Tag Archives: light

Soapbox

Taking the Guesswork out of Horticultural Lighting

By Leora Radetsky
No Comments

With 33 states and the District of Columbia having passed laws legalizing marijuana in some form, cannabis cultivation is quickly becoming a booming new business across much of the US. From an energy standpoint, unfortunately, it’s not easy being “green”.

New Frontier Data’s 2018 Cannabis Energy Report found that legal cannabis cultivation in the US consumes approximately 1.1 million megawatt hours of electricity annually – enough to power 92,500 homes or a community the size of Newark, NJ, and accounts for carbon emissions equivalent to that of 92,600 cars. And that consumption is forecasted to increase 162 percent from 2017 to 2022. The report recommended that the industry “evaluate energy-efficient and renewable energy technologies” to nip this challenge in the bud.

Growers seeking to reduce their electricity usage through more efficient lighting face a confusing landscape of options, however. It can be difficult to know what will save electricity and work well for their operations. Technology is advancing quickly and questions abound, from how long a fixture will last and whether a manufacturer’s claims about efficacy are accurate to the effectiveness of various wavelengths for growing a particular plant.

Here’s the good news: there are reliable, third-party lighting and safety standards to help indoor growers make the leap from old-school lighting to state-of-the-art light-emitting diodes (LEDs) that use a fraction of the electricity and are increasingly effective for growing crops from cannabis to tomatoes. Here’s a closer look:

Most lighting fixtures in the North American market go through rigorous inspection by certified third-party testing labs. The first part of the check is for safety – an official UL safety standard tailored for the unique challenges of the greenhouse environment was recently released (UL 8800, the Standard for Horticultural Lighting Equipment and Systems). This standard and similar safety certifications at other major labs address wiring, environmental conditions, ingress protection and worker safety related to prolonged photobiological exposure to the eyes and skin. Growers should always ask a fixture manufacturer about safety certification specifically targeted for horticultural environments.

Next on the standards checklist for horticultural fixtures is performance testing. This often happens at the same labs that do safety testing, but is designed to verify efficacy, output, spectrum and other important performance variables. Commercial labs are certified for specific standards, so that a test on a fixture is repeatable at any other lab certified to the same standard. This performance testing results in a report summarizing items like photosynthetic photon flux (PPF), input power (watts), photosynthetic flux efficacy (PPE, measured in μmol/J or micromoles of photosynthetic photons per joule of electrical input power), and spectral content (flux per nanometer (nm) between 400 and 700 nm).

Then, there are flux maintenance standards (such as IES LM-80 and IES TM-21) that help make sure the photosynthetic light output of LED products degrades at an acceptable rate to make a grower’s investment worthwhile. The testing and calculation methods that go into these standards were painstakingly developed through a consensus of knowledgeable lighting stakeholders. A key difference between general lighting and plant lighting, however, is how flux maintenance is measured and benchmarked – the bar is significantly higher for plants compared to people since their metabolism and growth are dependent on the light spectrum and amount.

A plant in flowering under an LED fixture

What’s described above just scratches the surface of the detailed testing used to determine and communicate performance features for commercial horticultural lighting fixtures. There’s a lot of important information to know, but it takes an informed reader to analyze this information and use it to select appropriate horticultural lighting. Our organization, the DesignLights Consortium (DLC), strives to make the vetting process easier for everyone, freeing up growers to focus on their core business.

In the early days of LED lighting, electric utilities had to compare these different lighting factors and reports to inform their energy efficiency rebate/incentive programs. The DLC was founded to fill this need, serving as a central clearinghouse for setting energy efficiency and other product performance minimum standards, and to evaluate products against those standards. Then and now, lighting products that pass review qualify for an online qualified products list (QPL) that utilities use to quickly and accurately incentivize high-performing products.

Credit: ProGrowTech

With its new minimum performance standards for horticultural light fixtures, the DLC seeks to accelerate the adoption of new energy-saving LED fixtures in controlled agriculture environments. To be on the new DLC Horticultural QPL, an LED fixture must be at least 10 percent more efficacious than the best non-LED alternative – a 1,000-watt double-ended high-pressure sodium (HPS) fixture. It also must have a Q90 of 36,000 hours (the number of hours before the photon flux output depreciates to 90 percent), and its driver and fan (if included) must have a rated life of at least 50,000 hours.

Most importantly, every product is listed online in a searchable, filterable database to help growers and facility designers quickly narrow their options. For example, in a retrofit, a grower might know what PPF is needed from each fixture but might also need to stay within a power budget to avoid rewiring circuits. The DLC’s Horticultural QPL can be filtered to quickly find and compare conforming products.

When a new technology is introduced, there is always uncertainty about how to optimally apply it. The horticultural world is no different. We look forward to research supporting additional predictive metrics that allow us to take advantage of the full benefits of high-performance LED and controls technologies. In the meantime, the established standards described here allow for energy efficient and safe cultivation facilities where growers can confidently produce more with less.

Beyond THC: Encouraging Cannabinoid and Terpene Production with LEDs

By Andrew Myers
No Comments

For years, tetrahydrocannabinol (THC) got all the attention. While THC certainly delivers its own benefits (such as relaxation and pain relief), there’s a whole host of other – and often overlooked – compounds found in cannabis with important benefits as well. THC is truly only the tip of the iceberg when it comes to cannabis’s potential.

As the cannabis industry evolves with changing consumer tastes and developing medical research, growers may employ techniques to boost cannabinoid and terpene profiles in their harvests – beyond merely focusing on THC. Advanced LEDs allow growers to elicit specific biological responses in cannabis crops, including increased concentrations of these naturally occurring chemical compounds.

The Foundation of Cannabis’s Effects
Whether used medicinally or otherwise, cannabis has changed our society and many of our lives – and there’s a collection of naturally occurring chemical compounds, known as cannabinoids and terpenes, to thank.

  • The cannabinoids THC and CBD are the most common and well-researched, however they are accompanied by more than 200 additional compounds, including cannabinol (CBN), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), among others.
  • The cannabis plant also contains terpenes. These structures are responsible for giving flowers (including cannabis), fruits and spices their distinctive flavors and aromas. Common terpenes include limonene, linalool, pinene and myrcene.

Both cannabinoids and terpenes are found in the cannabis plant’s glandular structures known as trichomes. Look closely, and you’ll notice trichomes coating the cannabis flowers and leaves, giving the plant an almost frosty appearance.

macropistil/trichome
A macro view of the trichomes and pistils on the plant

Trichomes – which are found across several plant species – are a key aspect of a cannabis plant’s survival. The specific combination of metabolites produced by trichomes may attract certain pollinators and repel plant-eating animals. Moreover, trichomes (and specifically THC) may act as the plant’s form of sunscreen and shield the plant from harmful ultraviolet rays.

While they play an essential part in the cannabis plant’s lifecycle, trichomes are volatile and easily influenced by a range of environmental factors, including light, heat, physical agitation and time. Therefore, environment is a defining variable in the development of these important structures.

How LEDs Support Cannabinoid and Terpene Development in Crops
Spectrally tunable LEDs give indoor cannabis growers unparalleled control over their crops. As research has expanded about plants’ responses to the light spectrum, growers have discovered they are able to elicit certain physiological responses in the plant. This phenomenon is called photomorphogenesis. At its root, photomorphogenesis is a survival tactic – it’s how the plant responds to miniscule changes in its environment to increase the chances of reaching full maturity and, eventually, reproducing. While cultivated cannabis plants won’t reproduce at an indoor setting, growers can still use the light spectrum to encourage strong root and stem development, hasten the flowering process and the development of bigger, brightly colored flowers.

It makes sense that using the proper light spectrums may also have an impact on the production of specific cannabinoids and terpenes – an important factor when responding to highly specific consumer needs and desires, both within medical and adult-use markets.

Here are a few more reasons why utilizing full-spectrum LEDs can lead to higher quality cannabis:

  • Lower Heat, but the Same Intensity.
    When compared to HPS, fluorescent and other conventional lighting technologies, LEDs have a much lower heat output, but provide the same level of intensity (and often improved uniformity). This represents an enormous advantage for cannabis cultivators, as the lights can be hung much closer to the plant canopy without burning trichomes than they would be able to with other lighting technologies.
  • UV Light. Cannabinoids and terpenes are part of the cannabis plant’s natural defense mechanism, so it makes sense that lightly stressing plants can boost cannabinoid and terpene numbers. Some studies illustrate an increase in UV-B and UV-A light can lead to richer cannabinoid and terpene profiles.1 It’s a fine line to walk, though – too much UV can result in burned plants, which leads to a noticeable drop in cannabinoids.
  • Full-Spectrum Capabilities. The cannabis plant evolved over millions of years under the steady and reliable light of the sun. Full-spectrum is the closest thing to natural sunlight that growers will be able to find for indoor growing – and they’ve been shown to perform better in terms of cannabinoid development. A 2018 study titled “The Effect of Light Spectrum on the Morphology and Cannabinoid Content for Cannabis Sativa L.,” explored how an optimized light spectrum resulted in increased expression of cannabinoids CBG and THCV.2

This is the most important tip for indoor growers: your plants’ environment is everything. It can make or break a successful harvest. That means cultivators are responsible for ensuring the plants are kept in ideal conditions. Lights are certainly important at an indoor facility, but there are several other factors to consider that can affect your lights’ performance and the potency of your final product. This includes your temperature regulation, humidity, the density of plants within the space, CO2 concentration and many other variables. For the best results, your lights should be fully aligned with other environmental controls in your space. Nothing sabotages a once-promising crop like recurrent issues in the indoor environment.

solsticegrowop_feb
Indoor cultivation facilities often use high powered lights that can give off heat

Cannabinoids and terpenes take time to develop – so cultivators will want to avoid harvesting their plants too early. On the other hand, these compounds begin to degrade over time, so growers can’t wait too long either.

Cultivators seeking potent cannabinoid and terpene profiles must find a happy medium for the best results – and the best place to look is where cannabinoids and terpenes develop: the trichomes. With a microscope, cultivators can get up close and personal with these sparkly structures. Younger plants begin with clear trichomes, which eventually become opaque and change to amber. Once your plants show amber-hued trichomes, they’re ready for harvest.

The truth here is that there’s no perfect formula to elicit show-stopping cannabinoids and dizzying terpenes with every harvest. A lot of cannabis cultivation is based around trial-and-error, finding what works for your space, your business and your team. But understanding the basics around indoor environmental controls like lighting and temperature – and how they can affect the development of cannabinoids and terpenes – is an excellent place to start. Using high quality equipment, such as full-spectrum LED lighting can boost both cannabinoid and terpene production, resulting in richer, more potent and higher quality strains.


References:

  1. Lyndon, John, Teramura, Alan H., Coffman, Benjamin C. “UV-B Radiation Effects on Photosynthesis, Growth and Cannabinoid Production of Two Cannabis Sativa Chemotypes.” August 1987. Photochemistry and photobiology. Web. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1987.tb04757.x?&sid=nlm%3Apubmed
  2. Magagnini G., Grassi G., Kotiranta, S. “The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L.” 2018. Medical Cannabis and Cannabinoids. Web: https://www.karger.com/Article/FullText/489030

Risks of Bare Concrete Flooring in Cannabis Grow Rooms & Greenhouses

By Kendall Youngworth
1 Comment

With legalization rapidly increasing across states, the cannabis market is exploding. And with estimates of sales in the billions, it’s no surprise that greenhouses and grow rooms are emerging everywhere. As growers and extracting facilities continue to expand one important consideration that most tend to underestimate, is how flooring can impact both their production and product. Bare concrete is often a popular choice in cannabis facilities, as there are typically very minimal costs−if any at all−associated with preparing it for use. However, concrete floors can pose unique challenges when left untreated, which could inadvertently create unforeseen problems and unexpected costs.

Understanding the Risks of Bare Concrete Flooring

Whether a facility is growing or extracting, the proper flooring can play a critical role in helping maintain optimal safety and sanitation standards, while simultaneously contributing to production. That’s why its important for growers and extractors to know and understand the potential risks associated with bare concrete.

Concrete is porous: While concrete is a solid material, people may forget that it is porous. Unfortunately, these pores can absorb liquids and harbor small particles that spill on the floor. They create perfect hiding places for bacteria and other pathogens to proliferate. Pathogens can then contaminate product within the facility, causing a halt on production, and/or a potential product recall. This can incur unexpected costs associated with shutdown time and loss of product.

Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Concrete can be damp: When in a facility with an untreated concrete floor, at times the slab can feel slightly wet or damp to touch. This is due to moisture within the concrete that can eventually work its way up to the surface of the slab. When this happens, items that are placed on top of the floor can be damaged by trapped moisture above the slab and below the object. When this happens, if a product is not protected properly, it can be damaged.

Concrete is dark and unreflective: An untreated concrete slab can often make a room feel dark and it does not reflect lighting within the room. This can result in the need for extra lights and electricity to properly grow cannabis.

Concrete lacks texture: When working in areas where water and other liquids can fall to the ground and accumulate, flooring with traction can play a key role in helping aid against slip and fall incidents. Untreated concrete typically does not provide sufficient texture and can become very slippery when wet.

The Benefits of Bare Concrete Flooring

While the previously mentioned risks can be associated with bare concrete flooring, there is an upside to the situation! Concrete is the perfect substrate for adding a coating that is built to withstand the industry’s demands.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

With the application of a fluid-applied or resinous floor coating, the risks of bare concrete flooring can be mitigated. There are a variety of resin and fluid-based coating systems that can be applied, such as:

  • Epoxy and Urethane Systems
  • Urethane Mortar Systems
  • Decorative Quartz Systems
  • Decorative Flake Systems

These durable coatings have numerous benefits and can offer:

  • Protection against the proliferation bacteria and other pathogens: Unlike porous concrete, a smooth and virtually seamless floor coating eliminates the little crevices where pathogens can grow. This in turn helps aid against the growth of bacteria, keeping hygiene standards at the forefront and grow rooms in full operations.
  • Protection against moisture damage: As moisture within the concrete can move upward to the surface of the slab, there are moisture mitigation coating systems, that keep it trapped below the surface, thus helping toprotect items placed on the floor.
  • Brighter spaces and light reflection: Installing a floor coating that is light in color, such as white or light gray, can help brighten any space. The benefits of this are twofold: First, it can help with visibility, helping employees navigate the space safely. Secondly, light reflectivity of the flooring improves lighting efficiency, resulting in fewer light fixtures and smaller electric costs.
  • Texture options to help aid against slip and fall incidents: Floor coating systems can offer a variety of texture options−from light grit to heavy grit−depending on how much accumulated water and foot traffic the area receives. Without additional texture in wet areas, slip and fall incidents and injuries are inevitable.
  • A wide range of colors and decorative systems: These coating systems can be designed to match the aesthetics of the building or corporate colors. Some manufacturers even offer color matching upon request. When it comes to colors, the options are virtually endless.

Choosing the Right Flooring: Considering Bare Concrete

Choosing the right flooring for a cannabis greenhouse or processing facility requires important consideration as every grow room and greenhouse is different. Bare concrete is a popular flooring option for manufacturing and processing facilities across industries, however, as discussed, it can pose unique challenges due to its innate nature. That said, by taking the right steps to ensure that the concrete substrate is properly sealed, it can then be an effective and hygienic flooring option, offering high durability and a longer life cycle.

Cannabusiness Sustainability

Designing More Sustainable Cannabis Facilities

By Sophia Daukus
No Comments

The topic of sustainability has grown in importance and priority for both consumers and regulators. From reducing emissions to lowering energy and water consumption, cannabis growing facilities face unique challenges when it comes to designing sustainable operations. Moreover, as the cannabis market grows and usage becomes more accepted, regulatory bodies will continue to increase the number of directives to help ensure the safety and quality of cannabis products.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

Ubiquitous throughout cannabis grow rooms and greenhouses, flooring can be easily overlooked, yet offers an economical way to create more sustainable facilities. Many of today’s grow rooms are located in old retrofitted warehouses or former industrial buildings that were designed without sustainability or environmental concerns in mind.

Combined with energy efficient lighting and more thoughtful water usage, flooring can help create a more efficient facility that not only improves business operations, but also contributes to a better bottom line.

Sustainability Challenges Facing Cannabis Facilities

Whether in an old warehouse space or a new structure designed from the ground up, cannabis businesses face unique operational challenges when it comes to sustainable best practices.

  • Energy Consumption: Like any indoor farm, lighting plays an important role in cannabis growing facilities. Traditional grow lights can utilize a large amount of electricity, putting a strain on the company budget as well as regional energy resources. Switching to highly-efficient LED lighting can help facilities reduce their consumption, while still maximizing crop yield.
  • Water Consumption: Among the thirstiest of flora, cannabis plants require consistent and plentiful watering for healthy and fruitful crop production.
  • Carbon Dioxide (CO2) Enrichment: In many cases, carbon dioxide is introduced into facilities to help enhance the growth of crops. However, this practice may pose safety and health risks for workers, the surrounding community and the planet at large. CO2 is a greenhouse gas known to contribute to climate change.

In order to head off upcoming regulatory restrictions, as well as to alleviate the mounting safety and health concerns, it behooves cannabis grow room managers and owners to explore alternatives for improving sustainability in their facilities.

Flooring Requirements for More Sustainable Cannabis Facilities

Spanning thousands or even hundreds of thousands of square feet throughout a facility, flooring can be a unique way to introduce and support sustainable practices in any grow room or greenhouse.

When seeking to improve operational efficiency and implementing the use of sustainable practices in cannabis facilities, look for flooring systems with the following characteristics:

  • Impervious Surfaces— Fertilizers, fungicides, and other chemicals can infiltrate porous unprotected concrete to leach through the slab matrix and into the soil and groundwater below. Non-porous flooring options, such as industrial-grade, fluid-applied epoxies and urethanes, are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.
  • Light-Reflective Finishes— Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms. By mirroring overhead lighting back upward, bright, light-reflective flooring can help minimize facilities’ reliance on expensive ceiling fixtures and electricity usage.
  • USDA, FDA, EPA, OSHA and ADA Compliancy— With cannabis industry regulations currently in flux, grow facilities that select food- and pharmaceutical-compliant flooring will be ahead of the game. Governing bodies in some states have already begun expanding the facility requirements of these sectors to the cannabis market.
  • Durable and Easy Care— Having to replace flooring every couple of years imposes high costs on businesses as well as the environment. Installation of many traditional types of flooring produces cut-off waste and requires landfill disposal of the old floor material. In contrast, by installing industrial-grade flooring systems that are highly durable and easy-to-maintain, facilities can count on long-term performance and value, while helping to minimize disposal costs and concerns.
Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Optimal flooring can help cultivation facilities reduce waste, improve the efficacy of existing lighting and lengthen floor replacement cycles for a better bottom line and a healthier environment. Additionally, having the right grow room floor can assist facilities in meeting regulatory requirements, help ensure production of quality products and improve the safety for consumers and staff.

Flooring Benefits for Employees and Consumers

Safety is paramount in any workplace. When it comes to the manufacture of foodstuffs and other consumed products, government oversight can be especially stringent. With the right compliant flooring in place, cultivation facilities can focus on the rest of their business, knowing that what’s underfoot is contributing to the safety of employees and their customers.

Here’s how:

  • Chemical Resistance— Floors can be exposed to a high concentration of chemicals, acids and alkalis in the form of fertilizers, soil enhancers and other substances. In processing locations, the proper disinfecting and sanitizing of equipment can require harsh solvents, detergents and chemical solutions, which can drip or spill onto the floor, damaging traditional flooring materials. It pays to select cannabis facility flooring with high chemical resistance to help ensure floors can perform as designed over the long term.
  • Thermal Shock Resistance— Optimal cannabis facility flooring should be capable of withstanding repeated temperature cycling. Slab-on-grade structures in colder climates may be especially vulnerable to floor damage caused by drastic temperature differences between a freezing cold concrete slab and the tropical grow room above. This extreme contrast can cause certain floor materials to crack, delaminate and curl away from the concrete substrate. The resulting crevices and uneven surfaces present trip and fall hazards to employees and leave the slab unprotected from further degradation. As an alternative, thermal shock-resistant floors, such as urethane mortar systems, furnish long-lived functionality even when regularly exposed to extreme temperature swings.
  • Humidity and Moisture Resistance— Traditional floor surfaces tend to break down in ongoing damp, humid environments. Cannabis facility flooring must be capable of withstanding this stress and more.
  • Pathogen Resistance— Undesirable microbes, fungi and bacteria can thrive in the moist, warm environments found in grow rooms. Floors with extensive grout lines and gaps provide additional dark, damp locations for pathogen growth. Fluid-applied flooring results in a virtually seamless surface that’s directly bonded to the concrete. Integral floor-to-wall cove bases can further improve wash down and sanitation.
  • Proper Slope and Drainage— Where food and/or pharmaceutical facility regulations have already been extended to cannabis operations, flooring is required to slope properly toward a floor drain. This prevents puddling, which can be a slip hazard as well as a microbe breeding ground. Unlike more typical materials, resinous flooring offers an economical solution for correcting floor slope wherever needed.

The Problems Presented by Traditional Flooring Options

Previously, cannabis growers often relied on traditional greenhouse-type flooring, including tamped down dirt floors, gravel or bare concrete. However, current and upcoming regulations are curtailing the use of these simple flooring options.

Growers often compare and contrast the benefits and value of traditional greenhouse flooring with more modern solutions, such as fluid-applied epoxy and urethane floors.

Dirt and gravel flooring offers little opportunity to properly sanitize, thus potentially inviting microorganism and pathogen invasion, contamination and costly damage. Growers who have turned to bare concrete floors face other concerns, including:

  • Unprotected concrete is inherently porous and therefore able to quickly absorb spilled liquids and moisture from the air. In addition, organic and synthetic fertilizers, fungicides, and chemicals can leach through the concrete floors, contaminating the groundwater, injuring the surrounding environment and wildlife.
  • Older slabs often lack an under-slab vapor barrier. Even in new construction, a single nail hole can render an under-slab barrier ineffective. In these situations, moisture from underneath the floor slab can move upward osmotically through the alkaline slab, leading to blistering and damage to standard commercial floor coverings.
  • Bare concrete floors can stain easily. These dark stains tend to absorb light instead of reflecting it, contributing to a potential increase in energy usage and cost.
  • The mold proliferation encouraged by the warmth and humidity of grow rooms can easily penetrate into the depths of unprotected slab surfaces, eventually damaging its structural integrity and shortening the usable life of the concrete.

While traditional greenhouse flooring options can initially seem less expensive, they frequently present long-term risks to the health of cannabis grow businesses. In addition, the performance of dirt, gravel and bare concrete floors runs counter to the industry’s commitment to reducing the carbon footprint of growing facilities.

Choosing Sustainable Grow Room Flooring

It’s no secret that the cannabis industry is undergoing enormous change and faces numerous environmental challenges. Luckily, optimal flooring options are now available to help growers economically increase their eco-friendly practices on many fronts. By focusing on quality resinous flooring, cannabis growers can get closer to meeting their sustainability goals, while simultaneously contributing to improved operation efficiency, enhanced yields and an increased bottom line.

Soapbox

The Stress of a Grower

By Carl Silverberg
2 Comments

Tell me that you can’t relate to this story.

You’re sitting down to dinner at a restaurant about ten minutes from where you work, finally relaxing after a tough day. You’ve set your environmental alerts on your plants; you have that peace of mind that the technology promised and you know that if anything goes wrong you’ll get notified immediately. As you’re looking at the menu, you receive an alert telling you that the temperature in one of your 2,000 square foot grow rooms has gone out of the safe range. Your mind starts to race, “It’s week seven, I’ve got 500 plants one week away from harvest, that’s 200 pounds of cannabis worth about $150,000-$200,000. Oh my God, what am I going to do?”

You’re doing all this at the dinner table and even though you’re not in a state of panic, you are extremely concerned. You need to figure out what’s going on. You check the graphing and see that over the past hour your humidity dropped and your temperature is gradually going up. Within the past ten minutes, the temperature has gone to 90 degrees. Your numbers tell you that the temperature in the room with $200,000 of cannabis is going up about five degrees every three minutes.

adamJgrow
Monitoring a large grow room can be a stressful task.

“I see this trend and can’t figure it out,” the grower relates. “Normally, the HVAC kicks on and I’d begin to see a downward trend on the graphs. I pre-set my trigger for 90 degrees. But, I’m not seeing that. What I AM seeing is the temperature gradually and consistently getting warmer without the bounce-back that I would expect once the HVAC trigger was hit. All I know is I better find out what’s causing all this and I better find out fast or my entire crop is gone.”

You go through the rest of the checklist from LUNA and you see that the lights are still on. Now, you’re starting to sweat because if the temperature in that room hits 130 and stays there for more than twenty minutes, you’re losing your entire crop. You have to walk in your boss’s office the next day and explain why, after all the time and money you put in over the past seven weeks, not only is all that money gone but so is the $200,000 he is counting on to pay salaries, expenses, and bank loans.

This is something you’ve been working on for seven straight weeks and if you don’t make the right decision, really quickly, when that room hits 130 degrees here’s what happens.

“My equipment starts to fail,” our grower continues. “The crop literally burns as the oils dry up and the crop is worthless. At 130 degrees, my grow lights essentially start to melt. All you can think of is that temperature going up five degrees every three minutes and you’re ten minutes from your facility. I need to leave that restaurant right now, immediately, because even if I get there in ten minutes the temperature is going to be almost 120 degrees while I’ve been sitting here trying to figure out what’s wrong.”

You run out to your car and you speed back to the facility. The grow room is now 125 degrees, you have maybe three or four minutes left to figure things out before you flush $200,000 down the drain. The first thing you do is turn off the grow lights because that’s your primary source of heat. Then, you check your HVAC panel and you realize it malfunctioned and shorted out. There’s the problem.

The real toll is the human cost. Once this happens, no grower ever wants to leave and go home or even go to dinner. It’s a horrible toll. It’s the hidden cost we don’t talk about. The grower opens up with his own personal experience.“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” 

“You think about the burden on the person that you bring in to replace you while you’re out of town and then you think about the burden on you if something goes wrong again. And you decide, it’s not worth it. The anxiety, the fear that it will happen again, it’s not worth it. So, you don’t go. I didn’t even see my sister’s new baby for eight months.”

Your desire to see your family, your desire to have a normal life; all of that goes out the window because of your desire to be successful in your job. It outweighs everything.

This is every grower. It’s why many farmers never leave their property. It just becomes a normal way of living. You just repeat it so much that you don’t even think about it. Why go on vacation if your stress level is higher than it is if you’re home. You’re constantly worried about your farm or your facility. The only way to escape it is to not go away at all.

“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” he tells us. “You don’t realize how stressful a lifestyle you live is until you step back and look at it. Or, if you have an alert system that allows you to pull back. That’s when you realize how difficult your life is. Otherwise, it just seems normal.”

As AI technology expands its footprint into agriculture, there will be more tools to help mediate situations like this; more tools to give you a more normal life. It’s one of the reasons we got into the business in the first place.

Keeping Your Environment Clean: Preventative Measures Against Contamination

By Jeff Scheir
2 Comments

For years we have heard about and sometimes experienced, white powdery mildew when growing cannabis. It is a problem we can see, and we have numerous ways to combat it. But now more and more states are introducing regulatory testing on our harvests and they are looking for harmful substances like Escherichia coli., Aspergillis Fumigatus, Aspergillis terreus, …  just to name a few. Mycotoxins, mold and bacteria can render a harvest unusable and even unsellable- and you can’t see these problems with the naked eye. How much would it cost you to have to throw away an entire crop?

You bring in equipment to control the humidity. You treat the soil and create just the right amount of light to grow a superior product. You secure and protect the growing, harvesting, drying and production areas of your facility. You do everything you can to secure a superior yield… but do you?

Many of the organisms that can hurt our harvest are being multiplied, concentrated and introduced to the plants by the very equipment we use to control the growing environment. This happens inherently in HVAC equipment.

Your air conditioning equipment cools the air circulating around your harvest in a process that pulls moisture from the air and creates a perfect breeding ground in the wet cooling coil for growth of many of the organisms that can destroy your yield. As these organisms multiply and concentrate in the HVAC system, they then spew out into the very environment you are trying to protect at concentrated levels far greater than outside air. In effect, you are inoculating the very plants you need to keep safe from these toxins if you want to sell your product.

The cannabis industry is starting to take a page from the healthcare and food safety industries who have discovered the best way to mitigate these dangers is the installation of a proper UVC solution inside their air conditioning equipment.

Why? How does UVC help? What is UVC?

What is Ultraviolet?

Ultraviolet (UV) light is one form of electromagnetic energy produced naturally by the sun. UV is a spectrum of light just below the visible light and it is split into four distinct spectral areas – Vacuum UV or UVV (100 to 200 nm), UVC (200 to 280 nm), UVB (280 to 315 nm) and UVA (315 to 400 nm). UVA & UVB have been used in the industry to help promote growth of cannabis.

What is UVC (Ultraviolet C)?

The entire UV spectrum can kill or inactivate many microorganism species, preventing them from replicating. UVC energy at 253.7 nanometers provides the most germicidal effect. The application of UVC energy to inactivate microorganisms is also known as Germicidal Irradiation or UVGI.

UVC exposure inactivates microbial organisms such as mold, bacteria and viruses by altering the structure and the molecular bonds of their DNA (deoxyribonucleic acid). DNA is a “blue print” these organisms use to develop, function and reproduce. By destroying the organism’s ability to reproduce, it becomes harmless since it cannot colonize. After UVC exposure, the organism dies off leaving no offspring, and the population of the microorganism diminishes rapidly.

Ultraviolet germicidal lamps provide a much more powerful and concentrated effect of ultraviolet energy than can be found naturally. Germicidal UV provides a highly effective method of destroying microorganisms.

To better understand how Steril-Aire UVC works, it is important to understand the recommended design. Directed at a cooling coil and drain pan, UVC energy destroys surface biofilm, a gluey matrix of microorganisms that grows in the presence of moisture. Biofilm is prevalent in HVAC systems and leads to a host of indoor air quality (IAQ) and HVAC operational problems. UVC also destroys airborne viruses and bacteria that circulate through an HVAC system and feed out onto the crop. HVAC cooling coils are the largest reservoir and amplification device for microorganisms in any facility.

For the most effective microbial control, UV germicidal Emitters are installed on the supply side of the system, downstream from the cooling coil and above the drain pan. This location provides more effective biofilm and microbial control than in-duct UVC installations. By irradiating the contaminants at the source – the cooling coils and drain pans – UVC delivers simultaneous cleaning of surface microorganisms as well as destruction of airborne microorganisms and mycotoxins. Steril-Aire patented this installation configuration in 1998.

The recirculating air in HVAC systems create redundancy in exposing microorganisms and mycotoxins to UVC, ensuring multiple passes so the light energy is effective against large quantities of airborne mycotoxins and cleaning the air your plants live by.

Where are these mycotoxins coming from?

Aspergillus favors environments with ample oxygen and moisture. Most pre-harvest strategies to prevent these mycotoxins involve chemical treatment and are therefore not ideal for the cannabis industry.

Despite the lack of cannabis protocols and guidelines for reducing mycotoxin contamination, there are some basic practices that can be utilized from other agricultural groups that will help avoid the production of aflatoxins and ochratoxins.

When guidelines are applied correctly to the cannabis industry, the threat of aflatoxin and ochratoxin contamination can be significantly reduced. The place to start is a clean air environment.

Design to win

The design of indoor grow rooms for cannabis is critical to the control of airborne fungal spores and although most existing greenhouses allow for the ingress of fungal spores, experience has shown that they can be retrofitted with air filters, fans, and UVC systems to make them relatively free of these spores. Proper designs have shown clearly that:

  1. Prevention via air and surface disinfection using germicidal UVC is much better than chemical spot treatment on the surface of plants
  2. High levels of air changes per hour enhance UVC system performance in reducing airborne spores
  3. Cooling coil inner surfaces are a hidden reservoir of spores, a fertile breeding ground and constitute an ecosystem for a wide variety of molds. Continuous UVC surface decontamination of all coils should be the first system to be installed in greenhouses to reduce mildew outbreaks.

UVC can virtually eliminate airborne contaminants

Steril-Aire graphic 4

Steril-Aire was the first and is the market leader in using UVC light to eliminate mold and spores to ensure your product will not be ruined or test positive.

  1. Mold and spores grow in your air handler and are present in air entering your HVAC system.
  2. Steril-Aire UVC system installs quickly and easily in your existing system.
  3. The Steril-Aire UVC system destroys up to 99.999% of mold/spores.
  4. Plants are less likely to be affected by mold…with a low cost and no down time solution.

It’s time to protect your harvest before it gets sick. It’s time to be confident your yield will not test positive for the contaminants that will render it unusable. It’s time to win the testing battle. It’s time for a proper UVC solution to be incorporated throughout your facilities.

Product Release: Illumitex Launches HarvestEdge XO Light Fixtures

By Aaron G. Biros
No Comments

According to a press release yesterday, Illumitex, an industry-leading LED lighting manufacturer and digital horticulture company, announced the release of their newest lighting technology, the Illumitex HarvestEdge Extra Output (XO) LED Horticultural Fixture. This light fixture is the latest advancement of their LED technology, which they claim can help growers maximize their yield considerably.

The HarvestEdge Extra Output (XO) LED Horticultural Fixture

The fixture comes with a 0-10 dimming capability and proven Wet Rating, meaning it is designed and proven to operate normally in a high-humidity environment. Debuted during the NCIA Seed to Sale Show in Boston, MA on February 12th, the company says the XO LED is the first true 1:1 replacement for high pressure sodium (HPS) lights, consuming about 36% less energy.

We caught up with a few members of the Illumitex team at the conference to find out more about the technology and its applications. According to John Spencer, CCO/EVP of Sales & Marketing at Illumitex, their technology has been used by hundreds of grow operations over the past 8 years. “This light was designed with a higher light output for greenhouses, particularly in Canada where the mounting heights are upwards of 7 meters,” says Spencer. “We are minimizing shadowing in the greenhouse, giving growers the opportunity to supplement their sunlight appropriately.” He says they are specifically designed with commercial scale use in mind.

According to Yan Ren-Butcher, Ph.D., Director of Horticulture Science at Illumitex, the light has the highest efficacy on the market right now. “We designed the specific wavelengths and best red, blue and green ratios optimal for photosynthesis,” says Ren-Butcher. “This product launch is based on years and years of experience in horticultural applications, our knowledge in the field of cannabis cultivation and the latest in LED technology, with the highest efficacy in the industry to date.”

Soapbox

Are LED Grow Lights Worth It?

By Dr. Zacariah Hildenbrand, Robert Manes
10 Comments

There really is no question that Light Emitting Diodes (LEDs) work, but just how well do they work?

For the last 50+ years, indoor cannabis cultivators have used High Pressure Sodium (HPS) lights to illuminate their flowering crops. This technology was developed for, and is still used, as street lighting and there really hasn’t been a fundamental change to the output in the last half century.LED technology showed great promise to solve some of the primary drawbacks to the use of HPS technology for indoor cannabis cultivation. 

We are often asked why this technology was used to grow cannabis, and the answers are simple: 1) due to strict legislation and even stricter penalties for growing cannabis, growers wished to move their crops indoors, and, 2) there really hasn’t been another technology that would allow us to cheaply place 400, 600, or even 1000W of light on a crop. In addition, HPS technology is rich in certain frequencies of red light, which is so important to flowering crops. Unfortunately, HPS lamps have their drawbacks, such as high heat output and lack of other “colors,” along the lighting spectrum. In fact, up to 95% of light produced by an HPS lamp is emitted in the infrared range, which we perceive as heat.

Enter the Light Emitting Diode. LED technology showed great promise to solve some of the primary drawbacks to the use of HPS technology for indoor cannabis cultivation. The ability to manipulate spectrum, precision delivery of light, elimination of dangerous heat, and lack of substantive toxic chemical makeup are a few reasons to deploy LEDs. However, as with any new technology, there were some significant hurdles to overcome.

Early experimentation using Light Emitting Diodes (LEDs) to grow cannabis, suffice to say, did not go well.  Poor performance, misleading advertising and equipment failures plagued the first mass-produced LED grow lights. The aspect of poor performance can be blamed on several factors, but the most prominent are very low efficacy, in terms of light produced per Watt consumed, and incorrect application of spectrum (color) for horticultural purposes. Causes of “misleading advertising” was a mixed bag of dubious sales pitches and lack of understanding the technology and of horticultural lighting requirements. Additionally, there certainly were some quality control issues with LEDs and electronics equipment in general, especially from offshore manufacturers in China and Korea.

A plant in flowering under an LED fixture

That legacy of poor performance still has a partial hold on the current indoor cannabis cultivation industry. Many of the current “Master Growers” have tried LEDs at some point and for the various reasons mentioned above, reverted to HPS lighting. Some of this reluctance to embrace LEDs comes from unfamiliarity with application of the technology to grow better cannabis, while some can be attributed to stubbornness to deviate from a decades-long, tried-and-true application of HPS lighting.

Certainly, growing with LEDs require some changes in methodology. For instance, when using true “full spectrum” grow lights, more nutrients are consumed. This is caused by stimulation of more photoreceptors in plants. To further explain, photoreceptors are the trigger mechanisms in plants that start the process of photosynthesis, and each photoreceptor is color/frequency-dependent. True full spectrum LED systems fulfill spectrum shortages experienced with HPS technology. Anyone that grows with LEDs will at some time experience “cotton top,” or bleaching at the upper regions of their plants.  Increased nutrient delivery solves this issue.

As we continue to uncover the vast medical potential of cannabis, precise phytochemical composition and consistent quality will become all-important.While the industry is still saturated with confusing rhetoric and some poorly performing equipment, LEDs are gaining momentum in the cannabis market. LED efficacies have increased to levels far greater than any other lighting technology. Broad spectrum white and narrow-frequency LEDs in all visible (and some invisible to the human eye) colors are being produced with great precision and consistency. Quality control in manufacturing is at an all-time high and longevity of LEDs has been proven by the passage of time since their introduction as illumination sources.

As the world embraces LED horticultural lighting, probably the most encouraging news is that current and upcoming generations of cannabis growers are more receptive to new ideas and are much more tech-savvy than their predecessors. Better understanding of cannabis-related photobiology is helping LED grow light manufacturers produce lighting that increases crop yields and perhaps more importantly, cannabis quality. As we continue to uncover the vast medical potential of cannabis, precise phytochemical composition and consistent quality will become all-important.

Obviously, the indoor cannabis industry is expanding rapidly and this expansion raises deep environmental concerns. More power is being used for indoor lighting, and for the cooling required by this lighting. Power systems are being taxed beyond forecasts and in some cases, beyond the capabilities of the infrastructure and power companies’ ability to produce and deliver electricity.  Some states have proposed cannabis-related legislature to limit power consumed per square foot, and some are specifically requiring that LEDs be used to grow cannabis. While some business leaders and cultivation operators may groan at the acquisition cost and change in operating procedures when deploying LEDs, common sense states that it is imperative we produce cannabis applying the most environmentally friendly practices available.

Soleil control panel

IoT & Environmental Controls: urban-gro Launches Soleil Technologies Portfolio

By Aaron G. Biros
No Comments
Soleil control panel

Back in November of 2017, urban-gro announced the development of their Soleil Technologies platform, the first technology line for cannabis growers utilizing Internet-of-Things (IoT). Today, urban-gro is announcing that line is now officially available.

Soleil control panel
Screenshot of the data you’d see on the Soleil control panel

The technology portfolio, aimed at larger, commercial-scale growers, is essentially a network of monitors, sensors and controls that give cultivators real-time data on things like temperature, humidity, light, barometric pressure and other key factors. The idea of using IoT and hypersensitive monitoring is not new to horticulture, food or agriculture, but this is certainly a very new development for the cannabis growing space.

sensor
Substrate sensors, used for monitoring Ph, soil moisture & electrical conductivity.

According to Brad Nattrass, chief executive officer and co-founder of urban-gro, it’s technology like this that’ll help growers control microclimates, helping them make the minor adjustments needed to ultimately improve yield and quality. “As ROI and optimized yields become increasingly important for commercial cultivators, the need for technologies that deliver rich granular data and real-time insights becomes critical,” says Nattrass. “With the ability to comprehensively sense, monitor, and control the microclimates throughout your facility in real-time, cultivators will be able to make proactive decisions to maximize yields.”

heat map
The heat map allows you to find problem microclimates throughout the grow space.

One of the more exciting aspects of this platform is the integration of sensors, and controls with automation. With the system monitoring and controlling fertigation, lighting and climate, it can detect when conditions are not ideal, which gives a cultivator valuable insights for directing pest management or HVAC decisions, according to Dan Droller, vice president of corporate development with urban-gro. “As we add more data, for example, adding alerts for when temperatures falls or humidity spikes can tell a grower to be on the lookout for powdery mildew,” says Droller. “We saw a corner of a bench get hot in the system’s monitoring, based on predefined alerts, which told us a bench fan was broken.” Hooking up a lot of these nodes and sensors with IoT and their platform allows the grower to get real-time monitoring on the entire operation, from anywhere with an Internet connection.

soleil visuals
Figures in the system, showing temperature/time, humidity/time and light voltage

Droller says using more and more sensors creates super high-density data, which translates to being able to see a problem quickly and regroup on the fly. “Cannabis growers need to maintain ideal conditions, usually they do that with a handful of sensors right now,” says Droller. “They get peace of mind based on two or three sensors sending data points back. Our technology scales to the plant and bench level, connecting all of the aggregate data in one automated system.”

In the future, urban-gro is anticipating this will lay the groundwork for using artificial intelligence to learn when controls need to be adjusted based on the monitoring. Droller hopes to see the data from environmental conditions mapped with yield and by strain type, which could allow for ultra-precise breeding based on environmental conditions. “As we add more and more data and develop the platform further, we can deliver some elements of AI in the future, with increased controls and more scientific data,” says Droller.

photo of outdoor grow operation

How to Reduce Mold & Contaminants in Indoor, Greenhouse and Outdoor Grows

By Ketch DeGabrielle
No Comments
photo of outdoor grow operation

Controlling your grow environment doesn’t start when you germinate your first seeds, it starts before you build your grow. There are steps you can take that will have a significant impact on mold growth and contamination, and these will vary based on the grow environment you choose.

Below is a roadmap to where each grow environment stands in terms of mold and contamination risk, and simple steps you can take to mitigate these factors.

Outdoor

The benefits of an outdoor grow are significant – using natural sunlight to grow plants is both inexpensive and environmentally sound. However, it allows the least amount of control and makes plants susceptible to weather conditions and outdoor contaminants including dust, wind, rain and insects. Depending on humidity and precipitation levels, mold can be a big issue as well.

Outdoor growing has obvious benefits, such as natural sunlight, but may also require extra steps to prevent contamination

When selecting an outdoor area for a cannabis farm, there are two important factors to consider: location and neighboring farmland. Geographical environments and sub-climates vary and once you have purchased land, you are committed, so be sure to consider these factors prior to purchase.

While arid desert climates have abundant sunlight and long growing seasons, flat, dry lands are subject to dust-storms, flash floods and exceedingly high winds that can damage crops. Conversely, more protected areas often have high humidity and rainfall late in the season, which can create huge issues with bud rot and mold. Neighboring farms also have an impact on your grow, so be sure to find out what they cultivate, what they spray, their harvest schedule and how they run their operation. Large farming equipment kicks up a lot of contaminant-laden dust and can damage crops by displacing insects to your farm if they harvest before you. Pesticide drift is also a major issue as even tiny amounts from a neighbor’s farm can cause your crops to fail testing, depending on what state you are in.

With outdoor grow environments always at the mercy of Mother Nature, any cultivator is wise to control contamination potential on the ground. Cover soil and protect your crop by planting cover crops and laying plastic mulch on as much ground as reasonable. In many cases it makes sense to irrigate uncultivated parts of your farm just to keep dust down.

Greenhouse

Greenhouses are the future of cannabis cultivation. They allow growers to capture the full spectrum and power of the sun while lessening environmental impact and operating expenses, while still being able to precisely control the environment to grow great cannabis. With recent advancements in greenhouse technology such as automated control systems, positive pressure, geothermal heating or cooling and LED supplemental lighting, greenhouses are the future. However, older or economy greenhouses that take in unfiltered air from outside still have a medium amount of mold and contamination risk.

A greenhouse grow facility

Before building your greenhouse, study the area while taking into account climate, weather conditions and sun exposure. Excessively windy areas can blow in contaminants, and extremely hot climates make cooling the greenhouse interior a challenging and costly endeavor.

There are several simple operational tactics to reduce contaminants in a greenhouse. Add a thrip screen to keep insects out, thoroughly clean pad walls with an oxidizing agent after each cycle, and keep plants at least 10 feet from pad walls. Plan to flip the entire greenhouse at once so that you can clean the greenhouse top to bottom before your next crop. A continuous harvest in your greenhouse allows contaminants to jump from one plant to the next and reduces the ability to control your environment and eliminate problems at the end of a cycle. Lastly, open shade curtains slowly in the morning. This prevents temperature inversion and condensation, which can cause water drops to fall from the ceiling and transfer contaminants onto plants below.

Indoor

An indoor environment offers ultimate control to any grow operation. Cultivators can grow high-quality cannabis with the smallest potential for yeast and mold growth. Unfortunately, indoor environments are extremely expensive, inefficient and environmentally costly.

Talltrees
An indoor cannabis operation set up (Image: Tall Trees LED Company)

With indoor grow environments, keeping mold and contaminants at bay comes down to following a regimented plan that keeps all grow aspects clean and in order. To keep your grow environment clean, change HVAC filters multiple times a month. It’s also important to install HEPA filters and UV lights in HVAC systems to further reduce contamination threats. Clearly mark air returns if they are near the ground and keep those areas free of clutter. They are the lungs of your grow. Also, stop using brooms in the grow space. They stir up a lot of contaminants that have settled to the floor. Instead, use HEPA filter backpack vacuums or install a central vacuum system. Set up a “dirty room” for anything messy on a separate HVAC system, and be sure to thoroughly clean pots after every harvest cycle.

Learn more about reducing mold and contaminants in an indoor or greenhouse grow in another article from our series: 10 Ways to Reduce Mold in Your Grow.