Tag Archives: ISO 17025

Spotlight on AOAC: New Leadership, New Initiatives In Cannabis & Food

By Aaron G. Biros
No Comments

AOAC INTERNATIONAL is an independent, third party, not-for-profit association and voluntary consensus standards developing organization. Founded in 1884, AOAC INTERNATIONAL was originally coined the Association of Official Agricultural Chemists. Later on, they changed their name to the Association of Official Analytical Chemists. Now that their members include microbiologists, food scientists as well as chemists, the organization officially changed its name to just AOAC INTERNATIONAL.

Much of AOAC’s work surrounds promoting food safety, food security and public health. Their work generally encompasses setting scientific standards for testing methodology, evaluating and adopting test methods and evaluating laboratory proficiency of test methods. The organization provides a forum for scientists to develop microbiological and chemical standards.

In December of 2018, they appointed Dr. Palmer Orlandi as deputy executive director and chief science officer. Dr. Orlandi has an extensive background at the U.S. Food and Drug Administration (FDA), serving the regulatory agency for more than 20 years. Most recently, he was the CSO and research director in the Office of Food and Veterinary Medicine at the FDA. He earned the rank of Rear Admiral and Assistant Surgeon General in 2017.

Dr. Palmer Orlandi is the new Deputy Executive Director and Chief Science Officer at AOAC.

Where It All Began With Cannabis

As recently as three years ago, AOAC began getting involved in the cannabis laboratory testing community, with a working group dedicated to developing standard method performance requirements for AOAC Official MethodsSM for cannabis testing. We sat down with Dr. Palmer Orlandi and a number of AOAC’s leaders to get an update on their progress working with cannabis testing as well as food security and food fraud.

According to Scott Coates, senior director of the AOAC Research Institute, they were approached three years ago to set up a working group for cannabis testing. “We created standards that we call the standard method performance requirements (SMPR®), which are detailed descriptions of what analytical methods should be able to do,” says Coates. “Using SMPRs, we issued a series of calls for methods and looked for methods that meet our standards. So far, we’ve completed four SMPRs- cannabinoids in plant material, cannabinoids in plant extracts, cannabinoids in chocolate (edibles), and one for pesticides in cannabis plant material.” AOAC doesn’t develop methods themselves, but they perform a comprehensive review of the methods and if they deem them acceptable, then the methods can be adopted and published in the AOAC compendium of methods, the Official Methods of Analysis of AOAC INTERNATIONAL.

Deborah McKenzie, senior director of Standards and Official Methods at AOAC

Deborah McKenzie, senior director of Standards and Official MethodsSM at AOAC, says the initial working group set the stage for really sinking their teeth into cannabis testing. “It started with methods for testing cannabinoids in plant dried material and plant extract,” says McKenzie. “That’s where our previous work has started to mold into the current effort we are launching.” McKenzie says they are looking forward to getting more involved with methods regarding chemical contaminants in cannabis, cannabinoids in various foods and consumables, as well as microbial organisms in cannabis. “We are pretty focused on testing labs having reliable and validated analytical solutions as our broad goal right now.”

Moving Forward, Expanding Their Programs

Coates says the work they’ve done over the past few years was more of a singular project, developed strictly for creating standards and to review methods. Now they are currently developing their Cannabis Analytical Science Program (CASP), which is expected to be an ongoing program. “We are looking to fully support the cannabis analytical community as best we can, which will potentially include working on reference materials, proficiency testing, education, training and ISO 17025 accreditation, all particularly as it applies to lab testing in the cannabis industry,” says Coates. “So, this CASP work is a much bigger and broader effort to cover more and to provide more support for labs doing the analysis of cannabis and its constituents, as well as hemp.”

According to Dr. Orlandi, they want this program to have a broad reach in the cannabis testing community. “As Scott pointed out, it’s not just strictly developing standards and methods,” says Dr. Orlandi. “It is going to be as all-encompassing as possible and will lead to training programs, a proficiency testing program and other areas.” Arlene Fox, senior director of AOAC’s Laboratory Proficiency Testing Program, says they are actively engaging in proficiency testing. “We are in the process of evaluating what is out there, what is possible and what’s needed as far as expanding proficiency testing for cannabis labs,” says Fox.

Regulatory Challenges & Obstacles

The obvious roadblock to much of AOAC’s work is that cannabis is still considered a controlled substance. “That creates some challenges for the work that we do in certain areas,” says Dr. Orlandi. “That is why this isn’t just a one-year project. We will work with these challenges and our stakeholders to address them.” AOAC had to put some limits on participation- for example, they had to decide that they cannot look for contributions or collaborations with producers and distributors, so long as cannabis is still a Schedule I controlled substance in the US.

Arlene Fox, senior director of AOAC’s Laboratory Proficiency Testing Program

Muddying the waters even further, the recent signing of the Farm Bill puts a clear distinction between most types of cannabis and industrial hemp. David Schmidt, executive director of AOAC realizes they need to be realistic with their stakeholders and in the eye of federal law.

While scientifically speaking, it’s pretty much the same plant just with slightly different chemical constituents, AOAC INTERNATIONAL has to draw a line in the sand somewhere. “As Palmer suggests, because of the Farm Bill being implemented and hemp being defined now as a legal substance from a controlled substance standpoint, industrial hemp has been given this exclusion,” says Schmidt. “So, we are trying to be realistic now, working with our stakeholders that work with hemp, trying to understand the reality of the federal law. We want to make clear that we can meet stakeholder needs and we want to distinguish hemp from cannabis to remain confident in the legality of it.” Schmidt says this is one of a number of topics they plan on addressing in detail at their upcoming 9thannual 2019 Midyear Meeting, held March 11-14 in Gaithersburg, Maryland.

Uniformity in Methodology: The Future of Cannabis Testing

Dr. Orlandi says his experience at the FDA has prepared him well for the work being done at AOAC. “The role that I served at the FDA prior to joining my colleagues here at AOAC was very similar: And that is to bring together stakeholders to accomplish or to solve a common problem.” Some of their stakeholders in the CASP program include BC Testing, Inc., the Association of Food and Drug Officials (AFDO), Bia Diagnostics, Bio-Rad, Industrial Laboratories, Materia Medica Labs, PerkinElmer, R-Biopharm AG, Supra R & D, TEQ Analytical Laboratories, Titan Analytical and Trilogy Analytical, among others.

David Schmidt, executive director of AOAC

“The underlying reason behind this effort is to create some level of harmonization for standards and methods,” says Dr. Orlandi. “They can be used in the near future to stay ahead of the curve for when regulatory agencies become involved. The idea is that these standards for analytical methods will already be established and as uniform as possible.”

When comparing cannabis to other industries in the US, Scott Coates mentions that most standards are signed off by the federal government. “When we started looking at pesticides in cannabis, it became really clear that we have a number of states doing things differently with different limits of quantification,” says Coates. “Each state, generally speaking, is setting their own standards. As Palmer was saying, one thing we are trying to do with this CASP program eventually will be to have some harmonization, instead of 30 different states having 30 different standards and methods.” So, on a much broader level, their goal for the CASP program is to develop a common set of standard methods, including hemp testing and even the Canadian market. “Hopefully this will be an international collaboration for standards for the methodology,” says Coates. They want to create a common set of standards, setting limits of quantification that will be accepted internationally, that will be accurate and repeatable and for the entire cannabis industry, not just state by state.

Food Authenticity & Fraud

One of the other activities that AOAC just launched recently is the food authenticity and fraud program. As the name implies, the goal is to start developing standards and methods and materials to look at economically adulterated foods, says Dr. Orlandi. That includes non-targeted analyses looking at matrices of food products that may be adulterated with an unknown target, as well as targeted analytes, identifying common adulterants in a variety of food products. “One example in the food industry is fraudulent olive oil,” says Dr. Orlandi. “Honey is another commodity that has experienced adulteration.” He says that in most cases these are economically motivated instances of fraud.

AOAC INTERNATIONAL is working in a large variety of other areas as well. All of these topics will be explored in much greater detail at their upcoming 9thannual 2019 Midyear Meeting, held March 11-14 in Gaithersburg, Maryland.

The New ISO/IEC 17025:2017: The Updated Standard

By Ravi Kanipayor, Christian Bax, Dr. George Anastasopoulos
No Comments

As state cannabis regulatory frameworks across the country continue to evolve, accreditation is becoming increasingly important. Because it provides consistent, turnkey standards and third-party verification, accreditation is quickly emerging as an important tool for regulators. For cannabis testing laboratories, this trend has been especially pronounced with the increasing number of states that require accreditation to ISO/IEC 17025.

As of 2017 there were nearly 68,000 laboratories accredited to ISO/IEC 17025, making it the single most important benchmark for testing laboratories around the world. ISO/IEC 17025:2005 specifies the general requirements for the competence to carry out tests including sampling. It covers testing performed using standard methods, non-standard methods and laboratory-developed methods. It is applicable to all organizations performing tests including cannabis labs. The standard is applicable to all labs regardless of the number of personnel or the extent of the scope of testing activities.  Developed to promote confidence in the operation of laboratories, the standard is now being used as a key prerequisite to operate as a cannabis lab in many states.

There are currently 26 states in the United States (also Canada) that require medical or adult-use cannabis to be tested as of February 2019. Of those states, 18 require cannabis testing laboratories to be accredited – with the vast majority requiring ISO/IEC 17025 accreditation. States that require testing laboratories to attain ISO/IEC 17025 accreditation represent some of the largest and most sophisticated cannabis regulatory structures in the country, including California, Colorado, Maryland, Massachusetts, Michigan, Nevada and Ohio. As a consequence, many cannabis testing laboratories are taking note of recent changes to ISO/IEC 17025 standards.

ISO/IEC 17025 was first issued in 1999 by the International Organization for Standardization. The standard was updated in 2005, and again in 2017. The most recent update keeps many of the legacy standards from 2005, but adds several components – specifically requirements for impartiality, risk assessment and assessing measurement uncertainty. The remainder of this article takes a deeper dive into these three areas of ISO/IEC 17025, and what that means for cannabis testing laboratories.Objectivity is the absence or resolution of conflicts of interest to prevent adverse influence on laboratory activities.

Impartiality

ISO/IEC 17025:2005 touched on an impartiality requirement, but only briefly. The previous standard required laboratories that belonged to organizations performing activities other than testing and/or calibration to identify potential conflicts of interest for personnel involved with testing or calibration. It further required that laboratories had policies and procedures to avoid impartiality, though that requirement was quite vague.

ISO/IEC17025:2017 emphasizes the importance of impartiality and establishes strict requirements. Under the new standard, labs are responsible for conducting laboratory activities impartially and must structure and manage all laboratory activities to prevent commercial, financial or other operational pressures from undermining impartiality. The definitions section of the standard defines impartiality as the “presence of objectivity.” Objectivity is the absence or resolution of conflicts of interest to prevent adverse influence on laboratory activities. For further elaboration, the standard provides similar terms that also convey the meaning of impartiality: lack of prejudice, neutrality, balance, fairness, open-mindedness, even-handedness, detachment, freedom from conflicts of interest and freedom from bias.

To comply with the new standard, all personnel that could influence laboratory activities must act impartially. ISO/IEC 17025:2017 also requires that laboratory management demonstrate a commitment to impartiality. However, the standard is silent on how labs must demonstrate such commitment. As a starting point, some cannabis laboratories have incorporated statements emphasizing impartiality into their employee handbooks and requiring management and employee training on identifying and avoiding conflicts of interest.

Risk Assessment

Both the 2005 and 2017 versions contain management system requirements. A major update to this is the requirement in ISO/IEC 17025:2017 that laboratory management systems incorporate actions to address risks and opportunities. The new risk-based thinking in the 2017 version reduces prescriptive requirements and incorporates performance-based requirements.

Under ISO/IEC 17025:2017, laboratories must consider risks and opportunities associated with conducting laboratory activities. This analysis includes measures that ensure that:

  • The lab’s management system is successful;
  • The lab has policies to increase opportunities to achieve its goals and purpose;
  • The lab has taken steps to prevent or reduce undesired consequences and potential failures; and
  • The lab is achieving overall improvement.

Labs must be able to demonstrate how they prevent or mitigate any risks to impartiality that they identify.To comply with ISO/IEC 17025:2017, labs must plan and implement actions to address identified risks and opportunities into management systems. They must also measure the effectiveness of such actions. Importantly, the standard requires that the extent of risk assessments must be proportional to the impact a given risk may have on the validity of the laboratory’s test results.

ISO/IEC 17025:2017 does not require that labs document a formal risk management process, though labs have discretion to develop more extensive methods and processes if desired. To meet the requirements of the standard, actions to address risks can include sharing the risk, retaining the risk by informed decision, eliminating the risk source, pinpointing and avoiding threats, taking risks in order to pursue an opportunity, and changing the likelihood or consequence of the risk.

ISO/IEC 17025:2017 references “risks” generally throughout most of the standard. However, it specifically addresses risks to a laboratory’s impartiality in section 4.1. Note, the new standard requires that labs must not only conduct activities impartially, but also actively identify risks to their impartiality. This requirement is on-going, not annually or bi-annually. Risks to impartiality include risks arising from laboratory activities, from laboratory relationships, or from relationships of laboratory personnel. Relationships based on ownership, governance, shared resources, contracts, finances, marketing, management, personnel and payment of a sales commission or other inducements to perform under pressure can threaten a laboratory’s impartiality. Labs must be able to demonstrate how they prevent or mitigate any risks to impartiality that they identify.

Assessing Measurement Uncertainty With Decision Rules

ISO/IEC 17025:2005 required (only where necessary and relevant) test result reports to include a statement of compliance/non-compliance with specifications and to identify which clauses of the specification were met or not met. Such statements were required to take into account measurement uncertainty and if measurement results and uncertainties were omitted from the statement, the lab was required to record and maintain the results for future reference.

ISO/IEC 17025:2017 requires similar statements of conformity with an added “decision rule” element. When statements of conformity to a specification or standard are provided, labs must record the decision rule it uses and consider the level of risk the decision rule will have on recording false positive or negative test results. Like the 2005 version, labs must include statements of conformity in test result reports (only if necessary and relevant- see 5.10.3.1 (b)). Now, test result reports on statements of conformity must include the decision rule that was employed. 

Moving Forward

Because many states require ISO/IEC 17025 accreditation for licensing, cannabis testing labs across the country would be well advised to closely monitor the implications of changes in ISO/IEC 17025:2017 related to impartiality, risk assessment and measurement uncertainty. If you run a cannabis testing lab, the best way to ensure compliance is education, and the best place to learn more about the new requirements is from a globally recognized accreditation body, especially if it is a signatory to the International Laboratory Accreditation Cooperation (ILAC) for testing laboratories, calibration laboratories and inspection agencies.


References

Facts & Figures

ISO/IEC 17025:2005: General requirements for the competence of testing and calibration laboratories

ISO/IEC 17025:2017: General requirements for the competence of testing and calibration laboratories 

Mission Mountain Laboratories: The First Accredited Cannabis Testing Lab in Montana

By Aaron G. Biros
No Comments

Last week, Mission Mountain Laboratories (MML), based in Arlee, Montana, received their ISO/IEC 17025:2005 accreditation from Perry Johnson Laboratory Accreditation (PJLA). This marks the first cannabis testing lab in Montana to get ISO 17025-accredited.

According to a PJLA client spotlight, MML is a female-owned business with two generations of family-run business experience. Before they took the plunge into medical cannabis testing, MML started out testing in public water systems in Montana. They have since expanded their regimen of testing services to offer a host of other services, but most recently adding compliance testing for medical cannabis and cannabis related products.

The Mission Mountain Labs team

According to Kimberly Nuccio, president of MML, this accreditation allows them to grow their business considerably. “Accreditation has opened greater opportunities for business growth by attracting larger companies that are looking for reassurance that a laboratory follows the highest testing standards,” says Nuccio. “Being an accredited lab gives them that added confidence necessary when deciding which lab to partner with for their testing needs. Mission Mountain Laboratories is the first Medical Marijuana Lab to achieve ISO accreditation in the state of Montana, and PJLA accreditation helped expand us into the new arena of Medical Marijuana compliance testing.”

MML has plans to expand their operations greatly, including opening a location in Florida by 2020. “We are aware of the increased and urgent demand for quality Cannabis compliance testing nationwide and are currently working on a 3-year plan to expand into Florida and several other states to fill this void,” says Nuccio. “These new locations will also be equipped to provide full service testing for Nutraceuticals, Food manufacturing, and Environmental businesses.”

Digipath Labs Now ISO 17025:2017 Accredited

By Aaron G. Biros
No Comments

According to a press release published in December, Digipath Labs, based in Las Vegas, Nevada, was recently accredited to the updated ISO standard, ISO 17025:2017. The laboratory received their accreditation from Perry Johnson Laboratory Accreditation (PJLA).

ISO 17025:2005 has long been the standard that labs seek accreditation to, but their newest 2017 edition was recently rolled out and introduced to the market. The new 2017 standard includes some broad changes to terminology, process approach, scope, and it importantly introduces the concept of risk-based thinking.

That concept of risk-based thinking is particularly relevant to the cannabis testing market, where many have argued for more transparency and uniformity in different state regulations and markets. Introducing risk-based thinking in the standard means that assessors also look at the risk of bias, impartiality and assessing measurement uncertainty, which certainly adds a layer of subjectivity to the accreditation.

PJLATracy Szerszen, president/operations manager of PJLA, says the newer standard also includes a provision for a quality management system review among other changes. “We are making sure they are following the standard from a technical standpoint, meaning they have the right equipment, the appropriate personnel and also have a quality management system,” says Szerszen. “November 29, 2020 is the deadline for moving to the new 2017 standard.”

According to Todd Denkin, CEO and founder of Digipath, obtaining the new ISO accreditation poises them for future growth and expansion. “Digipath Labs has now brought its standard of excellence in cannabis testing under the updated ISO-17025:2017 umbrella as we seek to expand our dominance in cannabis testing markets,” says Denkin. “This is a major step in positioning Digipath as a global leader in testing services.”

FSC logo

Discussing Lab Accreditation: The New ISO 17025:2017 Standard

By Aaron G. Biros
No Comments
FSC logo

At this year’s Food Safety Consortium a couple weeks ago, the newly launched Cannabis Quality Track featured a number of panels and presentations that highlighted the many intersections between food safety and cannabis. One particular topic of interest was measuring the quality and safety of cannabis products through laboratory testing. At the event this year, representatives from the leading laboratory accreditation bodies in the country sat together on a panel titled Accreditation, Regulation & Certification: Cannabis Labs and Production.

Representatives from ANSI-ASQ National Accreditation Board (ANAB), the American Association for Laboratory Accreditation (A2LA) and Perry Johnson Laboratory Accreditation (PJLA) discussed the new ISO standard, common issues that labs encounter when getting accredited, the future of the cannabis lab industry and certifications for food safety and quality.FSC logo

The panelists included:

  • Tracy Szerszen, president/operations manager, PJLA
  • Natalia Larrimer, engagement and program development manager, ANAB
  • Lauren Maloney, food safety program accreditation manager, Perry Johnson Registrars Food Safety, Inc. (PJRFSI)
  • Chris Gunning, life sciences accreditation manager with A2LA
Tracy Szerszen
Tracy Szerszen, president/operations manager, PJLA

The new ISO 17025:2017 standard was a topic addressed pretty early in the panel. Tracy Szerszen introduced the topic with a recap of the 2005 standard. “With 17025, for those that are familiar with the older version, 2005, there are really two sections of the standard for that one,” says Szerszen. “The newer standard is a little bit different, but there is a quality management system review that we do and we look at the laboratory to ensure that they are testing appropriately based on what they applied for. So, for cannabis labs, they typically have the same scope in types of methods with respect to microbiology and chemistry, and we are making sure they are following the standard from a technical standpoint, meaning they have the right equipment, the appropriate personnel and also have a quality management system.”

Chris Gunning followed that up with a closer look at the changes coming to the new 2017 standard. “If you are familiar with the 2005 version, you know that a lot of the clauses started out with a ‘you shall have a policy and procedure for doing X,’” says Gunning. “One of the major changes to the 2017 version is it gives laboratories more latitude on whether they need to have a policy/procedure to do certain things.” Gunning says the 2017 version is much more of an outcome-based standard. “As far as assessing to it, it becomes a little harder from our side because we can’t say you have to have this quality manual or you have to have this procedure that were going to assess you to. We are more open to looking at the outcomes.”

Christopher Gunning, life sciences accreditation manager with A2LA
Christopher Gunning, life sciences accreditation manager with A2LA

The most interesting change to the ISO standard comes with addressing the idea of risk. “One of the newest concepts in this standard is risk and how you assess your risk to your organization how you assess risk of impartiality, how you assess your measurement uncertainty when you are creating decision rules,” says Gunning. “Those are the big concepts that have changed in the 2017 standard in that it is more outcome-based and introducing the concept of risk more.”

After discussing some of the broader changes coming to the 2017 version, the panelists began delving into some common pitfalls and issues labs face when trying to get accredited. “From our experience, in Michigan, the new standard was written into the regulations, but a lot of labs were already accredited to 2005,” says Szerszen. “So, we actually contacted the state and explained to them that they have three years to transition. And some states will say ‘too bad, we want the 2017 ISO,’ so some of the cannabis labs are asking us to quickly come back so they can get appropriate licensing in the state and do a transition audit quickly.” She says most states seem to be comfortable with the current transition period everyone has, but it certainly requires some discussion and explanation to get on the same page with state regulators. “November 29, 2020 is the deadline for moving to the new 2017 standard.”

In addition to state requirements like traceability and security on top of an ISO 17025 accreditation, labs can run into issues not typically encountered in other testing markets, as Gunning mentioned during the panel. “One of the hardest parts of getting accredited is the need for properly validated methods, for all the different matrices in samples,” says Gunning. “Some of the biggest hurdles for new labs getting assessed are validation and the availability of reference materials and proficiency testing samples that meet their state requirements.” Those are just a handful of hurdles that labs aren’t usually anticipating when getting accredited.

Natalia Larrimer, engagement and program development manager, ANAB

Another big topic that generated a lot of dialogue during the panel was the need for a national accreditation standard for cannabis testing labs, one that Natalia Larrimer is advocating for. “Many laboratories are operating facilities in more than one state and what they are facing is a different set of criteria for laboratory recognition in each state, says Larrimer. “One initiative that we would love to see more support for, is a set of uniform requirements nationally. ACIL is currently working on developing these type of requirements which would be in addition to the ISO/IEC 17025 standard and specific for cannabis industry…” Larrimer says she’d like to see these requirements recognized nationally to get labs on the same page across multiple states. “This includes requirements for things like security, traceability, proficiency testing, sampling and personnel competence. The industry would greatly benefit from a uniform cannabis testing program across the US, so that testing facilities in Oregon are operating to the same criteria as facilities in California or Colorado, etc.”

The panelists went into greater detail on issues facing the cannabis lab testing industry, but also delved into certifications for food safety and quality, an important new development as the infused products market grows tremendously. Stay tuned for more highlights from this panel and other talks from the Food Safety Consortium. We will be following up this article with another that’ll shed some light on food safety certifications. Stay tuned for more!

Steep Hill Expands Hawaii Operations

By Aaron G. Biros
No Comments

According to a press release published yesterday, Steep Hill Hawaii announced the opening of their second location on the Big Island. Their first location located on Oahu and operating for a little over a year, was the first cannabis-testing laboratory to be certified by the State of Hawaii Department of Health (HDOH). It’s also the first ISO/IEC 17025:2005 accredited cannabis testing lab in the state.

steep-hill-labs-logoOwner and CEO of Steep Hill Hawaii, Dana Ciccone announced the second location yesterday. “”We are thrilled to open up our new location in Kailua Kona, Hawaii,” says Ciccone. “We have been working closely with the Department of Health and we look forward to working together with the large patient population and the two new dispensaries opening very soon.” Ciccone says with the new location they are focusing on quick turnaround times, good service and competitive prices.

According to Dr. Andrew Rosenstein, CEO of Steep Hill, they want to help provide safe medicine and quality testing to the Hawaii medical cannabis community. “In extending its services, Steep Hill Hawaii is committed to providing safe medicine and high quality testing to Hawaii’s patient community,” says Rosenstien. “Dana and the Steep Hill Hawaii team have worked hard to open up this new location and will continue to support cultivators and dispensaries in this emerging market.”

FSC logo

Lab Accreditation Bodies To Meet At Food Safety Consortium

By Aaron G. Biros
No Comments
FSC logo

The Food Safety Consortium, taking place November 13-15 in Schaumburg, Illinois, will host a series of talks geared towards the cannabis industry this year. The newly launched Cannabis Quality Track features a number of panels and presentations designed to highlight the many intersections between food safety and cannabis.

FSC logoThe track will have presentations discussing food safety planning in cannabis manufacturing, HACCP, GMPs, regulatory compliance and supply chain issues among other areas. One particular topic of interest in the quality and safety of cannabis products is laboratory testing. At the event this year, leading laboratory accreditation bodies in the country will sit together on a panel titled Accreditation, Regulation & Certification: Cannabis Labs and Production.

Roger Muse, vice president at ANAB

Representatives from ANSI-ASQ National Accreditation Board (ANAB), the American Association for Laboratory Accreditation (A2LA) and Perry Johnson Laboratory Accreditation (PJLA) will host the panel on the morning of Wednesday, November 14.

Panelists will include:

  • Roger Muse, vice president of business development of ANAB
  • Christopher Gunning, life sciences accreditation manager with A2LA
  • Tracy Szerszen, president/operations manager, PJLA
  • Lauren Maloney, food safety program accreditation manager, Perry Johnson Registrars Food Safety, Inc. (PJRFSI)
Tracy Szerszen
Tracy Szerszen, president/operations manager, PJLA

Laboratories that are new to the industry and looking to get accredited should be aware of the new ISO/IEC 17025:2017 standard, which was released last year. According to Tracy Szerszen, labs that have already been accredited to the 2005 version will be required to transition to the 2017 version by November 29, 2020. “This can be done in conjunction with routine assessments scheduled in 2019 and 2020,” says Szerszen. “However, laboratories are cautioned to transition within a reasonable timeframe to avoid their 17025: 2005 certificate from lapsing prior to the transition deadline. Some of the changes to the standard include but are not limited to: the re-alignment of clauses similar to ISO 9001:2015 and other ISO industry standards, modifications to reporting and decision rules, the addition of risked based thinking and a new approach to managing complaints.” Szerszen, along with the other panelists, will go much more in-depth on changes to the new ISO 17025 and other topics during the panel at the Food Safety Consortium.

Some of the other topics the panel will discuss include:

  • ISO/IEC 17025 –what’s expected, benefits of accreditation, common deficiencies, updates to the new 17025 standard
  • Standards available for production facilities-GMPs & GFSI standards
  • How standards can be used to safeguard the quality of production and safety requirements
  • An open discussion with panelists from leading accreditation bodies on the state of cannabis lab testing
Christopher Gunning, life sciences accreditation manager with A2LA
Christopher Gunning, life sciences accreditation manager with A2LA

According to Chris Gunning, many states are requiring accreditation to ISO/IEC 17025, the standard used throughout the world in many other high-profile industries such as the testing of food and pharmaceuticals, environmental testing, and biosafety testing. “In an industry where there are few standard methods, where one hears that you can ‘pay to play,’ and where there are ‘novice’ laboratories popping up with little experience in operating a testing laboratory, it is extremely important to have an experienced, independent, 3rd party accrediting body evaluating the laboratory,” says Gunning. “This process confirms their adherence to appropriate quality management system standards, standard methods or their own internally developed methods, and can verify that those methods produce valid results. Ultimately, the process of accreditation gives the public confidence that a testing laboratory is meeting their state’s requirements and therefore consumers have access to a quality product.” He says most states with legal cannabis recognize the need for product testing by a credentialed laboratory.

Lauren Maloney, food safety program accreditation manager, Perry Johnson Registrars Food Safety, Inc. (PJRFSI)

Another important topic that the panel will address is the role of food safety standards in the cannabis industry. Lauren Maloney says cannabis product manufacturers should consider GMP and HACCP certifications for their businesses. “Food safety is important to the cannabis industry because although individual states have mandated several food safety requirements there still considerable risks involved in the production of cannabis products,” says Lauren Maloney. “Consumers want the assurance that the cannabis products are safe and therefore should be treated like a food product. Because FDA does not have oversight of these production facilities, third party certification is essential to ensure these facilities implement a robust food safety system.”

The panelists will examine these issues along with other topics in greater detail during their talk at this year’s Food Safety Consortium.

EVIO Logo

EVIO Labs Massachusetts Accredited to ISO 17025

By Aaron G. Biros
No Comments
EVIO Logo

EVIO Inc.’s Massachusetts lab announced yesterday they received ISO/IEC 17025 accreditation from the American Association for Laboratory Accreditation (A2LA). According to the Massachusetts Cannabis Control Commission, the body in charge of regulating the state’s cannabis industry, accreditation to ISO/IEC 17025: 2017 is a requirement for cannabis testing labs.

The press release says this makes EVIO Labs Massachusetts one of only a few operating and accredited testing laboratories serving the state’s medical cannabis industry. With recreational sales coming shortly to the state, EVIO is preparing for a higher demand in their lab testing services. “We are very proud of all of the teams’ hard work that resulted in this advanced accreditation,” says James Kocis, lab director of EVIO Labs Massachusetts. “With the state-mandated laboratory regulations, EVIO upholds the high standards of testing and plays a pivotal role in ensuring consumer safety and confidence in the states burgeoning marijuana market.”

According to Adam Gouker, general manager at A2LA, EVIO Labs Massachusetts, based in Southborough, MA, is the first cannabis laboratory they accredited in the state. “A2LA is excited to expand our cannabis accreditation program into yet another state, promoting the value of independent third-party accreditation to support quality products in the industry,” says Gouker. “Having the opportunity to work with a prominent name in the industry such as EVIO Labs and assess their exceptional Massachusetts laboratory has been an additional bonus.”

EVIO LogoAccording to the A2LA press release, by achieving ISO/IEC 17025 accreditation, EVIO Labs Massachusetts demonstrates that they “have management, quality and technical systems in place to ensure accurate and reliable analyses, as well as proper administrative processes to ensure that all aspects related to the sample, the analysis, and the reporting are standardized, measured, and monitored.” It also requires that personnel are competent to perform each analysis.

EVIO Inc. operates in the cannabis testing market with lab services in a number of states, including Oregon, California and Florida among others. Their Florida location was the first accredited cannabis lab in the state and they recently earned the same accreditation for their Berkeley, California location.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 3

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the last two articles, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) paperwork wall used if a grower, processor or dispensary (user/client) questioned a laboratory result and the conflicts of interest that exist in laboratory culture. Now I will discuss the second line of defense that a laboratory will present to the user in the paperwork wall: Quality Control (QC) results.

Do not be discouraged by the analytical jargon of the next few articles. I suggest that you go immediately to the conclusions to get the meat of this article and then read the rest of it to set you on the path to see the forest for the trees.

QC in a laboratory consists of a series of samples run by the laboratory to determine the accuracy and precision of a specific batch of samples. So, to start off, let’s look at the definitions of accuracy and precision.QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

According to the Standard Methods for the Examination of Water and Wastewater:

Accuracy: estimate of how close a measured value is to the true value; includes expressions for bias and precision.

Precision: a measure of the degree of agreement among replicate analyses of a sample.

A reputable laboratory will measure the Accuracy and Precision of QC samples in a batch of user samples and record these values in both the analytical test report issued to the user and in control charts kept by the laboratory. These control charts can be reviewed by the user if they are requested by the user. These control charts record:

Accuracy (means) chart: The accuracy chart for QC samples (e.g., LRB, CCV, LFBs, LFMs, and surrogates) is constructed from the average and standard deviation of a specified number of measurements of the analyte of interest.

Precision (range) chart: The precision chart also is constructed from the average and standard deviation of a specified number of measurements (e.g., %RSD or RPD) for replicate of duplicate analyses of the analyte of interest.

Now, let’s look at what should be run in a sample batch for cannabis analyses. The typical cannabis sample would have analyses for cannabinoids, terpenes, microbiological, organic compounds, pesticides and heavy metals.

Each compound listed above would require a specific validated analytical method for the type of matrix being analyzed. Examples of specific matrixes are:

  • Cannabis buds, leaves, oil
  • Edibles, such as Chocolates, Baked Goods, Gummies, Candies and Lozenges, etc.
  • Vaping liquids
  • Tinctures
  • Topicals, such as lotions, creams, etc.

Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.

Also, both ISO 17025-2005 and ISO 17025-2017 require the use of a validated method.

ISO 17025-2005: When it is necessary to use methods not covered by standard methods, these shall be subject to agreement with the customer and shall include a clear specification of the customer’s requirements and the purpose of the test and/or calibration. The method developed shall have been validated appropriately before use.

ISO 17025-2017: The laboratory shall validate non-standard methods, laboratory-developed methods and standard methods used outside their intended scope or otherwise modified. The validation shall be as extensive as is necessary to meet the needs of the given application or field of application.

Validation procedures can be found in a diverse number of analytical chemistry associations (such as AOACand ASTM) but the State of California has directed users and laboratories to the FDA manual “Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2nd Edition, 2015

The laboratory must have on file for user review the following minimum results in an analytical statistical report validating their method:

  • accuracy,
  • limit of quantitation,
  • ruggedness,
  • precision,The user must look beyond the QC data provided in their analytical report or laboratory control charts.
  • linearity (or other calibration model),
  • confirmation of identity
  • selectivity,
  • range,
  • spike recovery.
  • limit of detection,
  • measurement uncertainty,

The interpretation of an analytical statistical report will be discussed in detail in the next article. Once the validated method has been selected for the specific matrix, then a sample batch is prepared for analysis.

Sample Batch: A sample batch is defined as a minimum of one (1) to a maximum of twenty (20) analytical samples run during a normal analyst’s daily shift. A LRB, LFB, LFM, LFMD, and CCV will be run with each sample batch. Failure of any QC sample in sample batch will require a corrective action and may require the sample batch to be reanalyzed. The definitions of the specific QC samples are described later.

The typical sample batch would be set as:

  • Instrument Start Up
  • Calibration zero
  • Calibration Standards, Quadratic
  • LRB
  • LFB
  • Sample used for LFM/LFMD
  • LFM
  • LFMD
  • Samples (First half of batch)
  • CCV
  • Samples (Second half of batch)
  • CCV

The QC samples are defined as:

Calibration Blank: A volume of reagent water acidified with the same acid matrix as in the calibration standards. The calibration blank is a zero standard and is used to calibrate the ammonia analyzer

Continuing Calibration Verification (CCV): A calibration standard, which is analyzed periodically to verify the accuracy of the existing calibration for those analytes.

Calibration Standard: A solution prepared from the dilution of stock standard solutions. These solutions are used to calibrate the instrument response with respect to analyte concentration

Laboratory Fortified Blank (LFB): An aliquot of reagent water or other blank matrix to which known quantities of the method analytes and all the preservation compounds are added. The LFB is processed and analyzed exactly like a sample, and its purpose is to determine whether the methodology is in control, and whether the laboratory is capable of making accurate and precise measurements.

Laboratory Fortified Sample Matrix/Duplicate (LFM/LFMD) also called Matrix Spike/Matrix Spike Duplicate (MS/MSD): An aliquot of an environmental sample to which known quantities of ammonia is added in the laboratory. The LFM is analyzed exactly like a sample, and its purpose is to determine whether the sample matrix contributes bias to the analytical results. The background concentrations of the analytes in the sample matrix must be determined in a separate aliquot and the measured values in the LFM corrected for background concentrations (Section 9.1.3).Laboratories must validate their methods.

Laboratory Reagent Blank (LRB): A volume of reagent water or other blank matrix that is processed exactly as a sample including exposure to all glassware, equipment, solvents and reagents, sample preservatives, surrogates and internal standards that are used in the extraction and analysis batches. The LRB is used to determine if the method analytes or other interferences are present in the laboratory environment, the reagents, or the apparatus.

Once a sample batch is completed, then some of the QC results are provided in the user’s analytical report and all of the QC results should be recorded in the control charts identified in the accuracy and precision section above.

But having created a batch and performing QC sample analyses, the validity of the user’s analytical results is still not guaranteed. Key conclusion points to consider are:

  1. Laboratories must validate their methods.
  2. Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.
  3. QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

The user must look beyond the QC data provided in their analytical report or laboratory control charts. Areas to look at will be covered in the next few articles in this series.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 2

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the previous article, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) when a grower, processor or dispensary (user) questions a laboratory result. Now let us look behind this paperwork wall to the laboratory culture the user will encounter once their complaint is filtered past the first line of defense.

It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.In an ISO 17025 (2005 or 2017) and TNI accreditation, the laboratory must be organized into management, quality and technical areas. Each area can overlap as in the ISO 17025-2017 standard or be required to remain as separate sections in the laboratory as in the ISO 17025-2005 or TNI 2009 standards. ISO 17025 standards (e.g. 2005 and 2017) specifically require a separation of monetary benefits for laboratory results as it applies to the technical staff. This “conflict of interest” (CoI) is not always clearly defined in the laboratory’s day-to-day practices.

One example that I have experienced with this CoI separation violation goes back to my days as a laboratory troubleshooter in the 1990s. I was called into a laboratory that was failing to meet their Department of Defense (DoD) contract for volatile organic hydrocarbon analyses (VOAs) of soil samples by purge trap-gas chromatography-mass spectroscopy. I was required to “fix” the problem. What I determined was:

  • The analytical chemists performing the VOAs analyses were high school graduates with no coursework in chemistry or biology.
  • There was no training program in place for these analysts in instrument use, instrument troubleshooting and interpretation of the analytical results.
  • The only training the analysts received was for simple instrument set-up and basic instrument computer software use. (e.g. Push this button and send results to clerks)
  • Clerks with a high school degree and no analytical chemistry training in the business office generated the final reports and certified them as accurate and complete.

None of the staff was technically competent to perform any in-depth VOAs analytical work nor was the clerical staff competent to certify the results reported.

When I pointed out these discrepancies to the laboratory management, they declined to make any changes. The laboratory management had a direct monetary interest in completing all analyses at the lowest costs within the time limit set by DoD. If the laboratory did not complete the analyses as per the DoD contract, DoD would cancel the contract and not pay the laboratory.

The DoD, in a “Double Blind” test sample, later caught this laboratory.. A Double Blind test sample is used to check to see if the laboratory is performing the tests correctly. The laboratory does not know it is a test sample. So if the laboratory is cheating, they will be caught.This does not mean that all laboratories have staff or management issues

Once the laboratory was caught by DoD with the Double Blind, laboratory management claimed they were unaware of this behavior and management fired all analytical staff performing VOAs and clerical staff reporting the VOAs results to show DoD that it was a rogue group of individuals and not the laboratory management. The fired staff members were denied unemployment benefits as they were fired with cause. So, the moral to this story is if the analytical staff and specifically the clerical staff had wanted to hold the laboratory management accountable for this conflict of interest, they may have been fired, but without cause. The staff would have kept their reputation for honesty and collected unemployment benefits.

I have witnessed the “CoI above repeatedly over the last 30+ years both in laboratories where I have been employed and as a consultant. The key laboratory culture problems that lead to these CoI issues can be distilled into the following categories:

  • Financial CoI: In the financial CoI, the laboratory management must turn out so many analytical test results per day to remain financially solvent. The philosophical change that comes over management is that the laboratory is not producing scientific results, but is instead just churning out tests. Therefore, the more tests the laboratory produces, the more money it makes. Any improvement in test output is to be looked upon favorably and anything that diminishes test output is bad. So, to put this in simple terms: “The laboratory will perform the analyses quickly and get the report sent to the user so the laboratory can be paid. Anything that slows this production down will not be tolerated!” To maximize the Return on Investment (RoI) for the laboratory, management will employ staff that outwardly mirrors this philosophy.
  • I Need This Job CoI: This is the CoI area that poor quality lab technical staff and clerical staff most readily falls into. As outlined in the example above, both the analytical staff and clerical staff lacked the educational credentials, the technical training to be proficient in the use of the analytical instruments, ability to identify problems performing the analytical methods or complications in reporting analytical results. That means they were locked into the positions they held in this specific laboratory. This lack of marketable skills placed pressure on these staff members to comply with all directives from management. What happened to them in the end was regrettable, but predictable. Management can prey on this type of staff limitation.
  • Lack of Interest or Care CoI: This form of CoI is the malaise that infects poor quality laboratories, but can reach a level in management, quality and technical areas as to produce a culture where everyone goes through the moves, but does not care about anything but receiving their paycheck. In my many years of laboratory troubleshooting this type of CoI is the most difficult to correct. Laboratories where I had to correct this problem required that I had to impress on the staff that their work mattered and that they were valued employees. I had to institute a rigorous training program, require staff quality milestones and enforce the quality of work results. During my years of laboratory troubleshooting, I only had to terminate three laboratory staff for poor work performance. Unfortunately after I left many of these laboratories, management drifted back to the problems listed above and the laboratory malaise returned. This proves that even though a laboratory staff can achieve quality performance, it can quickly dissolve with lax management.

So, what are the conclusions of this article?

  • Laboratory culture can place profit over scientific correctness, accuracy and precision.
  • Laboratory management sets the quality of staff that determines the analytical results and report quality the user receives.
  • Laboratory quality can vary from acceptable performance to unacceptable performance over the lifetime of the laboratory depending on management.
  • This does not mean that all laboratories have staff or management issues. It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.

The next article in this series will introduce the user to the specific Quality Control (QC) analyses that an acceptable laboratory should perform for the user’s sample. These QC analyses are not always performed by accredited laboratories as the specific state that regulates their cannabis program does not require them. The use of these QC samples is another example of how laboratory’s with poor quality systems construct another paper work wall.