Tag Archives: IPM

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 3

By Carl Silverberg
No Comments

Part 1 in this series went into a discussion of resource management for cannabis growers. Part 2 presented the idea of land use and conservation. In Part 3 below, we dive into pesticide use and integrated pest management for growers, through an environmental lens.

Rachel Carson’s book Silent Spring in 1962, is often credited with helping launch the environmental movement. Ten years later, VP Edmund Muskie elevated the environment to a major issue in his 1972 Presidential campaign against Richard Nixon. 57 years after Ms. Carson’s book, we’re still having the same problems. Over 13,000 lawsuits have been filed against Monsanto and last month a jury in Alameda County ruled that a couple came down with non-Hodgkin’s lymphoma because of their use of Roundup. The jury awarded them one billion dollars each in punitive damages. Is there a safer alternative?

“Effectively replacing the need for pesticides, we use Integrated Pest Management (IPM) which is a proactive program designed to control the population of undesirable pests with the use of natural predators, a system commonly known as “good bugs (such as ladybugs) fighting bad bugs”, states the website of Mucci Farms, a greenhouse grower. While this applies to cannabis as well, there is one major problem with the crop that isn’t faced by other crops.

Rachel Carson’s Silent Spring- often credited with starting the environmental movement of the 20th century.

While states are moving rapidly to legalize it, the EPA is currently not regulating cannabis. That is in the hands of each state. According to a story in the Denver Post in 2016, “Although pesticides are widely used on crops, their use on cannabis remains problematic and controversial as no safety standards exist.” Keep in mind that it takes a lot more pesticides to keep unwarranted guests off your cannabis plant when it’s outdoors than when it’s in a controlled environment.

We’re accustomed to using endless products under the assumption that a range of governmental acronyms such as NIH, FDA, OSHA, EPA, USDA are protecting us. We don’t even think about looking for their labels because we naturally assume that a product we’re about to ingest has been thoroughly tested, approved and vetted by one of those agencies. But what if it’s not?

Again, cannabis regulation is at the state level and here’s why that’s critical. The budget of the EPA is $6.14 billion while Colorado’s EPA-equivalent agency has a budget of $616 million. According to the federal budget summary, “A major component of our FY 2019 budget request is funding for drinking water and clean water infrastructure as well as for Brownfields and Superfund projects.” In short, federal dollars aren’t going towards pesticide testing and they’re certainly got going towards a product that’s illegal at the federal level. That should make you wonder how effective oversight is at the state level.

What impact does this have on our health and what impact do pesticides have on the environment? A former Dean of Science and Medical School at a major university told me, “Many pesticides are neurotoxins that affect your nervous system and liver. These are drugs. The good news is that they kill insects faster than they kill people.” Quite a sobering thought.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”Assuming that he’d be totally supportive of greenhouses, I pushed to see if he agreed. “There’s always a downside with nature. An enclosure helps you monitor access. If you’re growing only one variety, your greenhouse is actually more susceptible to pests because it’s only one variety.” The problem for most growers is that absent some kind of a computer vision system in your greenhouse, usually by the time you realize that you have a problem it’s already taken a toll on your crop.

Following up on the concept of monitoring, I reached out to Dr. Jacques White, the executive director of Long Live the Kings, an organization dedicated to restoring wild salmon in the Pacific Northwest. Obviously, you can’t monitor access to a river, but you certainly can see the effects of fertilizer runoff, chemicals and pesticides into the areas where fish live and eventually, return to spawn.

“Because salmon travel such extraordinary long distances through rivers, streams, estuaries and into oceans they are one of the best health indicators for people. If salmon aren’t doing well, then we should think about whether people should be drinking or using that same water. The salmon population in the area around Puget Sound is not doing well.”

We talked a bit more about pesticides in general and Dr. White summed up the essence of the entire indoor-outdoor farming and pesticides debate succinctly.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”

If you extrapolate that thought, the same applies to agriculture. Greenhouse farming, while subject to some problems not endemic to outdoor farming, quite simply puts a lot fewer chemicals in the air we breathe, the water we drink and the food we eat.

Radojka Barycki picture

Food Safety Planning for Cannabis Companies

By Radojka Barycki
No Comments
Radojka Barycki picture

Food safety incidents can be prevented. However, prevention requires planning, which requires the effort of everyone in a company to create a culture of quality and food safety. How exactly do you plan for food safety? Food safety planning implies the building of a food safety management system. Food safety management systems allow for an efficient management of hazards that may be present in the food by the development and implementation of pre-requisite programs (PRPs) and a food safety plan, while supported by management commitment. So, let’s take a closer look at each of these building blocks:Radojka Barycki will lead a plenary session titled, “Cannabis: A Compliance Revolution” at the 2018 Food Safety Consortium | Learn More

Management Commitment

The development and implementation of a food safety management system requires financial, equipment, and technically sound personnel in order to be successful and sustainable. The management team of any cannabis product manufacturer must be committed to food safety, so the needed resources to develop and implement a food safety management system are provided. Management commitment creates a culture within the operation that supports, sustains and continuously improves food safety. 

Pre-Requisite Programs (PRPs) 

Pre-requisite programs are procedures that establish the minimal operations conditions to produce safe and quality products. Pre-requisite programs are the foundation of food safety and must be developed and implemented prior to creating a food safety plan. They keep potential hazards from becoming serious enough to adversely impact the safety of products produced. Pre-requisite programs include but are not limited to:

  • Document Control
  • Supplier Verification Programs
  • Raw Material Receiving (ingredients, processing aids and packaging)
  • Good Manufacturing Practices (GMPs)
  • Preventative Maintenance (PM) Program
  • Calibration Program
  • Integrated Pest Management (IPM)
  • Environmental Monitoring Programs (EMPs)
  • Water Management Programs (WMPs)
  • Allergen Management Program
  • Standard Sanitation Operating Procedures (SSOPs)
  • Standard Operating Procedures (SOPs)
  • Storage and Transportation Procedures
  • Crisis Management
  • Traceability
  • Recall
  • Record keeping
  • Waste Management
  • Training

Food Safety Plan (FSP)As you can see, food safety planning requires the development and implementation of a lot of programs.

A food safety plan is a documented systematic approach that follows the Codex Alimentarius HACCP Principles to identify, prevent and minimize to an acceptable level or control hazards that may be present in food and that can cause an illness or injure the consumer. The first step in this systematic approach is the formation of a food safety team, which main responsibility is to identify the scope of the food safety plan and to oversee all of the activities associated with the plan (e.g. monitoring, verification, validation, etc.) After the food safety team is formed, the steps outlined below are followed in order (systematically):

  1. Product Description
  2. Product Intended Use
  3. Development of the flow diagram
  4. Verification of the flow diagram
  5. Conduct a Hazard Analysis
  6. Identify Critical Control Points (CCPs) or Preventive Controls
  7. Establish Critical Limits
  8. Monitor Critical Limits
  9. Establish Corrective Actions
  10. Establish Verification Procedures
  11. Establish Record Keeping Procedures

As you can see, food safety planning requires the development and implementation of a lot of programs. Therefore, I highly recommend that you hire a food safety consultant that can guide you through this process.

Operational Inefficiencies in Commercial Cannabis Cultivation

By Drew Plebani
2 Comments

From the perspective of sustainable cannabis cultivation models, it seems clear that outside of the particular cultivation methodology adopted, that operational efficiency and the implementation of lean manufacturing principles will be necessary for successful and truly “sustainable” businesses, in the current, ever growing, cannabis space.

Implementing lean manufacturing principles as an integral part of the cannabis cultivation facility just makes sense- it is a manufacturing operation after all. From a lean perspective, doing away with the non-value-added costs in the supply chain and production model are quite important.

Let’s look at this case study as evidence for the necessity of operational efficiency:

A 300-light flowering, indoor cultivation facility in Colorado.

The system was purchased with ongoing pest/disease issues, recent updates to Colorado’s approved pesticide list, had prompted the implementation of an updated integrated pest management (IPM) program, which had been moderately successful in developing an albeit short-term solution to keeping ongoing root aphids, powdery mildew, and botrytis, to name a few, at bay.

This existing facility was producing roughly 60 pounds of trimmed cannabis per week, equivalent to almost $6M annual gross, however they were losing a percentage of their yields to product that did not pass Colorado’s contaminant testing requirements.

It is important to note that any deviation from the existing manufacturing schedule and system would create a change to the potential productivity of the system, for better or worse.

At the most basic level, one would hope that a new operator taking over an existing facility would analyze the system and implement incremental or perhaps major changes to create more efficient and profitable outcomes. That being said, currently the average grower likely doesn’t have much understanding of the lean manufacturing process. That will undoubtedly change.

When we look at basic manufacturing facility operations, on an annual gross potential basis, each daily task not completed on the existing manufacturing timeline is, at least, a 0.3% (1/365) loss in potential productivity. In monetary terms, for this particular facility, each 0.3% equates to a potential $18,000 in lost productivity.

The information that follows is taken from observations during the first week of this facility ownership transition and below is a generalized outline representing just one aspect of the operational inefficiencies (created or existing) that were observed :

  • Plant group A put into flowering 4 days behind schedule (4 days x 0.3%) =1.2%
  • Plant group B transplanted 3 days behind =0.9%
  • Plant group C transplanted 7 days behind =2.1%
  • Plant group D (clones) taken 7 days behind =2.1%
  • IPM applications not completed for 7+ days

That equals a 6.3% loss in potential annual productivity, which translates into a rough estimate of up to $378,000 in lost revenue.

Changes to the nutrient program in the midst of the plant’s life cycle had created nutrient deficient plants in all stages of vegetative and flowering growth, coupled with changes to the existing IPM program, all add to the potential losses incurred. Deviations in the plant nutrition program and IPM scheduling are hard to quantify mid-cycle, but will certainly be quantifiable when the hard numbers come home to roost.

These inefficiencies, once compounded, could potentially equal more than a 20% loss in potential productivity during the subsequent 3.5 month plant cycle. The current 60 pounds-per-week would likely be reduced for the next 2 months, down to roughly 50 pounds, or even much less, per-week. This could become a loss upwards of $500,000 in annual potential revenue in the first quarter of operation alone.

These seemingly small and incremental delays in the plant production cycle are all greatly compounded. The end result is that each subsequent cycle of plants is slightly smaller due to delays in transplanting and less days at maximized vegetative growth, etc. Undoubtedly, the cumulative effect of these operational inefficiencies creates a significant drop in the existing level of productivity, with the end result being a significant, undesired loss of revenue.

The sum of the lessons learned from this cultivation facility, is this: a sustainable operation, in the most pragmatic sense, is an efficient one both in terms of productivity and in terms of the carbon footprint and waste generated. The more streamlined and successful the operations are, the greater likelihood of success. Perhaps all of this is to say don’t forget about all the little parts that make up the whole, and strive to create a work environment/corporate culture that empowers your employees, your managers and all involved to participate and contribute to the process of improving the operations for mutual benefit.

Lessons learned from the aerospace manufacturing industry: Even the smallest zip tie on a spaceship matters! Some food for thought: If it’s truly beneficial it should stick around… If it is beneficial and it’s not sticking around, then there are limiting factors in the system that need to be addressed.

durnagofacility

Solutions for Cannabis Cultivation: Integrated Pest Management

By Aaron G. Biros
3 Comments
durnagofacility

Pest problems in cultivating cannabis such as spider mites and powdery mildew are major concerns facing growers on a daily basis. Colorado’s ongoing recalls for cannabis products containing pesticides serve as a reminder that pest problems continue to plague growers. Utilizing integrated pest management (IPM) can help reduce the need to use any pesticides, as well as mitigate the risk of unwanted pests wreaking havoc on a cannabis harvest. urban-gro, a solutions provider for commercial cannabis cultivation, builds IPM plans for large-scale cannabis growers tailored to meet specific needs in regulatory compliance for different states.

durnagofacility
urban-gro helped design this facility in Durango, Colorado.

Biological controls are essential to any proper IPM solution for growers. Beneficial living organisms such as insects, mites, nematodes or entomopathogenic fungi can all be applied as a method for controlling pests. Biological controls like those can reduce the need to use pesticides on cannabis. John Chandler, vice president of cultivation technologies at urban-gro, believes IPM requires a broad, systematic approach to eliminate the need for pesticides. “IPM is a combination of cultural, chemical and biological control,” says Chandler. “We start by evaluating the air flow of the facility, how plants are transported, any exclusion barriers and air filtration.” A robust IPM plan begins in the design phase of a new facility. “We can make key adjustments in floor plans, layouts and mechanical systems to optimize that first line of defense that is critical to mitigating the risk of pest issues.” Incorporating good agricultural practices can also help mitigate those risks.

durangopot
A close-up of a plant entering flowering at the Durango facility

“We help develop standard operating procedures with good agricultural practices in mind, including preventing cross contamination, which is the biggest pest issue facing cannabis growers,” says Chandler. “I encourage clients to set up harvest and vegetative rooms so that the plants are moving in one specific direction between rooms rather than back and forth.” Using positive air pressure with proper ventilation can further prevent cross contamination. Chandler also recommends scrubbing air coming into the building with gaseous hydrogen peroxide to keep filtering air in ventilation.

urban-gro
IPM plans require thinking in terms of systems to find the right balance of biological controls.

According to Mark Doherty, director of sales at urban-gro, their IPM plans are customized to meet different states’ rules and regulations, including each list of approved pesticides. “We work to design a system that meets each individual grower’s needs, while helping them navigate regulations in any given state,” says Doherty. “It is important to make cannabis safe for patients and IPM is critical in building a healthy ecosystem for plants to be grown in a safe, yet cost-effective manner.” Proper use of IPM can reduce the need to use pesticides, which could impact a cultivator’s bottom line, but ultimately protect patients’ wellbeing by providing safe and pesticide-free cannabis.

prosodic
Procidic works on contact and with residual action.

When all else fails and pests still find their way onto cannabis, there is a solution to address major losses. urban-gro distributes a product called Procidic2®, a broad-spectrum bactericide and fungicide compound, manufactured by Greenspire Global. The advanced commercial formula is designed to eliminate pathogenic bacteria and fungi. Procidic2® can be applied as a preventive and a curative. WSDA Organic Program has approved Procidic2® for use in organic agriculture production and handling. According to Steve Knauss, president of Greenspire Global, “Procidic2® works in sync with the plant through two modes of action: First it controls powdery mildew and gray mold on contact, and secondly it is absorbed systemically into the plant to control disease infection such as root rot,” says Knauss.

Implementing a comprehensive IPM system requires making key changes in cultural, biological and chemical controls. In doing so, growers can successfully mitigate the risk of pest problems, thus reducing the need for potentially harmful pesticides.