Tag Archives: ISO 17025

FSC logo

Discussing Lab Accreditation: The New ISO 17025:2017 Standard

By Aaron G. Biros
No Comments
FSC logo

At this year’s Food Safety Consortium a couple weeks ago, the newly launched Cannabis Quality Track featured a number of panels and presentations that highlighted the many intersections between food safety and cannabis. One particular topic of interest was measuring the quality and safety of cannabis products through laboratory testing. At the event this year, representatives from the leading laboratory accreditation bodies in the country sat together on a panel titled Accreditation, Regulation & Certification: Cannabis Labs and Production.

Representatives from ANSI-ASQ National Accreditation Board (ANAB), the American Association for Laboratory Accreditation (A2LA) and Perry Johnson Laboratory Accreditation (PJLA) discussed the new ISO standard, common issues that labs encounter when getting accredited, the future of the cannabis lab industry and certifications for food safety and quality.FSC logo

The panelists included:

  • Tracy Szerszen, president/operations manager, PJLA
  • Natalia Larrimer, engagement and program development manager, ANAB
  • Lauren Maloney, food safety program accreditation manager, Perry Johnson Registrars Food Safety, Inc. (PJRFSI)
  • Chris Gunning, life sciences accreditation manager with A2LA
Tracy Szerszen
Tracy Szerszen, president/operations manager, PJLA

The new ISO 17025:2017 standard was a topic addressed pretty early in the panel. Tracy Szerszen introduced the topic with a recap of the 2005 standard. “With 17025, for those that are familiar with the older version, 2005, there are really two sections of the standard for that one,” says Szerszen. “The newer standard is a little bit different, but there is a quality management system review that we do and we look at the laboratory to ensure that they are testing appropriately based on what they applied for. So, for cannabis labs, they typically have the same scope in types of methods with respect to microbiology and chemistry, and we are making sure they are following the standard from a technical standpoint, meaning they have the right equipment, the appropriate personnel and also have a quality management system.”

Chris Gunning followed that up with a closer look at the changes coming to the new 2017 standard. “If you are familiar with the 2005 version, you know that a lot of the clauses started out with a ‘you shall have a policy and procedure for doing X,’” says Gunning. “One of the major changes to the 2017 version is it gives laboratories more latitude on whether they need to have a policy/procedure to do certain things.” Gunning says the 2017 version is much more of an outcome-based standard. “As far as assessing to it, it becomes a little harder from our side because we can’t say you have to have this quality manual or you have to have this procedure that were going to assess you to. We are more open to looking at the outcomes.”

Christopher Gunning, life sciences accreditation manager with A2LA
Christopher Gunning, life sciences accreditation manager with A2LA

The most interesting change to the ISO standard comes with addressing the idea of risk. “One of the newest concepts in this standard is risk and how you assess your risk to your organization how you assess risk of impartiality, how you assess your measurement uncertainty when you are creating decision rules,” says Gunning. “Those are the big concepts that have changed in the 2017 standard in that it is more outcome-based and introducing the concept of risk more.”

After discussing some of the broader changes coming to the 2017 version, the panelists began delving into some common pitfalls and issues labs face when trying to get accredited. “From our experience, in Michigan, the new standard was written into the regulations, but a lot of labs were already accredited to 2005,” says Szerszen. “So, we actually contacted the state and explained to them that they have three years to transition. And some states will say ‘too bad, we want the 2017 ISO,’ so some of the cannabis labs are asking us to quickly come back so they can get appropriate licensing in the state and do a transition audit quickly.” She says most states seem to be comfortable with the current transition period everyone has, but it certainly requires some discussion and explanation to get on the same page with state regulators. “November 29, 2020 is the deadline for moving to the new 2017 standard.”

In addition to state requirements like traceability and security on top of an ISO 17025 accreditation, labs can run into issues not typically encountered in other testing markets, as Gunning mentioned during the panel. “One of the hardest parts of getting accredited is the need for properly validated methods, for all the different matrices in samples,” says Gunning. “Some of the biggest hurdles for new labs getting assessed are validation and the availability of reference materials and proficiency testing samples that meet their state requirements.” Those are just a handful of hurdles that labs aren’t usually anticipating when getting accredited.

Natalia Larrimer, engagement and program development manager, ANAB

Another big topic that generated a lot of dialogue during the panel was the need for a national accreditation standard for cannabis testing labs, one that Natalia Larrimer is advocating for. “Many laboratories are operating facilities in more than one state and what they are facing is a different set of criteria for laboratory recognition in each state, says Larrimer. “One initiative that we would love to see more support for, is a set of uniform requirements nationally. ACIL is currently working on developing these type of requirements which would be in addition to the ISO/IEC 17025 standard and specific for cannabis industry…” Larrimer says she’d like to see these requirements recognized nationally to get labs on the same page across multiple states. “This includes requirements for things like security, traceability, proficiency testing, sampling and personnel competence. The industry would greatly benefit from a uniform cannabis testing program across the US, so that testing facilities in Oregon are operating to the same criteria as facilities in California or Colorado, etc.”

The panelists went into greater detail on issues facing the cannabis lab testing industry, but also delved into certifications for food safety and quality, an important new development as the infused products market grows tremendously. Stay tuned for more highlights from this panel and other talks from the Food Safety Consortium. We will be following up this article with another that’ll shed some light on food safety certifications. Stay tuned for more!

Steep Hill Expands Hawaii Operations

By Aaron G. Biros
No Comments

According to a press release published yesterday, Steep Hill Hawaii announced the opening of their second location on the Big Island. Their first location located on Oahu and operating for a little over a year, was the first cannabis-testing laboratory to be certified by the State of Hawaii Department of Health (HDOH). It’s also the first ISO/IEC 17025:2005 accredited cannabis testing lab in the state.

steep-hill-labs-logoOwner and CEO of Steep Hill Hawaii, Dana Ciccone announced the second location yesterday. “”We are thrilled to open up our new location in Kailua Kona, Hawaii,” says Ciccone. “We have been working closely with the Department of Health and we look forward to working together with the large patient population and the two new dispensaries opening very soon.” Ciccone says with the new location they are focusing on quick turnaround times, good service and competitive prices.

According to Dr. Andrew Rosenstein, CEO of Steep Hill, they want to help provide safe medicine and quality testing to the Hawaii medical cannabis community. “In extending its services, Steep Hill Hawaii is committed to providing safe medicine and high quality testing to Hawaii’s patient community,” says Rosenstien. “Dana and the Steep Hill Hawaii team have worked hard to open up this new location and will continue to support cultivators and dispensaries in this emerging market.”

FSC logo

Lab Accreditation Bodies To Meet At Food Safety Consortium

By Aaron G. Biros
No Comments
FSC logo

The Food Safety Consortium, taking place November 13-15 in Schaumburg, Illinois, will host a series of talks geared towards the cannabis industry this year. The newly launched Cannabis Quality Track features a number of panels and presentations designed to highlight the many intersections between food safety and cannabis.

FSC logoThe track will have presentations discussing food safety planning in cannabis manufacturing, HACCP, GMPs, regulatory compliance and supply chain issues among other areas. One particular topic of interest in the quality and safety of cannabis products is laboratory testing. At the event this year, leading laboratory accreditation bodies in the country will sit together on a panel titled Accreditation, Regulation & Certification: Cannabis Labs and Production.

Roger Muse, vice president at ANAB

Representatives from ANSI-ASQ National Accreditation Board (ANAB), the American Association for Laboratory Accreditation (A2LA) and Perry Johnson Laboratory Accreditation (PJLA) will host the panel on the morning of Wednesday, November 14.

Panelists will include:

  • Roger Muse, vice president of business development of ANAB
  • Christopher Gunning, life sciences accreditation manager with A2LA
  • Tracy Szerszen, president/operations manager, PJLA
  • Lauren Maloney, food safety program accreditation manager, Perry Johnson Registrars Food Safety, Inc. (PJRFSI)
Tracy Szerszen
Tracy Szerszen, president/operations manager, PJLA

Laboratories that are new to the industry and looking to get accredited should be aware of the new ISO/IEC 17025:2017 standard, which was released last year. According to Tracy Szerszen, labs that have already been accredited to the 2005 version will be required to transition to the 2017 version by November 29, 2020. “This can be done in conjunction with routine assessments scheduled in 2019 and 2020,” says Szerszen. “However, laboratories are cautioned to transition within a reasonable timeframe to avoid their 17025: 2005 certificate from lapsing prior to the transition deadline. Some of the changes to the standard include but are not limited to: the re-alignment of clauses similar to ISO 9001:2015 and other ISO industry standards, modifications to reporting and decision rules, the addition of risked based thinking and a new approach to managing complaints.” Szerszen, along with the other panelists, will go much more in-depth on changes to the new ISO 17025 and other topics during the panel at the Food Safety Consortium.

Some of the other topics the panel will discuss include:

  • ISO/IEC 17025 –what’s expected, benefits of accreditation, common deficiencies, updates to the new 17025 standard
  • Standards available for production facilities-GMPs & GFSI standards
  • How standards can be used to safeguard the quality of production and safety requirements
  • An open discussion with panelists from leading accreditation bodies on the state of cannabis lab testing
Christopher Gunning, life sciences accreditation manager with A2LA
Christopher Gunning, life sciences accreditation manager with A2LA

According to Chris Gunning, many states are requiring accreditation to ISO/IEC 17025, the standard used throughout the world in many other high-profile industries such as the testing of food and pharmaceuticals, environmental testing, and biosafety testing. “In an industry where there are few standard methods, where one hears that you can ‘pay to play,’ and where there are ‘novice’ laboratories popping up with little experience in operating a testing laboratory, it is extremely important to have an experienced, independent, 3rd party accrediting body evaluating the laboratory,” says Gunning. “This process confirms their adherence to appropriate quality management system standards, standard methods or their own internally developed methods, and can verify that those methods produce valid results. Ultimately, the process of accreditation gives the public confidence that a testing laboratory is meeting their state’s requirements and therefore consumers have access to a quality product.” He says most states with legal cannabis recognize the need for product testing by a credentialed laboratory.

Lauren Maloney, food safety program accreditation manager, Perry Johnson Registrars Food Safety, Inc. (PJRFSI)

Another important topic that the panel will address is the role of food safety standards in the cannabis industry. Lauren Maloney says cannabis product manufacturers should consider GMP and HACCP certifications for their businesses. “Food safety is important to the cannabis industry because although individual states have mandated several food safety requirements there still considerable risks involved in the production of cannabis products,” says Lauren Maloney. “Consumers want the assurance that the cannabis products are safe and therefore should be treated like a food product. Because FDA does not have oversight of these production facilities, third party certification is essential to ensure these facilities implement a robust food safety system.”

The panelists will examine these issues along with other topics in greater detail during their talk at this year’s Food Safety Consortium.

EVIO Logo

EVIO Labs Massachusetts Accredited to ISO 17025

By Aaron G. Biros
No Comments
EVIO Logo

EVIO Inc.’s Massachusetts lab announced yesterday they received ISO/IEC 17025 accreditation from the American Association for Laboratory Accreditation (A2LA). According to the Massachusetts Cannabis Control Commission, the body in charge of regulating the state’s cannabis industry, accreditation to ISO/IEC 17025: 2017 is a requirement for cannabis testing labs.

The press release says this makes EVIO Labs Massachusetts one of only a few operating and accredited testing laboratories serving the state’s medical cannabis industry. With recreational sales coming shortly to the state, EVIO is preparing for a higher demand in their lab testing services. “We are very proud of all of the teams’ hard work that resulted in this advanced accreditation,” says James Kocis, lab director of EVIO Labs Massachusetts. “With the state-mandated laboratory regulations, EVIO upholds the high standards of testing and plays a pivotal role in ensuring consumer safety and confidence in the states burgeoning marijuana market.”

According to Adam Gouker, general manager at A2LA, EVIO Labs Massachusetts, based in Southborough, MA, is the first cannabis laboratory they accredited in the state. “A2LA is excited to expand our cannabis accreditation program into yet another state, promoting the value of independent third-party accreditation to support quality products in the industry,” says Gouker. “Having the opportunity to work with a prominent name in the industry such as EVIO Labs and assess their exceptional Massachusetts laboratory has been an additional bonus.”

EVIO LogoAccording to the A2LA press release, by achieving ISO/IEC 17025 accreditation, EVIO Labs Massachusetts demonstrates that they “have management, quality and technical systems in place to ensure accurate and reliable analyses, as well as proper administrative processes to ensure that all aspects related to the sample, the analysis, and the reporting are standardized, measured, and monitored.” It also requires that personnel are competent to perform each analysis.

EVIO Inc. operates in the cannabis testing market with lab services in a number of states, including Oregon, California and Florida among others. Their Florida location was the first accredited cannabis lab in the state and they recently earned the same accreditation for their Berkeley, California location.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 3

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the last two articles, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) paperwork wall used if a grower, processor or dispensary (user/client) questioned a laboratory result and the conflicts of interest that exist in laboratory culture. Now I will discuss the second line of defense that a laboratory will present to the user in the paperwork wall: Quality Control (QC) results.

Do not be discouraged by the analytical jargon of the next few articles. I suggest that you go immediately to the conclusions to get the meat of this article and then read the rest of it to set you on the path to see the forest for the trees.

QC in a laboratory consists of a series of samples run by the laboratory to determine the accuracy and precision of a specific batch of samples. So, to start off, let’s look at the definitions of accuracy and precision.QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

According to the Standard Methods for the Examination of Water and Wastewater:

Accuracy: estimate of how close a measured value is to the true value; includes expressions for bias and precision.

Precision: a measure of the degree of agreement among replicate analyses of a sample.

A reputable laboratory will measure the Accuracy and Precision of QC samples in a batch of user samples and record these values in both the analytical test report issued to the user and in control charts kept by the laboratory. These control charts can be reviewed by the user if they are requested by the user. These control charts record:

Accuracy (means) chart: The accuracy chart for QC samples (e.g., LRB, CCV, LFBs, LFMs, and surrogates) is constructed from the average and standard deviation of a specified number of measurements of the analyte of interest.

Precision (range) chart: The precision chart also is constructed from the average and standard deviation of a specified number of measurements (e.g., %RSD or RPD) for replicate of duplicate analyses of the analyte of interest.

Now, let’s look at what should be run in a sample batch for cannabis analyses. The typical cannabis sample would have analyses for cannabinoids, terpenes, microbiological, organic compounds, pesticides and heavy metals.

Each compound listed above would require a specific validated analytical method for the type of matrix being analyzed. Examples of specific matrixes are:

  • Cannabis buds, leaves, oil
  • Edibles, such as Chocolates, Baked Goods, Gummies, Candies and Lozenges, etc.
  • Vaping liquids
  • Tinctures
  • Topicals, such as lotions, creams, etc.

Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.

Also, both ISO 17025-2005 and ISO 17025-2017 require the use of a validated method.

ISO 17025-2005: When it is necessary to use methods not covered by standard methods, these shall be subject to agreement with the customer and shall include a clear specification of the customer’s requirements and the purpose of the test and/or calibration. The method developed shall have been validated appropriately before use.

ISO 17025-2017: The laboratory shall validate non-standard methods, laboratory-developed methods and standard methods used outside their intended scope or otherwise modified. The validation shall be as extensive as is necessary to meet the needs of the given application or field of application.

Validation procedures can be found in a diverse number of analytical chemistry associations (such as AOACand ASTM) but the State of California has directed users and laboratories to the FDA manual “Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2nd Edition, 2015

The laboratory must have on file for user review the following minimum results in an analytical statistical report validating their method:

  • accuracy,
  • limit of quantitation,
  • ruggedness,
  • precision,The user must look beyond the QC data provided in their analytical report or laboratory control charts.
  • linearity (or other calibration model),
  • confirmation of identity
  • selectivity,
  • range,
  • spike recovery.
  • limit of detection,
  • measurement uncertainty,

The interpretation of an analytical statistical report will be discussed in detail in the next article. Once the validated method has been selected for the specific matrix, then a sample batch is prepared for analysis.

Sample Batch: A sample batch is defined as a minimum of one (1) to a maximum of twenty (20) analytical samples run during a normal analyst’s daily shift. A LRB, LFB, LFM, LFMD, and CCV will be run with each sample batch. Failure of any QC sample in sample batch will require a corrective action and may require the sample batch to be reanalyzed. The definitions of the specific QC samples are described later.

The typical sample batch would be set as:

  • Instrument Start Up
  • Calibration zero
  • Calibration Standards, Quadratic
  • LRB
  • LFB
  • Sample used for LFM/LFMD
  • LFM
  • LFMD
  • Samples (First half of batch)
  • CCV
  • Samples (Second half of batch)
  • CCV

The QC samples are defined as:

Calibration Blank: A volume of reagent water acidified with the same acid matrix as in the calibration standards. The calibration blank is a zero standard and is used to calibrate the ammonia analyzer

Continuing Calibration Verification (CCV): A calibration standard, which is analyzed periodically to verify the accuracy of the existing calibration for those analytes.

Calibration Standard: A solution prepared from the dilution of stock standard solutions. These solutions are used to calibrate the instrument response with respect to analyte concentration

Laboratory Fortified Blank (LFB): An aliquot of reagent water or other blank matrix to which known quantities of the method analytes and all the preservation compounds are added. The LFB is processed and analyzed exactly like a sample, and its purpose is to determine whether the methodology is in control, and whether the laboratory is capable of making accurate and precise measurements.

Laboratory Fortified Sample Matrix/Duplicate (LFM/LFMD) also called Matrix Spike/Matrix Spike Duplicate (MS/MSD): An aliquot of an environmental sample to which known quantities of ammonia is added in the laboratory. The LFM is analyzed exactly like a sample, and its purpose is to determine whether the sample matrix contributes bias to the analytical results. The background concentrations of the analytes in the sample matrix must be determined in a separate aliquot and the measured values in the LFM corrected for background concentrations (Section 9.1.3).Laboratories must validate their methods.

Laboratory Reagent Blank (LRB): A volume of reagent water or other blank matrix that is processed exactly as a sample including exposure to all glassware, equipment, solvents and reagents, sample preservatives, surrogates and internal standards that are used in the extraction and analysis batches. The LRB is used to determine if the method analytes or other interferences are present in the laboratory environment, the reagents, or the apparatus.

Once a sample batch is completed, then some of the QC results are provided in the user’s analytical report and all of the QC results should be recorded in the control charts identified in the accuracy and precision section above.

But having created a batch and performing QC sample analyses, the validity of the user’s analytical results is still not guaranteed. Key conclusion points to consider are:

  1. Laboratories must validate their methods.
  2. Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.
  3. QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

The user must look beyond the QC data provided in their analytical report or laboratory control charts. Areas to look at will be covered in the next few articles in this series.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 2

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the previous article, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) when a grower, processor or dispensary (user) questions a laboratory result. Now let us look behind this paperwork wall to the laboratory culture the user will encounter once their complaint is filtered past the first line of defense.

It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.In an ISO 17025 (2005 or 2017) and TNI accreditation, the laboratory must be organized into management, quality and technical areas. Each area can overlap as in the ISO 17025-2017 standard or be required to remain as separate sections in the laboratory as in the ISO 17025-2005 or TNI 2009 standards. ISO 17025 standards (e.g. 2005 and 2017) specifically require a separation of monetary benefits for laboratory results as it applies to the technical staff. This “conflict of interest” (CoI) is not always clearly defined in the laboratory’s day-to-day practices.

One example that I have experienced with this CoI separation violation goes back to my days as a laboratory troubleshooter in the 1990s. I was called into a laboratory that was failing to meet their Department of Defense (DoD) contract for volatile organic hydrocarbon analyses (VOAs) of soil samples by purge trap-gas chromatography-mass spectroscopy. I was required to “fix” the problem. What I determined was:

  • The analytical chemists performing the VOAs analyses were high school graduates with no coursework in chemistry or biology.
  • There was no training program in place for these analysts in instrument use, instrument troubleshooting and interpretation of the analytical results.
  • The only training the analysts received was for simple instrument set-up and basic instrument computer software use. (e.g. Push this button and send results to clerks)
  • Clerks with a high school degree and no analytical chemistry training in the business office generated the final reports and certified them as accurate and complete.

None of the staff was technically competent to perform any in-depth VOAs analytical work nor was the clerical staff competent to certify the results reported.

When I pointed out these discrepancies to the laboratory management, they declined to make any changes. The laboratory management had a direct monetary interest in completing all analyses at the lowest costs within the time limit set by DoD. If the laboratory did not complete the analyses as per the DoD contract, DoD would cancel the contract and not pay the laboratory.

The DoD, in a “Double Blind” test sample, later caught this laboratory.. A Double Blind test sample is used to check to see if the laboratory is performing the tests correctly. The laboratory does not know it is a test sample. So if the laboratory is cheating, they will be caught.This does not mean that all laboratories have staff or management issues

Once the laboratory was caught by DoD with the Double Blind, laboratory management claimed they were unaware of this behavior and management fired all analytical staff performing VOAs and clerical staff reporting the VOAs results to show DoD that it was a rogue group of individuals and not the laboratory management. The fired staff members were denied unemployment benefits as they were fired with cause. So, the moral to this story is if the analytical staff and specifically the clerical staff had wanted to hold the laboratory management accountable for this conflict of interest, they may have been fired, but without cause. The staff would have kept their reputation for honesty and collected unemployment benefits.

I have witnessed the “CoI above repeatedly over the last 30+ years both in laboratories where I have been employed and as a consultant. The key laboratory culture problems that lead to these CoI issues can be distilled into the following categories:

  • Financial CoI: In the financial CoI, the laboratory management must turn out so many analytical test results per day to remain financially solvent. The philosophical change that comes over management is that the laboratory is not producing scientific results, but is instead just churning out tests. Therefore, the more tests the laboratory produces, the more money it makes. Any improvement in test output is to be looked upon favorably and anything that diminishes test output is bad. So, to put this in simple terms: “The laboratory will perform the analyses quickly and get the report sent to the user so the laboratory can be paid. Anything that slows this production down will not be tolerated!” To maximize the Return on Investment (RoI) for the laboratory, management will employ staff that outwardly mirrors this philosophy.
  • I Need This Job CoI: This is the CoI area that poor quality lab technical staff and clerical staff most readily falls into. As outlined in the example above, both the analytical staff and clerical staff lacked the educational credentials, the technical training to be proficient in the use of the analytical instruments, ability to identify problems performing the analytical methods or complications in reporting analytical results. That means they were locked into the positions they held in this specific laboratory. This lack of marketable skills placed pressure on these staff members to comply with all directives from management. What happened to them in the end was regrettable, but predictable. Management can prey on this type of staff limitation.
  • Lack of Interest or Care CoI: This form of CoI is the malaise that infects poor quality laboratories, but can reach a level in management, quality and technical areas as to produce a culture where everyone goes through the moves, but does not care about anything but receiving their paycheck. In my many years of laboratory troubleshooting this type of CoI is the most difficult to correct. Laboratories where I had to correct this problem required that I had to impress on the staff that their work mattered and that they were valued employees. I had to institute a rigorous training program, require staff quality milestones and enforce the quality of work results. During my years of laboratory troubleshooting, I only had to terminate three laboratory staff for poor work performance. Unfortunately after I left many of these laboratories, management drifted back to the problems listed above and the laboratory malaise returned. This proves that even though a laboratory staff can achieve quality performance, it can quickly dissolve with lax management.

So, what are the conclusions of this article?

  • Laboratory culture can place profit over scientific correctness, accuracy and precision.
  • Laboratory management sets the quality of staff that determines the analytical results and report quality the user receives.
  • Laboratory quality can vary from acceptable performance to unacceptable performance over the lifetime of the laboratory depending on management.
  • This does not mean that all laboratories have staff or management issues. It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.

The next article in this series will introduce the user to the specific Quality Control (QC) analyses that an acceptable laboratory should perform for the user’s sample. These QC analyses are not always performed by accredited laboratories as the specific state that regulates their cannabis program does not require them. The use of these QC samples is another example of how laboratory’s with poor quality systems construct another paper work wall.

EVIO Logo

EVIO Labs: The First Accredited Cannabis Lab in Florida

By Lauren Masko
No Comments
EVIO Logo

EVIO Labs recently became the first cannabis laboratory in Florida to obtain ISO 17025 accreditation. Perry Johnson Laboratory Accreditation, Inc. (PJLA), an organization that provides third-party assessments to ISO/IEC 17025, accredited EVIO Labs. The assessment process that lead to ISO 17025 accreditation for EVIO Labs included a thorough review of their quality management system, their capability to perform potency and contaminant testing for cannabis products.

Tracy Szerszen, president and operations manager at PJLA, encourages this international standard for laboratories to provide confidence to end-users that the test results they receive are reliable. She says laboratories that achieve this accreditation are showing they have the proper tools, equipment and staff to provide accurate testing. “It is a very critical component of the industry, and becoming accredited provides the assurance that laboratories are performing to the highest standard,” says Szerszen. “EVIO Labs has taken the right step in their commitment towards meeting this standard and providing clean and safe cannabis for the patients of Florida.”

PJLAEVIO Labs provides cannabis testing for cannabinoid and terpene profiles, microbiological and pesticides contamination, residual solvent, heavy metals, mycotoxins, water activity and moisture content. Chris Martinez, co-founder and president of EVIO Labs Florida explains that the Florida Department of Health mandates that an independent third-party laboratory tests medical cannabis to ensure that these products are safe for human consumption. Martinez says their first priority is the safety of their patients, and ensuring that EVIO Labs provides clean and safe cannabis for Florida.

Chris Martinez
Chris Martinez, co-founder and president of EVIO Labs Florida

Martinez launched their laboratory with some help from Shimadzu last year. “Our Broward lab is powered by Shimadzu with over $1.2M in the latest testing equipment utilizing LCMS technology with the world’s fastest polarity switching time of 5 m/sec and scan speeds of 30,000 u/sec with UF Qarray sensitivity 90 times that of previously available technologies,” says Martinez. According to Martinez, their licensing agreement with EVIO Labs (OTC:SGBYD) marked a first for the publicly traded company with exclusivity in the Florida market. The agreement includes proprietary testing methodologies, operating procedures, training and support.

Every certificate of analysis is reviewed by a lab director with over 20 years of experience operating in FDA regulated labs. Martinez says that EVIO has some of the most advanced technology in the industry, which provides them the opportunity to quickly provide results, frequently as fast as a 24-hour period. Martinez and his team are currently building a 3,300 square-foot laboratory in Gainesville, which is expected to be running by March of this year.

Sunrise Genetics Partners With RPC, Begins Genetic Testing in Canada

By Aaron G. Biros
No Comments

Sunrise Genetics, Inc., the parent company of Marigene and Hempgene, announced their partnership with New Brunswick Research & Productivity Council (RPC) this week, according to a press release. The company has been working in the United States for a few years now doing genomic sequencing and genetic research with headquarters based in Fort Collins, CO. This new partnership, compliant with Health Canada sample submission requirements, allows Canadian growers to submit plants for DNA extraction and genomic sequencing.

Sunrise Genetics researches different cannabis cultivars in the areas of target improvement of desired traits, accelerated breeding and expanding the knowledge base of cannabis genetics. One area they have been working on is genetic plant identification, which uses the plant’s DNA and modern genomics to create authentic, reproducible, commercial-ready strains.

Matt Gibbs, president of Sunrise Genetics, says he is very excited to get working on cannabis DNA testing in Canada. “RPC has a long track record of leadership in analytical services, especially as it relates to DNA and forensic work, giving Canadian growers their first real option to submit their plant samples for DNA extraction through proper legal channels,” says Gibbs. “The option to pursue genomic research on cannabis is now at Canadian cultivator’s fingertips.”

Canada’s massive new cannabis industry, which now has legal recreational and medical use, sales and cultivation, previously has not had many options for genetic testing. Using their genetic testing capabilities, they hope this partnership will better help Canadian cultivators easily apply genomic testing for improved plant development. “I’m looking forward to working with more Canadian cultivators and breeders; the opportunity to apply genomics to plant improvement is a win-win for customers seeking transparency about their Cannabis product and producers seeking customer retention through ‘best-in-class’ cannabis and protectable plant varieties,” says Gibbs. The partnership also ensures samples will follow the required submission process for analytical testing, but adding the service option of genetic testing so growers can find out more about their plants beyond the regular gamut of tests.

RPC is a New Brunswick provincial research organization (PRO), a research and technology organization (RTO) that offers R&D testing and technical services. With 130 scientists, engineers and technologists, RPC offers a wide variety of testing services, including air quality, analytical chemistry of cannabis, material testing and a large variety of pilot facilities for manufacturing research and development.

They have over 100 accreditations and certifications including an ISO 17025 scope from the Standards Council of Canada (SCC) and is ISO 9001:2008 certified. This genetic testing service for cannabis plants is the latest development in their repertoire of services. “This service builds on RPC’s established genetic strengths and complements the services we are currently offering the cannabis industry,” says Eric Cook, chief executive officer of RPC.

Cannabis Testing Quality and the Role of ISO/IEC 17025

By Cannabis Industry Journal Staff
No Comments

Cannabis Labs Virtual Conference: Part 2

Cannabis Testing Quality and the Role of ISO/IEC 17025
By Michelle Bradac, Senior Accreditation Officer, A2LA

In the wake of the legalization of cannabis for medical and recreational use, state regulatory agencies are tasked with establishing mechanisms for enforcement and oversight of the program requirements for participating patients, growers and dispensaries. An integral component of these rules includes lab testing of the product, as a means for protecting consumer health and assuring safety.

EVIO Logo

EVIO Labs Expands To Florida

By Aaron G. Biros
1 Comment
EVIO Logo

Currently, there are no lab testing regulations for Florida’s medical cannabis market. Chris Martinez, co-founder and chief operating officer of EVIO Labs Florida, a veteran-owned business, is looking to change that.

Chris Martinez, co-founder and president of EVIO Labs Florida

When Martinez co-founded EVIO Labs Florida, he saw the need for a dedicated cannabis lab to ensure safety and quality of medicine for patients in the state. Partnering with EVIO Labs to accomplish this goal, Martinez secured a 5,500 sq. ft. facility in Broward County to test for potency, pesticides, microbial contaminants, terpenes, residual solvents and heavy metals. Their lab, a first of its kind in the industry, qualifies as a true pharmaceutical-grade clean room. This week, Martinez also secured their 2nd laboratory location in the City of Gainsville, where they will test for potency, microbials, terpenes and residual solvents. And he isn’t doing it on the cheap. “Our Broward lab is powered by Shimadzu with over $1.2M in the latest testing equipment utilizing LCMS technology with the world’s fastest polarity switching time of 5 m/sec and scan speeds of 30,000 u/sec with UF Qarray sensitivity 90 times that of previously available technologies,” says Martinez.

Martinez, an entrepreneur at heart, started the lab with a team of experts to become the first completely cannabis-focused laboratory in Florida. Jorge Segredo, their head chemist and quality assurance director, has over 18 years of experience in the development of nutraceutical and pharmaceutical products under ISO and FDA accreditation. Segredo has helped launch three independent FDA-accredited laboratories and has extensive knowledge of HPLC, GCMS, LCMS, ICPMS technologies and development/validation of testing methods and procedures. Cynthia Brewer, their director of operations, was an active participant in the 2017 state legislative session and has been an advocate for medical cannabis, working with legislators on a suitable framework to increase patient access to cannabis.

The EVIO team is using instruments from Shimadzu

EVIO is one of the nation’s leaders in cannabis testing, research science and advisory services. It is an evolving network of laboratories with nine EVIO cannabis laboratories operating in five different states: Oregon, Colorado, Massachusetts, Florida and California. “After speaking with industry chemists around the country for months, the EVIO name was constantly brought up in conversation,” says Martinez. “When we spoke with the EVIO Team it was an easy decision for us to partner.” He says Lori Glauser, chief operating officer of EVIO, and William Waldrop, chief executive officer of EVIO, are truly visionaries in the cannabis industry.

According to Martinez, their licensing agreement with EVIO Labs (OTC:SGBYD) marked a first for the publicly traded company with exclusivity in the Florida market. The agreement includes proprietary testing methodologies, operating procedures, training and support.

In addition to testing cannabis for safety and quality, they are launching a technology platform called MJ Buddy, essentially a software tool that takes efficacy feedback from patients and uses testing and genetic data they gather from EVIO Labs across the country. “This will provide real data to the cannabis industry as to the medical benefits for thousands of patients in relation to the genotype and cannabinoid profiles of their medicine,” says Martinez.

Of the states that have legalized some form of cannabis, a large number of them have some lab testing regulations on the book, with some more comprehensive than others. Martinez says he hopes the Florida Department of Health, Office of Medical Marijuana Use follows some of the more thorough state programs, such as Oregon. His team has compiled a set of documents for regulators with recommendations for regulating the lab testing industry.

Without any regulations on paper, it is up to businesses to produce safe and quality medicine, without any oversight. EVIO Labs Florida follows FDA Good Laboratory Practices, has an ISO 17025:2005 accreditation pending, and is working on TNI 2016 accreditation.

When discussing what he wants to see happen with Florida’s regulatory framework, Martinez says the rules need to be specific to Florida. For example, due to the climate being so humid, microbial contaminant testing for things like yeast and mold will be particularly imperative. Because processing methods like butane and alcohol extraction are legal, he emphasizes the need for comprehensive residual solvents testing. “The most important regulation would be to have the laboratories select the samples at the MMTC facility and have the state randomly verify laboratory results to ensure accurate unbiased testing,” says Martinez.

In addition to that, he hopes their pesticide thresholds will be realistic and based on actual science. “We believe the public should receive carcinogenic data for products that are inhaled,” says Martinez. “Chemicals may be introduced into the processing of cannabis to vape liquid that may cause harm. This is important information for public health and communication of the risk related to exposure to such materials.” Martinez says EVIO Labs Florida was founded on the belief that through technology and science we can increase safety and patient outcomes.