Tag Archives: IR

EVIO labs photo
Soapbox

(L)Earning from Failure

By Dr. Markus Roggen, Soheil Nasseri
No Comments
EVIO labs photo

The spectacular rise and crash of the Canadian cannabis stock market has been painful to watch, let alone to experience as an industry insider. The hype around the market has vanished and many investors are left disappointed. Large sustainable gains simply haven’t materialized as promised. The producers are clearly suffering. They have consistently been shedding value as they’ve been posting losses every quarter. Stock prices have plummeted along with consumer confidence. Attempts to reduce the cash bleeds through mergers, acquisitions, layoffs, restructures, fund raises, among others, have not resulted in any significant recovery. In short, the current model of a cannabis industry has failed.

Dr. Markus Roggen, Founder of Complex Biotech Discovery Ventures (CBDV)

How could it have been different? What should the industry have done differently? What makes the difference between failure and success? A recent article published in Nature (Volume 575) by Yin et al. titled “Quantifying the Dynamics of Failure Across Science, Startups and Security” analyzes the underlying principles of success. The article studies success rates of many groups after numerous attempts across three domains. One of the domains being analyzed are startup companies and their success in raising funds through many attempts at investment acquisition. The authors point out that the most important factor that determines success is not relentless trying but is actually learning after each attempt. Learning allows successful groups to accelerate their failures, making minute adjustments to their strategy with every attempt. Learning behavior is also seen early in the journey. This means that groups will show higher chances of success early on, if they learn from their mistakes.

If you want to succeed, you need to analyze the current state, test the future state, evaluate performance difference and implement the improved state.

This also needs to happen in the cannabis industry. Producers have been utilizing inefficient legacy systems for production. They have shackled themselves to these inefficient methods by becoming GMP-certified too early. Such certifications prevent them from experimenting with different designs that would enhance their process efficiency and product development. This inflexibility prevents them from improving. This means they are setting themselves up for ultimate failure. GMP is not generally wrong, as it ensures product safety and consistency. Although, at this early stage in the cannabis industry, we just don’t yet have the right processes to enshrine.

How can cannabis producers implement the above-mentioned research findings and learn from their current situation? In an ever-changing business environment, it is companies that are nimble, innovative and fast enough to continually refine themselves that end up succeeding. This agility allows them to match their products with the needs of their consumers and market dynamics. booking.com, a travel metasearch engine, is the prime example of this ethos because they carry out thousands of experiments per year. They have embraced failure through rapid experimentation of different offerings to gauge user feedback. Experimentation has allowed booking.com to learn faster than the competition and build a stronger business.

Soheil Nasseri, Business Associate at Complex Biotech Discovery Ventures (CBDV)

At CBDV, we put the need for iterative experimentation, failure and improvements to achieve breakthroughs at the core of our company. We pursue data to guide our decisions, not letting fear of momentary failure detract us from ultimate success. We continuously explore multiple facets of complex problems to come up with creative solutions.

A good example of how failure and rapid innovation guided us to success is our work on decarboxylation. We were confronted by the problem that the decarboxylation step of cannabis oil was inconsistent and unpredictable. Trying different reaction conditions did not yield a clear picture. We realized that the most important obstacle for improvements was the slow analysis by the HPLC. Therefore, we turned our attention to developing a fast analysis platform for decarboxylation. We found this in a desktop mid-IR instrument. With this instrument and our algorithm, we now could instantaneously track decarboxylation. We now hit another roadblock, a significant rate difference in decarboxylation between THCA and CBDA. We needed to understand the theoretical foundation of this effect to effectively optimize this reaction. So, we moved to tackle the problem from a different angle and employed computational chemistry to identify the origin of the rate difference. Understanding the steric effect on rate helped us focus on rapid, iterative experimentation. Now, with everything in place, we can control the decarboxylation at unrivaled speeds and to the highest precision.

If producers want to regain the trust of the market, they must embrace their failures and begin to learn. They should decrease their reliance on inefficient legacy production methods and experiment with new ones to find what is right for them. Experimentation brings new ways of production, innovative products and happier customers, which will result in higher profits. Producers should strive to implement experimentation into their corporate cultures. This can be done in collaboration with research companies like CBDV or through development of inhouse ‘centers of excellence.’

IR Spectrum of 2,4-Dichlorophenol in different physical states
From The Lab

Gas Chromatography/Infrared Spectroscopy: A Tool For the Analysis of Organic Compounds in Cannabis

By John F. Schneider
2 Comments
IR Spectrum of 2,4-Dichlorophenol in different physical states

Editor’s Note: The author will be teaching a 1/2 day short course on this topic at PITTCON in Philadelphia in March 2019.


The combination of gas chromatography and infrared spectroscopy (GC/IR) is a powerful tool for the characterization of compounds in complex mixtures. (1-5) Gas chromatography with mass spectroscopy detection (GC/MS) is a similar technique, but GC/MS is a destructive technique that tears apart the sample molecules during the ionization process and then these fragments are used to characterize the molecule. In GC/IR the molecules are not destroyed but the IR light produced by molecular vibrations are used to characterize the molecule. IR spectrum yields information about the whole molecule which allows the characterization of specific isomers and functional groups. GC/IR is complementary to GC/MS and the combination results in a powerful tool for the analytical chemist.

A good example of the utility of GC/IR vs GC/MS is the characterization of stereo isomers. Stereo isomers are mirror images such as a left hand and a right hand. In nature, stereo isomers are very important as one isomers will be more active then its mirror image. Stereo isomers are critical to medicinal application of cannabis and also a factor in the flavor components of cannabis.

GC/MS is good at identifying basic structure, where GC/IR can identify subtle differences in structure. GC/MS could identify a hand, GC/IR could tell you if it is a left hand or right hand. GC/MS can identify a general class of compounds, GC/IR can identify the specific isomer present.

Why GC/IR?

Gas chromatography interfaced with infrared detection (GC/IR), combines the separation ability of GC and the structural information from IR spectroscopy. GC/IR gives the analyst the ability to obtain information complementary to GC/MS. GC/IR gives the analyst the power to perform functional group detection and differentiate between similar molecular isomers that is difficult with GC/MS. Isomer specificity can be very important in flavor and medical applications.

 IR Spectrum of 2,4-Dichlorophenol in different physical states

IR Spectrum of 2,4-Dichlorophenol in different physical states

Gas chromatography with mass spectrometry detection (GC/MS) is the state-of-the-art method for the identification of unknown compounds. GC/MS, however, is not infallible and many compounds are difficult to identify with 100 % certainty. The problem with GC/MS is that it is a destructive method that tears apart a molecule. In infrared spectrometry (IR), molecular identification is based upon the IR absorptions of the whole molecule. This technique allows differentiation among isomers and yields information about functional groups and the position of such groups in a molecule. GC/IR complements the information obtained by GC/MS.

Interfaces

Initial attempts to couple GC with IR were made using high capacity GC columns and stopped flow techniques. As GC columns and IR technology advanced, the GC/IR method became more applicable. The advent of fused silica capillary GC columns and the availability of Fourier transform infrared spectrometry made GC/IR available commercially in several forms. GC/IR using a flow cell to capture the IR spectrum in real time is known as the “Light Pipe”. This is the most common form of GC/IR and the easiest to use. GC/IR can also be done by capturing or “trapping” the analytes of interest eluting from a GC and then measuring the IR spectrum. This can be done by cryogenically trapping the analyte in the solid phase. A third possibility is to trap the analyte in a matrix of inert material causing “Matrix Isolation” of the analyte followed by measuring the IR spectrum.

Infrared Spectroscopy

The physical state of the sample has a large effect upon the IR spectrum produced. Molecular interactions (especially hydrogen bonding) broadens absorption peaks. Solid and liquid samples produce IR spectra with broadened peaks that loses much of the potential information obtained in the spectra. Surrounding the sample molecule with gas molecules or in an inert matrix greatly sharpens the peaks in the spectrum, revealing more of the information and producing a “cleaner” spectrum. These spectra lend themselves better to computer searches of spectral libraries similar to the computer searching done in mass spectroscopy. IR spectral computer searching requires the standard spectra in the library be of the same physical state as the sample. So, a spectrum taken in a gaseous state should be searched against a library of spectra of standards in the gaseous state.

IR of various phases:

  • Liquid Phase – Molecular interactions broaden absorption peaks.
  • Solid Phase – Molecular interactions broaden absorption peaks.
  • Gas Phase – Lack of molecular interactions sharpen absorption peaks.
  • Matrix Isolation – Lack of molecular interactions sharpen absorption peaks.

IR Chromatograms

GC/IR yields chromatograms of infrared absorbance over time. These can be total infrared absorbance which is similar to the total ion chromatogram (TIC) in GC/MS or the infrared absorbance over a narrow band or bands analogous to selected ion chromatogram. This is a very powerful ability, because it gives the user the ability to focus on selected functional groups in a mixture of compounds.

Conclusion

Gas chromatography with infrared detection is a powerful tool for the elucidation of the structure of organic compounds in a mixture. It is complementary to GC/MS and is used to identify specific isomers and congeners of organic compounds. This method is greatly needed in the Cannabis industry to monitor the compounds that determine the flavor and the medicinal value of its products.


References

  1. GC–MS and GC–IR Analyses of the Methoxy-1-n-pentyl-3-(1-naphthoyl)-Indoles: Regioisomeric Designer Cannabinoids, Amber Thaxton-Weissenfluh, Tarek S. Belal, Jack DeRuiter, Forrest Smith, Younis Abiedalla, Logan Neel, Karim M. Abdel-Hay, and C. Randall Clark, Journal of Chromatographic Science, 56: 779-788, 2018
  2. Simultaneous Orthogonal Drug Detection Using Fully Integrated Gas Chromatography with Fourier Transform Infrared Detection and Mass Spectrometric Detection , Adam Lanzarotta, Travis Falconer, Heather McCauley, Lisa Lorenz, Douglas Albright, John Crowe, and JaCinta Batson, Applied Spectroscopy Vol. 71, 5, pp. 1050-1059, 2017
  3. High Resolution Gas Chromatography/Matrix Isolation Infrared Spectrometry, Gerald T. Reedy, Deon G. Ettinger, John F. Schneider, and Sid Bourne, Analytical Chemistry, 57: 1602-1609, 1985
  4. GC/Matrix Isolation/FTIR Applications: Analysis of PCBs, John F. Schneider, Gerald T. Reedy, and Deon G. Ettinger, Journal of Chromatographic Science, 23: 49-53, 1985
  5. A Comparison of GC/IR Interfaces: The Light Pipe Vs. Matrix Isolation, John F. Schneider, Jack C. Demirgian, and Joseph C. Stickler, Journal of Chromatographic Science, 24: 330- 335, 1986
  6. Gas Chromatography/Infrared Spectroscopy, Jean ‐ Luc Le Qu é r é , Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2006