Tag Archives: labs

ASI Global Launches Cannabis Safety & Quality Audit Standards

By Cannabis Industry Journal Staff
No Comments

According to a press release published July 1, ASI Global Standards announced the launch of their newest audit standard: the Cannabis Safety & Quality Scheme (CSQ). The scheme is built around ISO requirements and the Global Food Safety Initiative (GFSI) requirements.

With input from a number of stakeholders in the cannabis space, the CSQ scheme is designed for the cannabis industry and by the cannabis industry. Each standard was developed by industry professionals and stakeholders, like growers, manufacturers and processors, to meet market, consumer and regulatory requirements from seed-to-sale.

The CSQ scheme is built on four standards:

  • Growing and Cultivation of Cannabis Plants
  • Manufacturing and Extraction of Cannabis
  • Manufacturing and Infusion of Cannabis into Food & Beverage Products
  • Manufacturing of Cannabis Dietary Supplements

There is a public comment period in effect now, and those wishing to provide input have until July 31 to do so. If certification bodies or accreditation bodies want to find more information and get involved in the CSQ certification or accreditation process, they are encouraged to reach out via email at info@csqcertification.com.

Deibel Bioscience Rebrands, Achieves ISO 17025 Accreditation

By Cannabis Industry Journal Staff
No Comments

On June 19, Charles Deibel, president and CEO of Deibel Bioscience, announced two important changes to his cannabis testing laboratory: First, they changed their name from Deibel Laboratories to Deibel Bioscience. Secondly, they achieved ISO/IEC 17025:2017 accreditation.

Deibel Labs is an internationally recognized corporation of 15 testing labs in North America that’s been around for about 50 years, serving the food, beverage and personal care industries. Starting in 2018, Deibel has ventured into the cannabis and hemp markets, and recently rebranded these labs as “Deibel Bioscience.” Currently, Deibel Bioscience operates in California and Illinois, with plans underway to open labs in Florida and Pennsylvania.

Charles Deibel, President & CEO of Deibel Bioscience

Deibel’s brand is very well known in the food testing industry and has recently become a prominent voice and industry advocate in the cannabis testing community. Charles Deibel’s father, Dr. Robert Deibel, was a pioneer of the Hazard Analysis and Critical Control Point (HACCP) system. Charles Deibel has a long career in the laboratory testing space and even worked with the Department of Justice to help shape the legal case against Peanut Corporation of America and testified as an expert witness during the trial.

With respect to their accreditation, Deibel Bioscience of California (Santa Cruz) achieved it through the American Association for Laboratory Accreditation (A2LA). The lab’s scope currently holds seven chemical and microbiological test methods as well as their sampling method, with plans to expand their scope to include four more chemical testing methods in the next month.

“At our level of testing services, any lab should be able to offer accurate testing, at a fair price and a reasonable turn-around time,” says Deibel. “These three qualities are no longer defining features; rather it is our high level of service and exceptional Technical Services acumen that set us apart.”

According to Deibel, their company is drawing on decades of experience in other testing industries to provide a high caliber of technical expertise. “We are a family owned and operated corporation and are not constrained by quarterly investor demands. Our size offers economics of scale that is reflected in our service and pricing.”

ACS Laboratory Get Certified for Cannabis Testing in Florida

By Cannabis Industry Journal Staff
No Comments

According to a press release published earlier this week, ACS Laboratory announced the Florida Department of Health Office of Medical Marijuana Use (OMMU) has certified ACS to test products for medical dispensaries in the state.

This certification comes after the Florida Department of Health adopted an emergency rule, requiring dispensaries to only use a certified lab for product testing. Dispensaries (or medical marijuana treatment centers as the state calls them) in Florida have until December 24, 2020 to sell products tested before June 24, 2020.

ACS Laboratory was founded in 2008. They are DEA- and AHCA-licensed, ISO 17025-accredited and CLIA-accredited with the largest testing facility in the eastern United States, according to their press release. They are USDA-compliant and certified by Florida to test hemp in the state and are now also certified to test medical cannabis products.

As a certified cannabis testing lab in Florida, ACS has to meet a list of requirements, similar to rules one might find in other legal states. The Florida rules mandate that labs are ISO-accredited and qualified to accurately test for contaminants, moisture content and cannabinoid potency.

Earlier this year, ACS acquired Botanica Testing, Inc., which added about 500 new hemp and CBD clients to their portfolio. ACS Laboratory now has customers in 44 states.

Cannabinoid Research & Pharmacology: A Q&A with Dr. Linda Klumpers

By Cannabis Industry Journal Staff
No Comments

Dr. Linda Klumpers has a Ph.D. in clinical pharmacology of cannabinoids. Originally from the Netherlands, she began much of her career in studying cannabis there. She now lives and works in the United States, where she has worked on a number of projects, started her own company and is continuing her research on cannabis as an effective medicine.

After studying neuroscience at the University of Amsterdam, she went on to train at the Centre for Human Drug Research and Leiden University Medical Center, where Dr. Klumpers obtained a clinical pharmacology degree and a Ph.D. in clinical pharmacology of cannabinoids. She has been researching cannabinoids in humans since 2006. Dr. Klumpers co-authored a number of peer-reviewed cannabinoid publications and she has received five honors and awards for her work, including the BJCP Prize from the British Journal of Clinical Pharmacology.

Dr. Linda Klumpers

In 2016, she moved to the United States and founded Cannify, an online tool that helps patients and clinicians with product matching and providing legitimate cannabis education based in sound science. In 2018, Dr. Klumpers joined forces with Dr. Michael Tagen, another clinical pharmacologist, to launch Verdient Science, a consulting partnership. Their work at Verdient Science includes helping clients set up human studies, advise on FDA submissions, creating course materials, adjusting product pipelines and product development strategies, among other areas of focus.

Right now, Dr. Klumpers is waiting to hear back from a grant application they submitted to study THC and CBD ratios for medical efficacy in chronic pain patients. We sat down with Dr. Klumpers to hear her story, what she is working on now and how she hopes to continue researching cannabis as an effective medicine.

Cannabis Industry Journal: Tell us about your background as a research scientist. How did you get involved in cannabis? 

Dr. Linda Klumpers: During my Ph.D. work, we studied the effects of so-called cannabinoid receptor antagonists that block the effects of THC – I prefer to say “we”, as research is always done by multiple people. The problem with studying these compounds in healthy volunteers is that you can’t observe acute effects, which means that you won’t measure any effect after a single dose. To circumvent this issue, we applied a trick and developed a ‘challenge test’: after you give the ‘invisible’ blocking compound, you stimulate the cannabinoid system by giving people THC. If the subjects don’t feel the effects of THC, you know that the blocker worked. One thing lead to another and we ended up studying various administration methods, such as intrapulmonal (via the lungs) with vaporization, oral and sublingual. We studied the behavior of cannabinoids in the body and how the body responded to them.

CIJ: Can you share some information on the projects you are working on? What is Cannify and what is Verdient Science?  

Dr. Klumpers: Cannify was founded in 2016 after I saw that too many people had opinions about cannabis that were more based on emotion than fact. Besides, I noticed that a majority of the scientific literature on cannabis pharmacology was left unnoticed and unapplied to the people getting exposed to cannabis, such as patients, the cannabis industry – that was in a very different stage at that time – healthcare providers and regulators. With my Ph.D. in cannabis pharmacology, I wanted to add a level of objectivity to cannabis education and research. Cannify’s goals are to understand the science of cannabis, and share this with others.

The way we do this is multi-fold:

  1. Cannify Quiz: Patients with an interest in cannabis often want to know the science about cannabis and their condition. Our quiz helps these people by asking in-depth questions and showing them relevant scientific literature in a personalized report. After that, an overview is given with products and product matching scores. Our account system allows users to track their progress over time. Product manufacturers, dispensaries and other companies can use the quiz for their websites and their stores to help out retail employees and save them time, and to receive insight with our analytics on customer desires and behavior. Needless to say, an educated customer is a better customer. It is important that customers come and leave stores well-informed.
  2. Education: Speaking of education, our website contains educational articles about everything cannabis: from plant to patient and from product to mechanism of action. We regularly publish educational quizzes for people to test their knowledge level. With a free Cannify account, you can find all of our educational quizzes and save your results. We also provide customized courses, and have educated a wide audience varying from industry professionals to CME-accredited courses for healthcare providers. On top of that, our educational videos in dispensaries (in collaboration with our partner, Enlighten) reach customers and retail employees.
  3. One of Cannify’s educational graphics, showing the difference between topical and transdermal product administration

    Research: To expand the knowledge on cannabis, performing and especially sharing research is essential. We have already performed and published some of Cannify’s results on descriptive statistics and effect prediction during conferences, as well as a review paper on cannabis therapeutics in a peer-reviewed journal and a book chapter. This year, we expect to co-publish the results of a survey in different sleep patient groups. We collaborated with the Centre of Excellence for Epilepsy and Sleep Medicine in the Netherlands on a peer-reviewed paper from which we expect new research to follow to benefit these patients. We have also co-submitted a grant to study THC and CBD ratios in chronic pain patients: fingers crossed! Another important next step is to test a healthcare provider-specific version of Cannify’s quiz in the clinic once COVID dies down. I want to add that after working in a clinical lab for many years, it is important to combine the results of clinical trials to what people do in real life, which is what we do with Cannify.

And here’s some information on Verdient Science:

Verdient Science is a consulting partnership I have with clinical pharmacologist Dr. Michael Tagen. We provide clinical and translational pharmacology expertise to improve the quality of product development & clinical testing. While both working as independent consultants, we decided from 2018 to start working together to offer better services. Since then, our work has been very variable and includes helping clients set up human studies, advise on FDA submissions, creating course materials, adjusting product pipelines and product development strategies to make them more efficient and cheaper, performed scientific due diligence and much more. When clients want additional services that are beyond our expertise, we are typically able to introduce them to various people per expertise area, or refer them to our partner companies, Complex Biotech Discovery Ventures (CBDV) with Dr. Markus Roggen, and Via Innovations with Dr. Monica Vialpando. A benefit of working with the same partners includes smooth handovers and the feeling of a one stop shop.

CIJ: How does Cannify match available products to consumer needs? Is there an algorithm you developed that matches moods or feelings to cannabinoids or chemical profiles?

Dr. Klumpers: That is a great question and the core of what we do! So back to the Cannify quiz: there are three steps:

  1. Users fill in questions;
  2. A personalized report is generated with the relevant science;
  3. The user gets a product overview with product matching scores.
Another Cannify educational graphic, showing THC distribution throughout the body over time

The report and the matching scores are generated using algorithms that are regularly updated. These algorithms are based on various data sources:

  1. Literature: There is a lot of available literature, and we make sure to select the most relevant and reliable studies;
  2. Raw data: There is only so much one can find in the literature, and lots is hidden in the raw data. Therefore, we piled up data from studies done at various research institutions, including the University of Kentucky and Johns Hopkins University, and used them in our algorithms;
  3. Internal studies: From the thousands of users filling in their results, there is a lot of information that we should learn from. This feedback loop helps us to better understand how the lab relates to real life situations.

CIJ: The world of cannabis research has been historically stymied by red tape, DEA interference and a host of federal regulations. How have you managed to work through all that? Do you have a DEA license? What did it take to get it? 

Dr. Klumpers: Luckily, a majority of our research was and is done outside of the US. You still need to obtain the appropriate licenses, but I was perhaps lucky to have filled in every form very thoroughly and we got the licenses within months. The process is quite meticulous, as you need separate licenses for almost every step from manufacturing to administration. An additional complication is that our cannabis is not stored in our own building, but in the hospital pharmacy across the street, involving transport via the public road. Despite the roadblocks, including a legal procedure about this matter that was going on in parallel, I had no major issues getting our work done. For our research in the US, we were lucky to have been working with partners that already have the required license.

Also with publishing, I have never had an issue with the cannabis stigma. Generally, in my field of science, good quality science is very much welcomed and appreciated, and this was even before the time that there were four different cannabis-related journals, as is the case nowadays.

CIJ: Looking to the future, where do you hope to focus your research efforts? Where do you think the cannabis community should be focusing their efforts in the next 5-10 years?

Dr. Klumpers: Besides continuing to analyze the data generated from Cannify, I keep my fingers crossed for the grant application I mentioned earlier on THC and CBD ratios in chronic pain patients. Although we know that CBD is able to influence THC-induced effects, it is not known at what dosages, which ratios and how the effects are related to each other. For example: is CBD able to decrease certain side-effects of THC without decreasing pain-relieving effects?

Whatever is done, wherever in the community: good quality data are keyNext to that, I am also interested in other neurological and psychiatric disorders, and, of course, my Ph.D. love: the cannabinoid antagonists. Sadly, all the research efforts on this compound group were halted more than a decade ago. However, there is a renewed interest. I would love to help turn these compounds into effective and safe medicines.

Regarding the cannabis community: 5-10 years sounds really far away for an industry that is relatively new to many, but a lot has already changed since I started cannabis research more than 14 years ago and time has flown by. Some changes have been positive and others less so. Whatever is done, wherever in the community: good quality data are key. Many companies gather data and even publish them in peer-reviewed journals, but that does not always mean that the data are useful or that the studies were done well. Only a few minor changes to how and which data are gathered, and so much more can be done. What can help with achieving this is to let the right people do the right thing: many call themselves a ‘cannabis scientist’ or ‘cannabis expert’, but that does not mean anything. What has someone truly achieved and what is their exact expertise? A Ph.D. in chemistry is not going to help you in setting up effect studies, neither will I be able to improve your product’s shelf life or extraction yield. Getting the right people in the right place is key. Lastly: the cannabis community should stay critical. The length of one article in Cannabis Industry Journal wouldn’t be enough to lay out all the misconceptions that people have about cannabis. Make sure that those misconceptions do not live on and do not be afraid to admit you don’t know something, irrespective of the branch you work in: only then, can the cannabis community progress to the benefit of all.

New Cannabis Science Course Offered at University of Colorado at Boulder

By Cannabis Industry Journal Staff
No Comments

According to a press release, the University of Colorado at Boulder is offering a new course focused on cannabis science through the Continuing Education program at the university during the upcoming Summer and Fall semesters.

The class is called Modern Cannabis Science and will involve a lot of genetic research. The course is sponsored by the Agricultural Genomics Foundation, a non-profit dedicated to scientific research and education in cannabis. In the press release, they describe the course as meant for students who are well informed, but “seek a deeper appreciation of scientific advancements in cannabis genetics.”

Here’s a snapshot of what students can expect to learn from it:

In Modern Cannabis Science, we will explore the range of Cannabis research currently available covering topics such as evolutionary history and global distribution, sex chromosomes, genetic contribution to chemotype, and analyses to aid law enforcement and forensic investigations. We will examine how genetic data allow us to understand relationships between strains and common categories in the Cannabis genus, and why this is important for breeding, policy-making, and medical purposes.

The press release suggests students who enroll can expect to use this knowledge in the cannabis industry. “For example, a budtender will be able to more accurately recommend strains to users,” reads the press release. “Similarly, medical personnel will more fully understand the relationship between strains, the compounds they produce, and how to properly advise Cannabis patients.”

For more information, take a look at the course here.

Cannabis Quality Conference & Expo Goes Virtual

By Cannabis Industry Journal Staff
No Comments

The prospect of large events with 50 or more people in Illinois taking place in 2020 seems highly unlikely. Illinois released a plan called Restore Illinois that consists of five phases for reopening the economy. Illinois entered into Phase 2 in early May;  it is not until Phase 5 that gatherings of 50 or more people are allowed, and only if there is a vaccine, or a highly effective treatment that is widely is available, or the elimination of new cases over a sustained period of time.

Regardless of federal and state guidance, we feel it would be irresponsible and premature to host a large gathering of people in a confined meeting space this year. That is why, instead of a three-day, in-person event, we will host a series of webcasts over the course of eight weeks in the Fall.

Every Tuesday, starting on September 8 and through Election Day, we will host two presentations and two Tech Talks, followed by a panel discussion. The Cannabis Quality Virtual Conference Series will culminate with a post-election analysis to take place November 10.

This will still be an interactive virtual conference, where attendees can ask questions and get in touch with speakers. We look forward to seeing everyone virtually there.

We are now accepting abstract submissions for the Cannabis Quality Virtual Conference Series. Below you’ll find a list of topic areas we are looking for abstract submissions on:

  • Government Policy, Reform & Legalization Efforts

    This will still be an interactive virtual conference, where attendees can ask questions and get in touch with speakers.
  • State Regulations, Licensing & Requirements
  • USDA Hemp Programs
  • Laboratory Testing
  • Quality & Safety in Manufacturing
  • Cultivation Best Practices
  • Marketing, Branding & Communications
  • Legal, Insurance & Data Analysis
  • Extraction & Infused Products Best Practices
  • Standards, Certifications & Accreditations
  • International Market Analysis

If you’d like to submit an abstract, click here. If you’re interested in sponsorship opportunities, please contact RJ Palermo at Rj@innovativepublishing.net. If you’re planning on attending, stay tuned for announcements to come when registration opens.

We will continue to monitor the situation, but in 2021 we are planning on bringing this event back to Illinois for a face-to-face conference. Until then, we look forward to joining everyone virtually.

Priorities During the Pandemic: How to Run a Lab Under COVID-19

By Dr. Peter Krause, Udo Lampe
No Comments

During the COVID-19 pandemic, most testing laboratories have been classified as relevant for the system or as carrying out essential activities for national governments. Therefore, it is crucial to maintain activities and optimally assess the changes that are occurring, framed within the spread of the SARS-CoV-2 virus. Analytica Alimentaria GmbH, a testing laboratory with its headquarters in Berlin, Germany and a branch office in Almeria, Spain, decided to focus its management on the analysis of events and the options available, at the legal and employment level, to ensure continuity of activities and reducing, as much as possible, the damage for the parties involved: employees and company. Accredited by the International Accreditation Service (IAS) to ISO/IEC 17025:2017, Analytica Alimentaria GmbH is required to implement risk-based thinking to identify, assess and treat risks and opportunities for the laboratory. Since March 12, 2020 a crisis committee was established, formed by the six members of the company’s management, covering general management, human resources, direction of production, finance and IT. The committee meets every day and it intends to:

  • Minimize the risks of contagion
  • Be able to continue providing the service required by our clients
  • ensure that the company as a whole will survive the economic impact of the crisis
  • Take measures that are within the legality of both countries where the laboratory operates (Spain and Germany),
  • Manage internal and external communication related to the crisis

To achieve correct decision making, daily meetings of the committee were established, to review the situations that were presented day after day and the actions that should be carried out. Each decision was analysed in a prioritized, objective, collaborative and global way.

The basis of the lab’s action plan was a well-developed risk assessment. In addition to the risk of getting a droplet or smear/contact infection with the coronavirus SARS-CoV-2 (risk I) by contact with other people, psychological stress caused by changing working conditions (home office), contact options and information channels were also identified (risk II).

As a result of the risk assessment, the conclusion was that a mix of various measures is the best form of prevention:

  • Keep distance
  • Avoid “super spreader” events
  • Personal hygiene
  • Regular communication between managers and personnel about the current situation and possible scenarios

The risk assessment took both areas into account. The following assessment was developed together with an external specialist and focused on risk I:

Risk I Assessment Protective measures / hygiene plan
Organisation
Working hours and break arrangements High Limit the gathering of people and ensure a minimum distance:

  • Relocated work, break and mealtimes
  • Create fixed groups of shift-working staff
  • Time gap of 20 min. between the shifts
  • Enable home office wherever it is possible
Third party access Moderate Few but “well-known” visitors:

  • Reduce the number of visits and keep internal contacts to a minimum
  • Ensure the contact chain
  • Inform visitors about the internal rules and obtain written consent
Dealing with

suspected cases

High Isolation and immediate leave of the company:

  • Contactless fever measurement (in case of typical symptoms)
  • Leave the company or stay at home
  • If the infection is confirmed, find contact persons (including customers or visitors) and inform them about a possible risk of infection
Contact with other persons
Traffic route from home to work Moderate Avoid public transportation:

  • Take a car, bicycle or go by foot
  • Enable mobile work and teleworking
At work High Always keep a sufficient distance of 2.0 m from people:

  • If minimum distances cannot be maintained, wear protective masks or install physical barriers (acrylic glass)
  • Organize traffic routes so that minimum distances can be maintained (one-way routes, floor markings indicating a distance of 2 m)
  • Use digital meetings instead of physical ones
Sanitary facilities Moderate Remove virus-loaded droplet as often as possible:

  • Provide skin-friendly liquid soaps and towel dispensers
  • Shorten or intensify cleaning intervals
  • Hang out instructions for washing hands at the sink
  • Include instructions for proper hand-disinfection
Canteens, tea kitchens and break rooms High One person per 10 m² = minimum:

  • Reduce the number of chairs per table
  • Informative signs in every room, indicating the maximum number of permitted persons
Ventilation High Diluting or removing bioaerosols (1 µm virus-droplets):

  • Leave as many doors open as possible
  • Regular and documented shock ventilation every 30 minutes or more frequently, depending on the size of window
  • Operate ventilation and air-conditioning systems, since the transmission risk is classified as low here
Use of work equipment Moderate Use tools and work equipment for personal use:

  • Regular cleaning with changing use (PC, hand tools, coffee machine, …)
  • If possible, use gloves when using equipment for a larger number of users
Protective masks Moderate
  • Use of protective masks as an additional measure, indicating that this does not replace keeping distance
  • Recommend wearing masks in commonly used areas and explain that they do not protect yourself, but help to protect others
  • Give clear instructions (written and oral) on how to use a mask correctly and explain the use and purpose of different mask-types
  • Distribute masks freely

A number of guidelines and concrete measures addressing the risks related to health issues are already in place. Those health issues in risk group II are more closely related to the psychological effects of the crisis, however, are also more complex to mitigate. The key strategy is communication and, in particular, actively listening to all employees of the company.

Analytica’s robust company culture, based on values established in coordination with the whole staff, has been of significant help during the crisis. The some 150 staff members are organized by over 22 team coordinators. During the crisis, active communication has been intensified significantly. The crisis management team set up regular alignment meetings with all the coordinators and with individual persons with particular situations. This way, not only was it possible to explain the development of the crisis and the subsequent measures, the conversations with coordinators were also the most important source of information enabling the appropriate decisions. The coordinators, closely aligned and in sync with management, were then able to communicate with their team members with a high degree of confidence. One outcome of the communication was a measure that proved very effective in fortifying trust within the company: all measures and evaluations, as well as a chronological review, are published in a dynamic internal report and are made available, with full transparency, to all staff members. Besides the many individual and group alignment meetings (usually held by video conference), this has been a key measure to establish confidence and security within the company.

On the other hand, the company made a great effort to balance the effect of the general closure of kindergartens and schools in Spain and Germany. Each case where staff members were required to care for children at home was studied individually and agreements were established, adapting shifts and making use of time accounts, to allow childcare at home without significant loss of income.

The success of the measures is shown by the continuous work of both laboratories during the crisis. Besides the personal tragedy of a possible infection, the identified risk to the company has the consequence of a (partial) quarantine due to an infected person in contact with the staff and the consequent loss of work-power which might lead, in extreme cases, to a closure of the laboratory. According to the governmental regulation in Germany, if an infection occurs (confirmed by the health department), contact persons cat. 1 (more than 15 min. contact face to face) are identified and sent to quarantine. Other contact persons, e.g. contact persons cat. 2 (same room without face to face) must be identified quickly with the collaboration of the infected person and notified and, if necessary, sent in quarantine. In this case, there is a confirmed emergency plan that maintains the laboratory’s ability to work, defining replacements and alternative work-flow strategies.

It has been part of our strategy to validate all our measures with the relevant guidance documents made available by the official competent institutions. The German Federal Office for Public Safety and Civil Protection (Bundesamt für Bevölkerungsschutz und Katastrophenhilfe) has published a guide, “Crisis Management in Companies, 9-point Checklist” especially for critical infrastructure companies in the CoVid-19 crisis.

Having been classified as a core business enterprise (Spain) and “relevant to the system” (Germany), we consider it important to use them as a reference to confirm our level of alignment with your proposal for crisis management.

An important effect, relevant to any leader in times of crisis, is that the confirmation of all points of such a checklist provides certain peace of mind regarding the question: Have we done everything we could?

Moving Towards Greater Competency in Cannabis Testing

By Ravi Kanipayor
No Comments

While legalization of recreational cannabis remains in a fluid state in the United States, the medical application of cannabis is gaining popularity. As such, the  diversification of  pharmaceutical and edible cannabis products will inevitably lead to increased third party testing, in accordance with Food and Drug Administration (FDA) mandates. Laboratories entering into cannabis testing, in addition to knowing the respective state mandates for testing procedures, should be aligned with Federal regulations in the food and pharmaceutical industries.

In 2010, the American Herbal Products Association (AHPA)1 established a cannabis committee with the primary objective of addressing issues related to the practices and safe use of legally-marketed cannabis and cannabis-related products. The committee issued a set of recommendations, outlining best practices for the cultivation, processing, testing and distribution of cannabis and cannabis products. The recommendations for laboratory operations sets some basic principles for those performing analysis of cannabis products. These principles, complementary to existing good laboratory practices and international standards, focus on the personnel, security, sample handling/disposal, data management and test reporting unique to laboratories analyzing cannabis samples.

As local and federal regulations continue to dictate medical and recreational cannabis use, many will venture into the business of laboratory testing to meet the demands of this industry. Thus, it is not surprising that cannabis producers, distributors and dispensaries will need competent testing facilities to provide reliable and accurate results. In addition, our understanding of cannabis from an analytical science perspective will derive from test reports received from these laboratories. Incorrect or falsified results can be costly to their business and can even lead to lawsuits when dealing with consumer products. Examples of fines and/or suspensions related to incorrect/false reporting of results have already gained coverage in news media. This sets up the need for the cannabis industry to establish standardized protocols for laboratory competency.

The international standard, ISO 17025 – ‘General requirements for the competence of testing and calibration laboratories’ – plays an important role in providing standard protocols to distinguish labs with proven quality, reliability and competency. The industry needs to rely not only on the initial accreditation received, but also on the ongoing assessment of the labs to ensure continuous competency.

Receiving accreditation involves an assessment by an International Laboratory Accreditation Cooperation (ILAC) recognized accrediting body, which ensures that laboratories have the competency, resources, personnel and have successfully implemented a sound quality management system that complies with the international standard ISO/IEC 17025:2017. This ISO standard is voluntary, but recognized and adopted globally by many industries for lab services. Cannabis companies can ensure that the test services they receive from accredited laboratories will meet the requirements of the industry, as well as the state and federal regulatory agencies. The International Organization for Standardization (ISO) is an independent, non-governmental organization with over 160 memberships of national standards bodies, and all with a unified focus on developing world-class standards for services, systems, products, testing to ensure quality, safety, efficiency and economic benefits.

ILAC is a non-profit organization made up of accreditation bodies (ABs) from various global economies. The member bodies that are signatories to the ILAC Mutual Recognition Arrangement (ILAC MRA) have been peer evaluated to demonstrate their competence. The ILAC MRA signatories, in turn, assess testing labs against the international standard, ISO/IEC 17025 and award accreditation. Accreditation is the independent evaluation of conformity assessment in accordance with the standard and related government regulations to ensure the lab carry out specific activities (called the ‘Scope’) impartially and competently. Through this process, cannabis industry stakeholders and end users can have confidence in the test results they receive from the labs.

Understanding the principles of accreditation and conformity to ISO standards is the beginning of the ISO 17025 accreditation process. Similar to other areas of testing, accreditation gives cannabis testing labs global recognition such that their practices meet the highest standards in providing continuous consistency, reliability and accuracy.

Many government agencies (state and federal) in the US and around the world are mandating cannabis testing laboratories to seek accreditation to ISO/IEC 17025:2017, in an effort to standardize their practice and provide the industry with needed assurance. Conformance with the standard enables labs to demonstrate their competency in generating reliable results, thereby providing assurance to those who hire their services.

Testing of cannabis can be very demanding and challenging given that state and federal regulations require that the performance and quality of the testing activities must provide consistent, reliable and accurate results. Hence, labs deciding to set up cannabis testing will have to take extra care in setting up a laboratory facility, acquiring all necessary and appropriate testing equipment, hiring qualified and experience staff and developing and implementing test methods to ensure the process, sample throughput, data integrity and generated output are continuously reliable, accurate and meet the need of the clients and requirements of the regulatory bodies. This demands the lab to establish and implement very sound quality assurance program, good laboratory practices and a quality management system (QMS).

Some expected challenges are:

  1. Standardization of test methods and protocols
    1. Since there is no federal guidance in standardization of test methods and protocols for cannabis testing in US, it is challenging for laboratories to research and validate other similar, established methods and gain approval from the local and state authorities.
  2. Facility
    1. Cannabis testing activities must be physically isolated from other testing activities for those labs conducting business in other areas of testing such as environment, food, mining, etc.
    2. Microbiological testing requires additional physical isolation within the testing facility, maintaining sterility of the environment, test area and test equipment.
  3. Equipment
    1. The test equipment such as Chromatographs (GC/LC), Spectrometers (ICP-MS, ICP-OES, UV-Vis), and other essential analytical instruments must meet the specifications required to detect and quantify and statistically justify the test parameters at the stipulated concentration levels. That means the limit of detection and limit of quantitation of each parameter must be well below the regulatory limits and the results are statistically sound.
    2. Calibration, maintenance and operation of analytical equipment must be appropriate to produce results traceable to international standards such as International System of Units and National Institute of Standards and Technology (SI and NIST).
  4. Staff
    1. The qualification and experience of the staff should ensure standard test methods are implemented and verified to meet the specifications.
    2. They should have a sound understanding of the QA/QC protocols and effective implementation of a quality management system which conforms to ISO/IEC 17025:2017 standard.
    3. Staff should be properly trained in all standard operating procedures (SOPs) and receiving schedule re-training as needed. Training should be accurately documented.
  5. QMS
    1. The QMS should not only meet the requirements of ISO 17025, but also be appropriate to the scope of the laboratory activities. Such a system must be planned, implemented, verified and continuously improved to ensure effectiveness.

Finally, stakeholders should seek expert advice in establishing a cannabis testing lab prior to initiating the accreditation. This can be achieved through a cyclic PLAN-DO-CHECK-ACT process. Labs that are properly established can attain the accreditation process in as little as 3-5 months. An initial ‘Gap Analysis’ can be extremely helpful in this matter.

IAS, an ILAC MRA signatory and international accrediting body based in California is one such organization that provides training programs for those interested in attaining accreditation to ISO/IEC 17025:2017. It is a nonprofit, public-benefit corporation that has been providing accreditation services since 1975. IAS accredits a wide range of companies and organizations including governmental entities, commercial businesses, and professional associations worldwide. IAS accreditation programs are based on recognized national and international standards that ensure domestic and/or global acceptance of its accreditations.2


References

  1. American Herbal Products Association , 8630 Fenton Street, Suite 918 , Silver Spring, MD 20910 , ahpa.org.
  2. International Accreditation Services, iasonline.org.

Kaycha Labs Named Designated Lab for Florida’s Hemp Program

By Cannabis Industry Journal Staff
No Comments

Last week, Kaycha Labs, a cannabis testing laboratory company based in Florida, announced that they have executed an agreement with the Florida Department of Agriculture & Consumer Services (FDACS) to be the first “Designated Compliance Laboratory” for the state of Florida’s new hemp program.

As part of the agreement, Kaycha Labs will be procuring samples for the mandatory compliance testing program, as well as providing the required potency analysis for the Division of Plant Industry (an office under the FDACS).

The USDA recently approved the hemp program under the FDACS, and with that comes a host of regulations that producers need to follow.

Florida’s program requires a “designated approved representative” to go out in the field and collect compliance samples for testing from hemp licensees. Those samples then get tested to ensure they have less than 0.3% THC, per state and federal requirements.

Cynthia Brewer, vice president of Kaycha Labs, says this new regulatory framework will help a lot of stakeholders. “I am thrilled that Florida has created a regulatory framework that incorporates both well-defined procedures and high standards,” says Brewer. “Everyone benefits – consumers are protected and hemp producers become known for as- advertised, quality product. All of us at Kaycha are looking forward to working with both and the cultivators and the Department of Plant Industry.”

HACCP

HACCP for Cannabis: A Guide for Developing a Plan

By Radojka Barycki
1 Comment
HACCP

Hazard Analysis and Critical Control Points (HACCP) is a systematic approach that evaluates hazards that may potentially be present in food products that can harm the consumer. The process used to manufacture the product is evaluated from raw material procurement, receiving and handling, to manufacturing, distribution and consumption of the finished product1. The documented process is what is known as HACCP plan. Although HACCP was designed to evaluate hazards in foods, it can be used to assess or evaluate hazards that may potentially be present in cannabis consumable products (edibles and vaping) that can cause harm to the consumer.

HACCP plan development requires a systematic approach that covers 5 preliminary steps and 7 principles. A systematic approach means that each step must be followed as outlined. Skipping a step will result in a HACCP plan that most likely will be ineffective to control potential hazards in the product.

The 5 preliminary steps are:

  1. Establish a HACCP team
  2. Describe the product
  3. Establish the intended use of the product
  4. Develop a flow diagram
  5. Verify the flow diagram

The 7 Principles are:HACCP

  1. Conduct a hazard analysis
  2. Identify the critical control points (CCPs)
  3. Establish critical limits (CL)
  4. Establish monitoring procedures
  5. Establish corrective actions
  6. Establish verification procedures
  7. Establish records and record keeping procedures1,2

It is important to mention that HACCP plans are supported by programs and procedures that establish the minimum operational and sanitary conditions to manufacture safe products. These programs and procedures are known as pre-requisite programs (PRP) or preventative controls1,2.

Figure 1. Flow Diagram

A multidisciplinary team must be established in order to ensure that all inputs of the product manufacturing process are considered during the hazards analysis discussions. The description of the product and its intended use provides detail information on ingredients, primary packaging material, methods of distribution, chemical characteristics, labeling and if any consumer might be vulnerable to the consumption of the product. A verified flow diagram is an accurate representation of the different steps followed during the product manufacturing process and will be used to conduct a hazard analysis. An inaccurate flow diagram will set the stage for an inadequate HACCP plan. Therefore, it is important that the HACCP team members verify the flow diagram. Figure 1 is a flow diagram for a fictional infused apple juice manufacturing plan that I will be using as an example.

The hazard analysis is the backbone of the HACCP plan. There are two elements that must be considered when conducting the hazard analysis:

  • Identification of the hazard associated with the ingredient(s) and/or the product manufacturing steps. These hazards have been categorized as: Biological, chemical (including radiological) and physical. Biological, chemical and physical hazards should be considered for each ingredient, primary packaging and process step. Also, it is important that the team is specific as to what hazard they are referring to. I often find that biological hazards are identified as “pathogens” for example. The team has to be specific on which pathogen is of concern. For example, if you are processing apple juice, the pathogens of concern are pathogenic coli and Salmonella sp. However, if you are processing carrot juice, you need to add Clostridium botulinum as a biological hazard also. If the choice of method to eliminate the hazards is pasteurization for example, the processing temperature-time combinations will differ greatly when manufacturing the apple juice vs. the carrot juice as C. botulinum is an organism that can sporulate and, therefore, is harder to kill.
  • Characterization of the hazard. This implies determining the significance of the potential hazard based on the severity of the consequence if it is consumed and the likelihood of occurrence in the ingredient or process step. Only steps in the process that has significant hazards should be considered further.
Table 1. Ingredient Hazard Analysis

In my professional experience, the hazard analysis is one of the most difficult steps to achieve because it requires the expertise of the multidisciplinary team and a lot of discussion to get to the conclusion of which hazard is significant. I find that a lot of teams get overwhelmed during this process because they consider that everything in the process may represent a hazard. So, when I am working with clients or providing training, I remind everyone that, in the bigger scheme of things, we can get stricken by a lighting in the middle of a thunderstorm. However, what will increase our chances would be whether we are close or not to a body of water for example. If I am swimming in the middle of a lake, I increase my chances to get stricken by the lighting. In comparison, if I am just sitting in my living room drinking a cup of coffee during the thunderstorm, the likelihood of being stricken by a lighting is a lot less. The same rationale should be applied when conducting the hazard analysis for manufactured products. You may have a hazard that will cause illness or death (high on the severity chart) but you also may have a program that mitigates the likelihood of introducing or having the hazard. The program will reduce the significance of the hazard to a level that may not need a critical control point to minimize or eliminate it.

Table 2. Process Hazard Analysis (1)

Clear as mud, right? So, how would this look like on the infused apple juice example? Table 1 shows the hazard analysis for the ingredients. Tables 2 and 3 show the hazard analysis for the part of the process. In addition, I have identified the CCPs: Patulin testing and pasteurization. There is a tool called the CCP decision tree that is often used to determine the CCPs in the process.

Once we have the CCPs, we need to establish the critical limits to ensure that the hazard is controlled. These limits must be validated. In the case of Patulin, the FDA has done several studies and has established 50 ppm as the maximum limit. In the case of pasteurization, a validation study can be conducted in the juice by a 3rd party laboratory. These studies typically are called thermal death studies (TDS) and provide the temperature and time combination to achieve the reduction of the pathogen(s) of concern to an acceptable level that they do not cause harm. In juice, the regulatory requirement is a 5-log reduction. So, let’s say that the TDS conducted in the infused apple juice determined that 165°F for 5 seconds is the critical limit for pasteurization. Note that the 5 seconds will be provided by the flow of the product through the holding tube of the pasteurizer. This is measured based on flow in gallons per minute.

Table 3. Process Hazard Analysis (2)

Monitoring is essential to ensure that the critical limits are met. A monitoring plan that outlines what, how, when and who is responsible for the monitoring is required.

Ideally, the system should not fail. However, in a manufacturing environment, failures can happen. Therefore, it is important to pre-establish steps that will be taken to ensure that the product is not out of the control of the facility in the event of a deviation from the HACCP plan. These steps are called corrective actions and must be verified once they are completed. Corrective actions procedures must address the control of the product, investigation of the event, corrective actions taken so the deviation doesn’t reoccur and product disposition.

Table 4. HACCP Plan Summary

Verification activities ensure that the HACCP plan is being followed as written. Typically, verification is done by reviewing the records associated with the plan. These records include but are not limited to monitoring records, calibration records, corrective action records, and preventive maintenance records for equipment associated with the CCPs. Record review must be done within 7 working days of the record being produced.

Finally, establishing records and record keeping procedures is the last step on developing HACCP plans. Records must be kept in a dry and secure location.

Table 4 show the summary of the HACCP plan for the infused apple juice example.

For more information on how to develop a HACCP plan for your facility, read the resources below:

  1. HACCP Principles and Application Guidelines – The National Advisory Committee on Microbiological Criteria for Foods (NACMCF)
  2. ASTM D8250-19: Standard Practice for Applying a Hazard Analysis Critical Control Points (HACCP) Systems for Cannabis Consumable Products