in Europe, we’re in Asia, in the Middle and in North America, we build these facilities from the desert up to the Arctic.

There’s a big movement right now to produce food that is safe and has a smaller carbon footprint. So, our facilities are kind of inherently more sustainable. They use up to 95% less water, less labor, less energy, they are less prone to disease, crop failure, everything. And because you are local producing for local communities, you reduce the transport carbon footprint.

Green: What in your personal life or in cannabis are you most interested in learning about?

Lakmaaker: I really like the sciences. I’m a chemical engineer by training. I think what is going to take an incredible flight in the years to come is the application of medical scientific research that’s being done right now. To me, that’s fascinating because the cannabis plant is something special. It’s got such a broad utility that we know, anecdotally. I think we’re moving towards a world where we’re going to see a lot of breakthroughs on the medical side.

I’m very excited about the other end too – cultivation. I think tissue culture is going to play an incredible and important role.

Green: Thanks Marc, that concludes the interview.

Lakmaaker: Cheers, Aaron.

Controlled Environment Agriculture: An Interview with Sam Andras

By Aaron Green
1 Comment

Food-focused controlled environment agriculture (CEA) is a multidisciplinary production technique whereby plants and products are grown inside greenhouses, vertical farms and growth chambers where every aspect of the environment can be monitored and controlled. Using CEA, cultivators can produce high-value and traditional food crops with the goal of maximizing plant productivity in an efficient and environmentally friendly way.

As the industry’s first integrated building and cultivation systems design firm, urban-gro is ushering in a new era in the design of efficient indoor agriculture facilities, providing productivity and efficiency benefits to CEA operators when designing and operating facilities.

We interviewed Sam Andras, executive vice president of Professional Services at urban-gro, and principal of MJ12 Design Studio. Sam joined urban-gro after his company MJ12 Design Studio was acquired in July 2020. Prior to that, he was principal in charge of 2WR+ Partners, a 20-year Georgia-based architecture and interior design firm.

Aaron Green: Sam, tell me, how did you get started in the cannabis industry?

A facility that Andras designed in Massachusetts

Sam Andras: I started my architecture firm in 2001 in Georgia and later moved to Colorado in 2012. In 2013, I had the opportunity to do three cannabis facilities and really saw it as an emerging market that I thought would be really cool to dig into and pursue. Due to the marijuana stigma at the time, our company, 2WR, decided to create a cannabis-specific entity and developed MJ12 Design Studio. We built a website and it took off. Since 2013, I’ve personally designed about 130 cultivation facilities and vertically integrated facilities, from Hawaii all the way to New Zealand.

Green: When you say vertically integrated, what does that include?

Andras: The full building design of cultivation, product manufacturing, extraction, infusion and dispensaries.

Green: Is that something urban-gro currently does as well?

Andras: Now? Yes, with MJ12 under the facility design umbrella. After urban-gro acquired us in July, they were able to start offering full turnkey services. Everything from architecture, mechanical and plumbing engineering, electrical engineering, integrated cultivation, design of fertigation, benching, lighting, water treatment, environmental controls and other plant focused services– all of that is under our umbrella.

Green: Can you explain what controlled environment agriculture (CEA) is?

Andras: Absolutely. To me, CEA is crop agnostic, it can be anything from leafy greens to cannabis. Though we’re mainly focused on the cannabis industry and controlling that environment, we do also serve some leafy green companies. Environmental control includes things like temperature and humidity levels in the various stages of growth which is key to the economic success of organizations.

A California dispensary he designed

I’m a firm believer in legalization on the federal level down the road, which means that everything’s going to be under FDA for human consumption. If you look at the European models, when you look at the medicinal product development, it’s focused on consistency of the crop, from one crop to the next. And the way you achieve consistency is with CEA.

Green: From a resource perspective, can you describe how CEA differs from indoor to outdoor and greenhouse?

Andras: When you look at the market and the sale value of cannabis flower grown indoors versus outdoors or even greenhouse, greenhouse growing has huge variations by region. I believe greenhouses function better in more of a dry, arid climate. Indoor grows give you the ability to design and control your entire environment including temperatures, humidity levels, plant sizes, watering rates and other considerations. Growing indoors, in a controlled environment, gives you more flexibility to explore different alternatives in your cultivation.

A California cultivation facility he designed

Green: Final question: what in cannabis or in your personal life are you most interested in learning about?

Andras: That’s a great question. I’m a hands-on kind of guy. I would love to spend a couple of weeks working in extraction, as that’s the piece of the puzzle, as an architect, I know the least about. We’ve designed pretty much every type of cultivation from drip irrigation aeroponics to aquaponics, ebb & flow. You name it, we’ve done it, but the whole extraction process and the different equipment, and why companies choose ethanol, butane, hydrocarbon, CO2 and how to design for those extraction processes is something that as an architect, I’d love to learn more about.

Green: Okay, Great. That concludes the interview. Thanks Sam!

Andras: Thanks, Aaron.

Cannabis Manufacturing Considerations: From Raw Materials to Finished Goods

By David Vaillencourt, Kathleen May
2 Comments

Facility layout and design are important components of overall operations, both in terms of maximizing the effectiveness and efficiency of the process(es) executed in a facility, and in meeting the needs of personnel. Prior to the purchase of an existing building or investing in new construction, the activities and processes that will be conducted in a facility must be mapped out and evaluated to determine the appropriate infrastructure and flow of processes and materials. In cannabis markets where vertical integration is the required business model, multiple product and process flows must be incorporated into the design and construction. Materials of construction and critical utilities are essential considerations if there is the desire to meet Good Manufacturing Practice (GMP) compliance or to process in an ISO certified cleanroom. Regardless of what type of facility is needed or desired, applicable local, federal and international regulations and standards must be reviewed to ensure proper design, construction and operation, as well as to guarantee safety of employees.

Materials of Construction

The materials of construction for interior work surfaces, walls, floors and ceilings should be fabricated of non-porous, smooth and corrosive resistant surfaces that are easily cleanable to prevent harboring of microorganisms and damage from chemical residues. Flooring should also provide wear resistance, stain and chemical resistance for high traffic applications. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces22 provides a method for evaluating the antibacterial activity of antibacterial-treated plastics, and other non-porous, surfaces of products (including intermediate products). Interior and exterior (including the roof) materials of construction should meet the requirements of ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Covering7, UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings 8, the International Building Code (IBC) 9, the National Fire Protection Association (NFPA) 11, Occupational Safety and Health Administration (OSHA) and other applicable building and safety standards, particularly when the use, storage, filling, and handling of hazardous materials occurs in the facility. 

Utilities

Critical and non-critical utilities need to be considered in the initial planning phase of a facility build out. Critical utilities are the utilities that when used have the potential to impact product quality. These utilities include water systems, heating, ventilation and air conditioning (HVAC), compressed air and pure steam. Non-critical utilities may not present a direct risk to product quality, but are necessary to support the successful, compliant and safe operations of a facility. These utilities include electrical infrastructure, lighting, fire detection and suppression systems, gas detection and sewage.

  1. Water
Microbial monitoring methods can include frequent/consistent testing

Water quality, both chemical and microbial, is a fundamental and often overlooked critical parameter in the design phase of cannabis operations. Water is used to irrigate plants, for personnel handwashing, potentially as a component in compounding/formulation of finished goods and for cleaning activities. The United States Pharmacopeia (USP) Chapter 1231, Water for Pharmaceutical Purposes 2, provides extensive guidance on the design, operation, and monitoring of water systems. Water quality should be tested and monitored to ensure compliance to microbiological and chemical specifications based on the chosen water type, the intended use of the water, and the environment in which the water is used. Microbial monitoring methods are described in USP Chapter 61, Testing: Microbial Enumeration Tests 3and Chapter 62, Testing: Tests for Specified Microorganisms 4, and chemical monitoring methods are described in USP Chapter 643, Total Organic Carbon 5, and Chapter 645, Water Conductivity 6.Overall water usage must be considered during the facility design phase. In addition to utilizing water for irrigation, cleaning, product processing, and personal hygiene, water is used for heating and cooling of the HVAC system, fogging in pest control procedures and in wastewater treatment procedures  A facility’s water system must be capable of managing the amount of water required for the entire operation. Water usage and drainage must meet environmental protection standards. State and local municipalities may have water usage limits, capture and reuse requirements and regulations regarding runoff and erosion control that must also be considered as part of the water system design.

  1. Lighting

Lighting considerations for a cultivation facility are a balance between energy efficiency and what is optimal for plant growth. The preferred lighting choice has typically been High Intensity Discharge (HID) lighting, which includes metal halide (MH) and high-pressure sodium (HPS) bulbs. However, as of late, light-emitting diodes (LED) systems are gaining popularity due to increased energy saving possibilities and innovative technologies. Adequate lighting is critical for ensuring employees can effectively and safely perform their job functions. Many tasks performed on the production floor or in the laboratory require great attention to detail. Therefore, proper lighting is a significant consideration when designing a facility.

  1. HVAC
urban-gro
Proper lighting is a significant consideration when designing a facility.

Environmental factors, such as temperature, relative humidity (RH), airflow and air quality play a significant role in maintaining and controlling cannabis operations. A facility’s HVAC system has a direct impact on cultivation and manufacturing environments, and HVAC performance may make or break the success of an operation. Sensible heat ratios (SHRs) may be impacted by lighting usage and RH levels may be impacted by the water usage/irrigation schedule in a cultivation facility. Dehumidification considerations as described in the National Cannabis Industry Association (NCIA) Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification 26 are critical to support plant growth and vitality, minimize microbial proliferation in the work environment and to sustain product shelf-life/stability. All of these factors must be evaluated when commissioning an HVAC system. HVAC systems with monitoring sensors (temperature, RH and pressure) should be considered. Proper placement of sensors allows for real-time monitoring and a proactive approach to addressing excursions that could negatively impact the work environment.

  1. Compressed Air

Compressed air is another, often overlooked, critical component in cannabis operations. Compressed air may be used for a number of applications, including blowing off and drying work surfaces and bottles/containers prior to filling operations, and providing air for pneumatically controlled valves and cylinders. Common contaminants in compressed air are nonviable particles, water, oil, and viable microorganisms. Contaminants should be controlled with the use appropriate in-line filtration. Compressed air application that could impact final product quality and safety requires routine monitoring and testing. ISO 8573:2010, Compressed Air Specifications 21, separates air quality levels into classes to help differentiate air requirements based on facility type.

  1. Electrical Infrastructure

Facilities should be designed to meet the electrical demands of equipment operation, lighting, and accurate functionality of HVAC systems. Processes and procedures should be designed according to the requirements outlined in the National Electrical Code (NEC) 12, Institute of Electrical and Electronics Engineers (IEEE) 13, National Electrical Safety Code (NESC) 14, International Building Code (IBC) 9, International Energy Conservation Code (IECC) 15 and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ).

  1. Fire Detection and Suppression

“Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs.”Proper fire detection and suppression systems should be installed and maintained per the guidelines of the National Fire Protection Association (NFPA) 11, International Building Code (IBC) 9, International Fire Code (IFC) 10, and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ). Facilities should provide standard symbols to communicate fire safety, emergency and associated hazards information as defined in NFPA 170, Standard for Fire Safety and Emergency Symbols 27.

  1. Gas detection

Processes that utilize flammable gasses and solvents should have a continuous gas detection system as required per the IBC, Chapter 39, Section 3905 9. The gas detection should not be greater than 25 percent of the lower explosive limit/lower flammability limit (LEL/LFL) of the materials. Gas detection systems should be listed and labeled in accordance with UL 864, Standard for Control Units and Accessories for Fire Alarm Systems 16 and/or UL 2017, Standard for General-Purpose Signaling Devices and Systems 17 and UL 2075, Standard for Gas and Vapor Detectors and Sensors 18.

Product and Process Flow

Product and process flow considerations include flow of materials as well as personnel. The classic product and process flow of a facility is unidirectional where raw materials enter on one end and finished goods exit at the other. This design minimizes the risk of commingling unapproved and approved raw materials, components and finished goods. Facility space utilization is optimized by providing a more streamlined, efficient and effective process from batch production to final product release with minimal risk of errors. Additionally, efficient flow reduces safety risks to employees and an overall financial risk to the organization as a result of costly injuries. A continuous flow of raw materials and components ensures that supplies are available when needed and they are assessable with no obstructions that could present a potential safety hazard to employees. Proper training and education of personnel on general safety principles, defined work practices, equipment and controls can help reduce workplace accidents involving the moving, handling, and storing of materials. 

Facilities Management

Facilities management includes the processes and procedures required for the overall maintenance and security of a cannabis operation. Facilities management considerations during the design phase include pest control, preventative maintenance of critical utilities, and security.

Damage from whiteflies, thrips and powdery mildew could be prevented with an appropriate PCP

A Pest Control Program (PCP) ensures that pest and vermin control is carried out to eliminate health risks from pests and vermin, and to maintain the standards of hygiene necessary for the operation. Shipping and receiving areas are common entryways for pests. The type of dock and dock lever used could be a welcome mat or a blockade for rodents, birds, insects, and other vermin. Standard Operating Procedures (SOPs) should define the procedure and responsibility for PCP planning, implementation and monitoring.

Routine preventative maintenance (PM) on critical utilities should be conducted to maintain optimal performance and prevent microbial and/or particulate ingress into the work environment. Scheduled PMs may include filter replacement, leak and velocity testing, cleaning and sanitization, adjustment of airflow, the inspection of the air intake, fans, bearings and belts and the calibration of monitoring sensors.

In most medical cannabis markets, an established Security Program is a requirement as part of the licensing process. ASTM International standards: D8205 Guide for Video Surveillance System 23, D8217 Guide for Access Control System[24], and D8218 Guide for Intrusion Detection System (IDS) 25 provide guidance on how to set up a suitable facility security system and program. Facilities should be equipped with security cameras. The number and location of the security cameras should be based on the size, design and layout of the facility. Additional cameras may be required for larger facilities to ensure all “blind spots” are addressed. The facility security system should be monitored by an alarm system with 24/7 tracking. Retention of surveillance data should be defined in an SOP per the AHJ. Motion detectors, if utilized, should be linked to the alarm system, automatic lighting, and automatic notification reporting. The roof area should be monitored by motion sensors to prevent cut-and-drop intrusion. Daily and annual checks should be conducted on the alarm system to ensure proper operation. Physical barriers such as fencing, locked gates, secure doors, window protection, automatic access systems should be used to prevent unauthorized access to the facility. Security barriers must comply with local security, fire safety and zoning regulations. High security locks should be installed on all doors and gates. Facility access should be controlled via Radio Frequency Identification (RFID) access cards, biometric entry systems, keys, locks or codes. All areas where cannabis raw material or cannabis-derived products are processed or stored should be controlled, locked and access restricted to authorized personnel. These areas should be properly designated “Restricted Area – Authorized Personnel Only”.

Future Expansion

The thought of expansion in the beginning stages of facility design is probably the last thing on the mind of the business owner(s) as they are trying to get the operation up and running, but it is likely the first thing on the mind of investors, if they happen to be involved in the business venture. Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs. Thought must be given to how critical systems and product and process flows may be impacted if future expansion is anticipated. The goal should be to minimize down time while maximizing space and production output. Therefore, proper up-front planning regarding future growth is imperative for the operation to be successful and maintain productivity while navigating through those changes.


References:

  1. United States Environmental Protection Agency (EPA) Safe Drinking Water Act (SDWA).
  2. United States Pharmacopeia (USP) Chapter <1231>, Water for Pharmaceutical Purposes.
  3. United States Pharmacopeia (USP) Chapter <61>, Testing: Microbial Enumeration Tests.
  4. United States Pharmacopeia (USP) Chapter <62>, Testing: Tests for Specified Microorganisms.
  5. United States Pharmacopeia (USP) Chapter <643>, Total Organic Carbon.
  6. United States Pharmacopeia (USP) Chapter <645>, Water Conductivity.
  7. ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Coverings.
  8. UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings.
  9. International Building Code (IBC).
  10. International Fire Code (IFC).
  11. National Fire Protection Association (NFPA).
  12. National Electrical Code (NEC).
  13. Institute of Electrical and Electronics Engineers (IEEE).
  14. National Electrical Safety Code (NESC).
  15. International Energy Conservation Code (IECC).
  16. UL 864, Standard for Control Units and Accessories for Fire Alarm Systems.
  17. UL 2017, Standard for General-Purpose Signaling Devices and Systems.
  18. UL 2075, Standard for Gas and Vapor Detectors and Sensors.
  19. International Society for Pharmaceutical Engineers (ISPE) Good Practice Guide.
  20. International Society for Pharmaceutical Engineers (ISPE) Guide Water and Steam Systems.
  21. ISO 8573:2010, Compressed Air Specifications.
  22. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces.
  23. D8205 Guide for Video Surveillance System.
  24. D8217 Guide for Access Control Syst
  25. D8218 Guide for Intrusion Detection System (IDS).
  26. National Cannabis Industry Association (NCIA): Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification.
  27. NFPA 170, Standard for Fire Safety and Emergency Symbols.