Tag Archives: green

Sustainable Hemp Packaging is the Future of Industrial Packaging

By Vishal Vivek
4 Comments

The future of packaging is ripe for capitalization by the drivers of sustainability culture. With the battle lines drawn and forces at play in motion, change is now inevitable. The question arises: how quickly can the industry grow in the space of the next decade?

With an increasing number of nations banning non-biodegradable and petroleum-based plastics in certain uses, the choices at hand have naturally led to bioplastics. Bioplastics are a major ingredient of the renewable packaging industry. We derive them from various renewable agricultural crops, of which hemp is among the chief examples.

The Change for Hemp

The legal ramifications of the European Green Deal and the American Farm Bill of 2018 have created a microcosm where the sustainability discussion has turned into corporate initiatives for crops like industrial hemp, which are a source for bioplastics and numerous other products. The smaller carbon footprint of industrial hemp plays its role in shaping consumer demands towards a greener future.

Farmers are now able to cultivate the plant in the U.S., due to its removal from the list of controlled substances. Agribusinesses and manufacturers are aware of the plant’s versatility, with uses in packaging, building construction, clothing, medicinal oils, edibles like protein powder and hemp hearts, hemp paper and rope. What was once George Washington’s strong consideration as a cash crop for his estate, may gradually become the world’s cash crop of choice.

Hemp’s Sustainability Beckons 

Why is the crop unanimously superior in the aspect of eco-friendliness? Its growing requirements are frugal: water, soil nutrients and pesticides are not needed in large quantities. It absorbs great quantities of carbon dioxide from the atmosphere, and uses it to create 65-75% cellulose content within its biomass. Cellulose is vital in the manufacture of bioplastics. Hemp is also flexible within crop cycles, due to its small harvesting period of only 4 months.

Thus, farmers use it as a rotational crop, allowing them to also cultivate other crops after its harvest. High-quality crops like cotton, though superior in cellulose content and fibrous softness, require far more water quantities, soil nutrients and pesticides. Farmers face greater difficulties in cultivating cotton as a rotational crop, because it requires far more space and time.

Hemp Bioplastics For Packaging                                

We manufacture bioplastics from the hurd and cellulose of the hemp plant. Hemp bioplastics are biodegradable, and take up to a maximum of 6 months to completely decompose; by contrast, normal fossil-fuel-based plastic takes up to 1000 years to decompose.

Manufacturers incorporate these ingredients into existing manufacturing processes for regular plastics, such as injection molding. Thus, we can apply bioplastic ingredients to similar plastics applications, such as packaging, paneling, medical equipment and more. New technologies aren’t necessarily needed, so companies and manufacturers do not have any reservations about its viability as an industry.

Here are a few types of bioplastics derived from hemp:

  1. Hemp Cellulose-based Bioplastics

This is a substance found in plant cell walls. We use cellulose to manufacture a broad range of unique plastics, including celluloid, rayon and cellophane. These plastics are usually entirely organic. We mix cellulose and its variations (such as nanocellulose, made from cellulose nanocrystals) with other ingredients, such as camphor, to produce thermoplastics and the like. Using natural polymer, we process a broad range of bioplastics and corresponding polymers. The difference in their chemical properties is down to the nature of the polymer chains and the extent of crystallization.

  1. Composite Hemp-based Bioplastics

Composite plastics comprise organic polymers like hemp cellulose, as well as an addition of synthetic polymers. They also have reinforcement fibers to improve the strength of the bioplastic, which are also either organic or synthetic. Sometimes, we blend hemp cellulose with other organic polymers like shellac and tree resins. Inorganic fillers include fiberglass, talc and mica.

We call any natural polymer, when blended with synthetic polymers, a “bio composite” plastic. We measure and calibrate these ingredients according to the desired stiffness, strength and density of the eventual plastic product. Apart from packaging, manufacturers use these bioplastics for furniture, car panels, building materials and biodegradable bags.

A composite of polypropylene (PP), reinforced with natural hemp fibers, showed that hemp has a tensile strength akin to that of conventional fiberglass composites. Furthermore, malleated polypropylene (MAPP) composites, fortified with hemp fibers, significantly improved stress-enduring properties compared to conventional fiberglass composites.

  1. Pure Organic Bioplastics With Hemp

We have already generated several bioplastics entirely from natural plant substances like hemp. Hemp fibers, when made alkaline with diluted sodium hydroxide in low concentrations, exhibit superior tensile strength. We have produced materials from polylactic acid (PLA) fortified with hemp fibers. These plastic materials showed superior strength than ones containing only PLA. For heavy-duty packaging, manufacturers use hemp fibers reinforced with biopolyhydroxybutyrate (BHP), which are sturdy enough.

With the world in a state of major change due to the coronavirus outbreak of 2020, the focus is back on packaging and delivery. In this volatile area, perhaps the industry can learn a few new tricks, instead of suffocating itself in old traditions and superficial opportunism. The permutations and combinations of bioplastic technology can serve a swath of packaging applications. We must thoroughly explore this technology.

Hemp’s Future in Packaging

Fossil fuel-based plastic polymers are non-renewable, highly pollutive and dangerous to ecosystems, due to their lifespans. They are some of the most destructive inventions of man, but thankfully could be held back by this crop. Industrial hemp upheld countless industries through human history and now is making a comeback. After existing in relative obscurity in the U.S. due to false connotations with the psychoactive properties of its cousin, it is now back in business.

With the American hemp industry on the verge of a revolution, hemp packaging is primed to take over a significant part of the global packaging sector. The political, economic and environmental incentives for companies to adopt bioplastics are legion. Its lower cost lends to its allure as well. Consumers and agribusinesses are following suit, making the choice to be environmentally-conscious. By 2030, it is estimated that 40% of the plastics industry will be bioplastics.

We can only mitigate the plastic pollution in oceans, landfills and elsewhere, with the use of biodegradable bioplastics; otherwise, animals, humans and plants are getting adversely affected by imperceptible microplastics that pervade vast regions of the Earth. With hemp bioplastics, we use the cleaner, renewable matter of plants to conserve the planet’s sanctity. We can expect this new technology to continue to light the way for other nations, societies and companies to build upon this sustainable plan.

european union states

Why Europe May Serve as an Important Bellwether for Hempcrete Use in the United States

By Stephanie McGraw
No Comments
european union states

Hemp-based construction materials are an attractive option for achieving environmentally friendly goals in construction, including reduced emissions and conservation of natural resources. Hemp construction materials dating back to the 6th Century have been discovered in France and it has long been eyed with interest by hemp growers and manufacturers, as well as environmentalists in the United States and abroad. As the European Union moves forward with its 2019 European Green Deal, United States hemp, construction and limestone industries, as well as regulatory agencies, will be provided with an important preview of the benefits, risks and issues arising out of the use of hemp in construction.

The European Green Deal and Circular Economy Action Plan

Hemp applications in construction are gaining increased interest as the EU seeks to neutralize its greenhouse gas emissions by 2050. Much of the specifics for this transition to zero emissions are outlined in the EU’s “A New Circular Economy Action Plan,” announced on March 11, 2020. According to the EU, “This Circular Economy Action Plan provides a future-oriented agenda for achieving a cleaner and more competitive Europe in co-creation with economic actors, consumers, citizens and civil society organisations.” The plan aims at accelerating the transformational change required by the European Green Deal and tackles emissions and sustainability issues across a number of industries and products, including construction.

Construction in the EU accounts for approximately 50% of all extracted natural resources and more than 35% of the EU’s total waste generation. According to the plan, greenhouse gas emissions from material extraction, manufacturing of construction products and construction and renovation of buildings are estimated at 5-12% of total national greenhouse gas emissions. It is estimated that greater material efficiency could save 80% of those emissions. To achieve those savings, the plan announces various efforts to address sustainability, improve durability and increase energy efficiency of construction materials.

How Hemp Could Help Europe Achieve Neutral Emissions

Hemp, and specifically hempcrete, is being eyed with heightened interest as the EU enacts its plan. Indeed, recent mergers and acquisitions in the European hemp industry signal just how attractive this hemp-based product may be as international, national and local green initiatives gain momentum. But how would hemp be utilized in construction and what types of legal issues will this industry face as it expands?

Image: National Hemp Association

The primary hemp-based construction material is “hempcrete.” Hempcrete is typically composed of hemp hurds (the center of the hemp plant’s stalk), water and lime (powdered limestone). These materials are mixed into a slurry. The slurry petrifies the hemp and the mixture turns into stone once it cures. Some applications mix other, traditional construction materials with the hempcrete. The material can be applied like stucco or turned into bricks. According to the National Hemp Association, hempcrete is non-toxic, does not release gaseous materials into the atmosphere, is mold-resistant, is fire– and pest-resistant, is energy-efficient and sustainable. To that last point, hemp, which is ready for harvest after approximately four months, provides clear advantages over modern construction materials, which are either mined or harvested from old forests. Furthermore, the use of lime instead of cement reduces the CO2 emissions of construction by about 80%.

Watching Europe with an Eye on Regulation and Liability Risks

Hempcrete indeed sounds like a wünder-product for the construction industry (and the hemp industry). Unfortunately, while it may alleviate some of the negative environmental impacts of the construction sector, it will not alleviate the threat of litigation in this industry, particularly in the litigious United States. The European Union’s experience with it will provide important insights for U.S. industries.

Hempcrete blocks being used in construction

Because hemp was only recently legalized in the United States with the passage of the 2018 Farm Bill, it is not included in mainstream building codes in the United States, the International Residential Code, nor the International Building Code. Fortunately, there are pathways for the consideration and use of non-traditional materials, like hempcrete, in building codes. However, construction applications of any form of hemp, including hempcrete, at this point would likely require extensive discussions with local building authorities and an application showing that the performance criteria for the building are satisfied by the material. Such criteria would include standards and testing relating to structural performance, thermal performance, and fire resistance. Importantly, the ASTM does have a subcommittee working on various performance standards for hemp in construction applications. European progress on this front would pave an important regulatory pathway for the United States, as well as provide base-line standards for evaluating hempcrete materials.

Insights into regulation and performance standards are not the only reason to watch the EU construction industry in the coming decades. Introduction of hempcrete and hemp-based building materials in the United States will likely stoke litigation surrounding these materials. Although there is no novel way to avoid the most common causes of construction litigation, including breach of contract, quality of construction, delays, non-payment and personal injury, the lessons learned in Europe could provide risk management and best-practice guidance for the U.S. industry. Of particular concern for the hemp industry should be the potential for product liability, warranty, and consumer protection litigation in the United States. The European experience with hempcrete’s structural performance, energy efficiency, mold-, pest- and fire-resistant properties will be informative, not just for the industry, but also for plaintiff attorneys. Ensuring that hempcrete has been tested appropriately and meets industry gold-standards will be paramount for the defense of such litigation and EU practices will be instructive.

The United States construction industry, and particularly hempcrete product manufacturers, should pay close attention as the EU expands green construction practices, including the use of hempcrete. The trials and errors of European industry counterparts will inform U.S. regulations, litigation and risk management best practices.

 

Cannabusiness Sustainability

Designing More Sustainable Cannabis Facilities

By Sophia Daukus
1 Comment

The topic of sustainability has grown in importance and priority for both consumers and regulators. From reducing emissions to lowering energy and water consumption, cannabis growing facilities face unique challenges when it comes to designing sustainable operations. Moreover, as the cannabis market grows and usage becomes more accepted, regulatory bodies will continue to increase the number of directives to help ensure the safety and quality of cannabis products.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

Ubiquitous throughout cannabis grow rooms and greenhouses, flooring can be easily overlooked, yet offers an economical way to create more sustainable facilities. Many of today’s grow rooms are located in old retrofitted warehouses or former industrial buildings that were designed without sustainability or environmental concerns in mind.

Combined with energy efficient lighting and more thoughtful water usage, flooring can help create a more efficient facility that not only improves business operations, but also contributes to a better bottom line.

Sustainability Challenges Facing Cannabis Facilities

Whether in an old warehouse space or a new structure designed from the ground up, cannabis businesses face unique operational challenges when it comes to sustainable best practices.

  • Energy Consumption: Like any indoor farm, lighting plays an important role in cannabis growing facilities. Traditional grow lights can utilize a large amount of electricity, putting a strain on the company budget as well as regional energy resources. Switching to highly-efficient LED lighting can help facilities reduce their consumption, while still maximizing crop yield.
  • Water Consumption: Among the thirstiest of flora, cannabis plants require consistent and plentiful watering for healthy and fruitful crop production.
  • Carbon Dioxide (CO2) Enrichment: In many cases, carbon dioxide is introduced into facilities to help enhance the growth of crops. However, this practice may pose safety and health risks for workers, the surrounding community and the planet at large. CO2 is a greenhouse gas known to contribute to climate change.

In order to head off upcoming regulatory restrictions, as well as to alleviate the mounting safety and health concerns, it behooves cannabis grow room managers and owners to explore alternatives for improving sustainability in their facilities.

Flooring Requirements for More Sustainable Cannabis Facilities

Spanning thousands or even hundreds of thousands of square feet throughout a facility, flooring can be a unique way to introduce and support sustainable practices in any grow room or greenhouse.

When seeking to improve operational efficiency and implementing the use of sustainable practices in cannabis facilities, look for flooring systems with the following characteristics:

  • Impervious Surfaces— Fertilizers, fungicides, and other chemicals can infiltrate porous unprotected concrete to leach through the slab matrix and into the soil and groundwater below. Non-porous flooring options, such as industrial-grade, fluid-applied epoxies and urethanes, are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.
  • Light-Reflective Finishes— Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms. By mirroring overhead lighting back upward, bright, light-reflective flooring can help minimize facilities’ reliance on expensive ceiling fixtures and electricity usage.
  • USDA, FDA, EPA, OSHA and ADA Compliancy— With cannabis industry regulations currently in flux, grow facilities that select food- and pharmaceutical-compliant flooring will be ahead of the game. Governing bodies in some states have already begun expanding the facility requirements of these sectors to the cannabis market.
  • Durable and Easy Care— Having to replace flooring every couple of years imposes high costs on businesses as well as the environment. Installation of many traditional types of flooring produces cut-off waste and requires landfill disposal of the old floor material. In contrast, by installing industrial-grade flooring systems that are highly durable and easy-to-maintain, facilities can count on long-term performance and value, while helping to minimize disposal costs and concerns.
Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Optimal flooring can help cultivation facilities reduce waste, improve the efficacy of existing lighting and lengthen floor replacement cycles for a better bottom line and a healthier environment. Additionally, having the right grow room floor can assist facilities in meeting regulatory requirements, help ensure production of quality products and improve the safety for consumers and staff.

Flooring Benefits for Employees and Consumers

Safety is paramount in any workplace. When it comes to the manufacture of foodstuffs and other consumed products, government oversight can be especially stringent. With the right compliant flooring in place, cultivation facilities can focus on the rest of their business, knowing that what’s underfoot is contributing to the safety of employees and their customers.

Here’s how:

  • Chemical Resistance— Floors can be exposed to a high concentration of chemicals, acids and alkalis in the form of fertilizers, soil enhancers and other substances. In processing locations, the proper disinfecting and sanitizing of equipment can require harsh solvents, detergents and chemical solutions, which can drip or spill onto the floor, damaging traditional flooring materials. It pays to select cannabis facility flooring with high chemical resistance to help ensure floors can perform as designed over the long term.
  • Thermal Shock Resistance— Optimal cannabis facility flooring should be capable of withstanding repeated temperature cycling. Slab-on-grade structures in colder climates may be especially vulnerable to floor damage caused by drastic temperature differences between a freezing cold concrete slab and the tropical grow room above. This extreme contrast can cause certain floor materials to crack, delaminate and curl away from the concrete substrate. The resulting crevices and uneven surfaces present trip and fall hazards to employees and leave the slab unprotected from further degradation. As an alternative, thermal shock-resistant floors, such as urethane mortar systems, furnish long-lived functionality even when regularly exposed to extreme temperature swings.
  • Humidity and Moisture Resistance— Traditional floor surfaces tend to break down in ongoing damp, humid environments. Cannabis facility flooring must be capable of withstanding this stress and more.
  • Pathogen Resistance— Undesirable microbes, fungi and bacteria can thrive in the moist, warm environments found in grow rooms. Floors with extensive grout lines and gaps provide additional dark, damp locations for pathogen growth. Fluid-applied flooring results in a virtually seamless surface that’s directly bonded to the concrete. Integral floor-to-wall cove bases can further improve wash down and sanitation.
  • Proper Slope and Drainage— Where food and/or pharmaceutical facility regulations have already been extended to cannabis operations, flooring is required to slope properly toward a floor drain. This prevents puddling, which can be a slip hazard as well as a microbe breeding ground. Unlike more typical materials, resinous flooring offers an economical solution for correcting floor slope wherever needed.

The Problems Presented by Traditional Flooring Options

Previously, cannabis growers often relied on traditional greenhouse-type flooring, including tamped down dirt floors, gravel or bare concrete. However, current and upcoming regulations are curtailing the use of these simple flooring options.

Growers often compare and contrast the benefits and value of traditional greenhouse flooring with more modern solutions, such as fluid-applied epoxy and urethane floors.

Dirt and gravel flooring offers little opportunity to properly sanitize, thus potentially inviting microorganism and pathogen invasion, contamination and costly damage. Growers who have turned to bare concrete floors face other concerns, including:

  • Unprotected concrete is inherently porous and therefore able to quickly absorb spilled liquids and moisture from the air. In addition, organic and synthetic fertilizers, fungicides, and chemicals can leach through the concrete floors, contaminating the groundwater, injuring the surrounding environment and wildlife.
  • Older slabs often lack an under-slab vapor barrier. Even in new construction, a single nail hole can render an under-slab barrier ineffective. In these situations, moisture from underneath the floor slab can move upward osmotically through the alkaline slab, leading to blistering and damage to standard commercial floor coverings.
  • Bare concrete floors can stain easily. These dark stains tend to absorb light instead of reflecting it, contributing to a potential increase in energy usage and cost.
  • The mold proliferation encouraged by the warmth and humidity of grow rooms can easily penetrate into the depths of unprotected slab surfaces, eventually damaging its structural integrity and shortening the usable life of the concrete.

While traditional greenhouse flooring options can initially seem less expensive, they frequently present long-term risks to the health of cannabis grow businesses. In addition, the performance of dirt, gravel and bare concrete floors runs counter to the industry’s commitment to reducing the carbon footprint of growing facilities.

Choosing Sustainable Grow Room Flooring

It’s no secret that the cannabis industry is undergoing enormous change and faces numerous environmental challenges. Luckily, optimal flooring options are now available to help growers economically increase their eco-friendly practices on many fronts. By focusing on quality resinous flooring, cannabis growers can get closer to meeting their sustainability goals, while simultaneously contributing to improved operation efficiency, enhanced yields and an increased bottom line.

Sustainable Plastic Packaging Options for Your Cannabis Products

By Danielle Antos
5 Comments

A large part of your company’s brand image depends on the packaging that you use for your cannabis product. The product packaging creates a critical first impression in a potential customer’s mind because it is the first thing they see. While the primary function of any cannabis packaging is to contain, protect and identify your products, it is a reflection of your company in the eyes of the consumer.

For all types of businesses across the US, sustainability has become an important component for success. It is increasingly common for companies to include sustainability efforts in their strategic plan. Are you including a sustainability component in your cannabis business’ growth plan? Are your packaging suppliers also taking sustainability seriously? More and more, consumers are eager to purchase cannabis products that are packaged thoughtfully, with the environment in mind. If you are using or thinking about using plastic bottles and closures for your cannabis products, you now have options that are produced from sustainable and/or renewable resources. Incorporating sustainable elements into your cannabis packaging may not only be good for the environment, but it may also be good for your brand.

Consider Alternative Resins

Traditionally, polyethylene produced from fossil fuels (such as oil or natural gas), has been used to manufacture HDPE (high density polyethylene) bottles and closures. However, polyethylene produced from ethanol made from sustainable sources like sugarcane (commonly known as Bioresin) are becoming more common.

HDPE bottles produced with Bioresin.

Unlike fossil fuel resources which are finite, sustainable resources like sugarcane are renewable – plants can be grown every year. For instance, a benefit of sugarcane is that it captures and fixes carbon dioxide from the atmosphere every growth cycle. As a result, production of ethanol-based polyethylene contributes to the reduction of greenhouse gas emissions when compared to conventional polyethylene made from fossil fuels, while still exhibiting the same chemical and physical properties as conventional polyethylene. Although polyethylene made from sugarcane is not biodegradable, it can be recycled.

Switching to a plastic bottle that is made from ethanol derived from renewable resources is a great way for cannabis companies to take positive climate change action and help reduce their carbon footprint.

For instance, for every one ton of Bioresin used, approximately 3.1 tons of carbon dioxide is captured from the atmosphere on a cradle-to-gate basis. Changing from a petrochemical-derived polyethylene bottle to a bottle using resins made from renewable resources can be as seamless as approving an alternate material – the bottles look the same. Ensure that your plastic bottle manufacturer is using raw materials that pass FDA and ASTM tests. This is one way to help reverse the trend of global warming due to increasing levels of carbon dioxide (CO2) in our atmosphere.

PET bottles derived from 100% recycled post-consumer material.

Another option is to use bottles manufactured with recycled PET (polyethylene terephthalate). Consisting of resin derived from 100% recycled post-consumer material, it can be used over and over. This is an excellent choice because it helps keep plastic waste to a minimum. Regardless of the resin you select, look for one that is FDA approved for food contact.

Consider Alternative Manufacturing Processes

Flame Treatment Elimination

When talking about plastic bottle manufacturing, an easy solution to saving fossil fuels is eliminating the flame treatment in the manufacturing process. Historically, this process was required to allow some water-based adhesives, inks, and other coatings to bond with HDPE (high density polyethylene) and PP (polypropylene) bottles. Today, pressure-sensitive and shrink labels make this process unnecessary. Opt out and conserve natural gas. For instance, for every 5 million bottles not flamed approximately 3 metric tons of CO2is eliminated. This is an easy way to reduce the carbon footprint. Ask your cannabis packaging manufacturer if eliminating this process is an option.

Source Reduction (Right-Weighting)

When considering what type and style of bottle you want to use for your cannabis product, keep in mind that the same bottle may be able to be manufactured with less plastic. A bottle with excess plastic may be unnecessary and can result in wasted plastic or added costs. On the other hand, a bottle with too little plastic may be too thin to hold up to filling lines or may deform after product is filled. Why use a bottle that has more plastic than you actually need for your product when a lesser option may be available? This could save you money, avoid problems on your filling lines, and help you save on your bottom line. In addition, this will also help limit the amount of natural resources being used in production.

Convert to Plastic Pallets

If you are purchasing bottles in large quantities and your supplier ships on pallets, consider asking about plastic pallets. Reusable plastic pallets last longer than wood pallets, eliminate pallet moisture and improve safety in handling. They also reduce the use of raw materials in the pallet manufacturing process (natural gas, metal, forests, etc.) aiding in efforts towards Zero Net Deforestation. And, returnable plastic pallets provide savings over the long term.

If You Don’t Know, Ask Your Cannabis Packaging Partner

It is important to find out if your plastic packaging partner offers alternative resins that are produced from renewable sources or recycled plastics. It is also prudent to partner with a company that is concerned about the impact their business has on the planet. Are they committed to sustainability? And, are they eliminating processes that negatively affect their carbon footprint? What services can they provide that help you do your part?

When you opt to use sustainably produced plastic bottles and closures for your cannabis products, you take an important step to help ensure a viable future for the planet. In a competitive market, this can improve the customer’s impression of your brand, increase consumer confidence and help grow your bottom line. Not only will you appeal to the ever-growing number of consumers who are environmentally-conscience, you will rest easy knowing that your company is taking action to ensure a sustainable future.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 2

By Carl Silverberg
1 Comment

The first article of this series discussed resource management for cannabis growers. In this second piece of the series on how indoor farming has a reduced impact on the environment, we’re going to look at land use & conservation. There are really two aspects and we have to be up front and acknowledge that while our focus is on legal cannabis farming, there’s a significant illegal industry which exists and is not subject to any environmental regulation.

“Streams in Mendocino run dry during the marijuana growing season impacting Coho salmon and steelhead trout who lay their eggs in the region’s waterways.” One biologist reported seeing “dead steelhead and Coho on a regular basis in late August and September, usually due to water reduction or elimination from extensive marijuana farming.” The quotes are from an extensive article on cannabis land use by Jessica Owley in the U.C. Davis Law Review.The concept that land will stay in its natural state is a mixture of idealism and reality.

This is going to continue until it’s more profitable to go legit. For this article, we’re going to focus on the legitimate cannabis grower. On the land use side, we usually hear four main reasons for indoor growing: remaining land can stay in its natural state, fewer space usually translates to fewer waste, you conserve land and natural resources when you don’t use fossil fuels, greenhouses can be placed anywhere.

The concept that land will stay in its natural state is a mixture of idealism and reality. Just because someone only has to farm five acres of land instead of one hundred acres doesn’t necessarily mean they’re going to leave the rest in its pristine natural state. Granted the footprint for automated greenhouses is significantly less but the key is what happens to that extra space. Assuming that it will all be preserved in its natural state isn’t realistic. What is realistic is the fact that a developer may not want to build tract houses abutting a commercial greenhouse operation. If they do, likely there’s going to be more land set aside for green space than if a farm was sold outright and a series of new homes were plunked down as if it were a Monopoly board.

Combined with workforce development program funding, urban indoor farming is getting more attractive every day.That’s not the same kind of issue in urban areas where the situation is different. Despite the economic boom of the past ten years, not every neighborhood benefitted. The smart ones took creative approaches. Gotham Greens started in Greenpoint, Brooklyn and has expanded to Chicago as well. “In early 2014, Gotham Greens opened its second greenhouse, located on the rooftop of Whole Foods Market’s flagship Brooklyn store, which was the first ever commercial scale greenhouse integrated into a supermarket.”

Green City Growers in Cleveland’s Central neighborhood is another example. “Situated on a 10-acre inner-city site that was once urban blight, the greenhouse—with 3.25 acres under glass–now serves as a vibrant anchor for the surrounding neighborhood.”

The beauty of greenhouse systems even those without greenhouse software, is they can be built anywhere because the environmental concerns of potentially contaminated soil don’t exist. The federal government as well as state and local governments offer a myriad of financial assistance programs to encourage growers to develop operations in their areas. Combined with workforce development program funding, urban indoor farming is getting more attractive every day.

As for the argument that greenhouses save energy and fossil fuels, I think we can agree that it’s pretty difficult to operate a thousand-acre farm using solar power. To their credit, last year John Deere unveiled a tractor that will allow farmers to run it as a fully autonomous vehicle to groom their fields while laying out and retracting the 1 kilometer long onboard extension cord along the way. It’s a start although I’ll admit to my own problems operating an electric mower without cutting the power cord.

In a 2017 article, Kurt Benke and Bruce Tomkins stated, “Transportation costs can be eliminated due to proximity to the consumer, all-year-round production can be programmed on a demand basis, and plant-growing conditions can be optimized to maximize yield by fine-tuning temperature, humidity, and lighting conditions. Indoor farming in a controlled environment also requires much less water than outdoor farming because there is recycling of gray water and less evaporation.”

The overall trend on fossil fuel reduction was verified this week when the Department of Energy announced that renewables passed coal for the first time in U.S. history.  And on the water issue, Ms. Owley had a salient point for cannabis growers. “The federal government will not allow federal irrigation water to be used to grow marijuana anywhere, even in states where cultivation is legal.” That’s not a minor detail and it’s why outdoor farming of cannabis is going to be limited in areas where water resources and water rights are hotly debated.

#whatsinmyweed campaign

CCC Launches #WhatsInMyWeed Campaign

By Aaron G. Biros
No Comments
#whatsinmyweed campaign

“Your tomatoes are organic. What about your weed?” The language on their homepage is clear: Consumers should seek the same high standards in their cannabis just as they do with food.

Earlier in the month, The Cannabis Certification Council (CCC), a nonprofit that promotes organic and fair trade practices in the cannabis industry, announced the launch of their #WhatsInMyWeed campaign. The consumer education initiative is designed to draw parallels between what buying choices people make in food and cannabis.

#whatsinmyweed campaignThe consumer-facing idea is to produce videos and ads that make people question the ethics and environmental sustainability of their cannabis, just as they do when purchasing organic, fair trade-certified produce. According to Amy Andrle, owner of L’Eagle Services in Denver and board member with the CCC, the campaign should benefit cannabis companies that produce ethical and sustainable products. “This campaign is long overdue and much needed to alert consumers about the quality of their cannabis and begin to reward producers of organic, fair trade, sustainable and other high quality and integrity products just as they are in other consumer categories,” says Andrle. “We believe the campaign and accompanying website will drive demand and increase transparency in the cannabis industry.”

According to the press release, the website has a listing of cannabis certifications currently available now, information about them and where consumers can find certified products. Companies can sign up for the #WhatsInMyWeed Pledge as well to let consumers know they produce clean products.

dSPE cleanups

The Grass Isn’t Always Greener: Removal of Purple Pigmentation from Cannabis

By Danielle Mackowsky
1 Comment
dSPE cleanups
strains
Cannabis strains used (clockwise from top left): Agent Orange, Tahoe OG, Blue Skunk, Grand Daddy and Grape Drink

Cannabis-testing laboratories have the challenge of removing a variety of unwanted matrix components from plant material prior to running extracts on their LC-MS/MS or GC-MS. The complexity of the cannabis plant presents additional analytical challenges that do not need to be accounted for in other agricultural products. Up to a third of the overall mass of cannabis seed, half of usable flower and nearly all extracts can be contributed to essential oils such as terpenes, flavonoids and actual cannabinoid content1. The biodiversity of this plant is exhibited in the over 2,000 unique strains that have been identified, each with their own pigmentation, cannabinoid profile and overall suggested medicinal use2. While novel methods have been developed for the removal of chlorophyll, few, if any, sample preparation methods have been devoted to removal of other colored pigments from cannabis.

QuEChERS
Cannabis samples following QuEChERS extraction

Sample Preparation

Cannabis samples from four strains of plant (Purple Drink, Tahoe OG, Grand Daddy and Agent Orange) were hydrated using deionized water. Following the addition of 10 mL acetonitrile, samples were homogenized using a SPEX Geno/Grinder and stainless steel grinding balls. QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) non-buffered extraction salts were then added and samples were shaken. Following centrifugation, an aliquot of the supernatant was transferred to various blends of dispersive SPE (dSPE) salts packed into centrifugation tubes. All dSPE tubes were vortexed prior to being centrifuged. Resulting supernatant was transferred to clear auto sampler vials for visual analysis. Recoveries of 48 pesticides and four mycotoxins were determined for the two dSPE blends that provided the most pigmentation removal.

Seven dSPE blends were evaluated for their ability to remove both chlorophyll and purple pigmentation from cannabis plant material:

  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg PSA
  • 150 mg MgSO4, 25 mg C18
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18
  • 150 mg MgSO4, 25 mg PSA, 7.5 mg GCB
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg GCB

Based on the coloration of the resulting extracts, blends A, F and G were determined to be the most effective in removing both chlorophyll (all cannabis strains) and purple pigments (Purple Drink and Grand Daddy). Previous research regarding the ability of large quantities of GCB to retain planar pesticides allowed for the exclusion of blend G from further analyte quantitation3. The recoveries of the 48 selected pesticides and four mycotoxins for blends A and F were determined.

dSPE cleanups
Grand Daddy following various dSPE cleanups

Summary

A blend of MgSO4, C18, PSA and Chlorofiltr® allowed for the most sample clean up, without loss of pesticides and mycotoxins, for all cannabis samples tested. Average recovery of the 47 pesticides and five mycotoxins using the selected dSPE blend was 75.6% were as the average recovery when including GCB instead of Chlorofiltr® was 67.6%. Regardless of the sample’s original pigmentation, this blend successfully removed both chlorophyll and purple hues from all strains tested. The other six dSPE blends evaluated were unable to provide the sample clean up needed or had previously demonstrated to be detrimental to the recovery of pesticides routinely analyzed in cannabis.


References

(1)           Recommended methods for the identification and analysis of cannabis and cannabis products, United Nations Office of Drugs and Crime (2009)

(2)            W. Ross, Newsweek, (2016)

(3)            Koesukwiwat, Urairat, et al. “High Throughput Analysis of 150 Pesticides in Fruits and Vegetables Using QuEChERS and Low-Pressure Gas Chromatography Time-of-Flight Mass Spectrometry.” Journal of Chromatography A, vol. 1217, no. 43, 2010, pp. 6692–6703., doi:10.1016/j.chroma.2010.05.012.

flower inspect

The Organic Certification of Cannabis

By Aaron G. Biros
1 Comment
flower inspect

News of potentially harmful pesticide use on cannabis grown in Colorado, along with new legislation in California that would develop guidelines for pesticide use, highlight the need to cultivate cannabis that is not only safe to consume, but also environmentally friendly. Cannabis cultivation is a rapidly expanding industry and as growers scale up their operations, the question of sustainability remains.

cleangreencertplants
Chris Van Hook performing a routine inspection of a Clean Green Certified crop

Clean Green Certified is a third-party certification program that incorporates aspects of the USDA’s National Organic Program (NOP), international organic programs and sustainable farming practices. Cannabis is not eligible for USDA organic certification because it is not a federally recognized crop, so Clean Green Certified is the closest certification nationally available. More than 200 cultivators are currently Clean Green Certified in California, Oregon, Washington, Colorado and Nevada.

Chris Van Hook, attorney and founder of Clean Green Certified, started the program in 2004 out of requests from growers to certify their cannabis as organic. Van Hook has decades of experience working in environmental law and USDA organic certifications. “About 95% of the Clean Green Certification is based on the USDA’s NOP,” says Van Hook. “The Clean Green Certified cannabis farmer would be eligible for an organic certification as soon as it becomes available, so we are helping the industry get accustomed to the regulations, inspections, and audits that come with getting organically certified.”

plants clean green vert
A close-up of an outdoor Clean Green Certified crop

Getting Clean Green Certified requires an initial application. Upon inspection, Van Hook’s program examines all the inputs, including water and energy usage, nutrients, pesticides, and soil, along with inspecting the actual plants for agricultural vitality. “We follow the plants from seed to when it is harvested, checking for clean surfaces and containers, as well as drying, curing, trimming, and processing practices,” says Van Hook. “Just like organic farming, the cultivator needs to be an engaged manager and heavily involved with the plants. Much more monitoring is involved to prevent pest problems from getting out of control without using pesticides.”

flower inspect
Van Hook inspecting the flowers on an outdoor plant

The initial screening process takes into consideration traceability and legal compliance, which in cultivation and processing alike is an eligibility requirement. “We use USDA organic standards as guidance for processor facility reviews as well, which include concentrates and edibles manufacturers, breaking it down to labeling, food handling, standard operating procedures, mock recalls, and more,” says Van Hook.

“In a market so used to a lack of oversight, there definitely are some challenges, but we are bringing the necessary agricultural and food handling regulations into the cannabis industry,” adds Van Hook.

The option to grow organically and acquire a third party certification for it can benefit cultivators across the country looking to market their product as environmentally sustainable and pesticide-free.