Medicinal Genomics announced today that they have received AOAC International certification for their PathoSEEK® Salmonella and STEC E. coli multiplex assay. In combination with their SenSATIVAx® extraction kits, labs can simultaneously detect Salmonella spp. and STEC E. coli with a single qPCR reaction for flower, concentrates and infused chocolates using the Agilent AriaMx and the BioRad CFx-96 instruments.
The certification came after the multiplex assay was validated according to the AOAC Performance Tested Method Program. According to the press release, the PathoSEEK platform now has more cannabis matrices accredited for Aspergillus, Salmonella, and STEC E. coli than any other product out on the market, according to their press release.
The PathoSEEK microbiological testing platform uses a qPCR assay and internal plant DNA controls for reactions. The two-step protocol verifies performance while detecting microbes, which allegedly helps minimize false negative results from human error or failing conditions.
“AOAC’s validation of our Salmonella/STEC E. coli assay across the various cannabis matrices is further proof of our platform’s robustness and versatility,” says Dr. Sherman Hom, director of regulatory affairs at Medicinal Genomics. “We are excited that our PathoSEEK® platform is moving in concert with the FDA’s new blueprint to improve food safety by modernizing the regulatory framework, while leveraging the use of proven molecular tools to accelerate predictive capabilities, enhance prevention, and enhance our ability to swiftly adapt to pathogen outbreaks that could impact consumer safety.”
On August 11, PathogenDx announced that they received an AOAC Performance Tested Methods Certificate for their QuantX total yeast and mold test. Six days later, on August 17, Medicinal Genomics announced that AOAC approved their PathoSEEK 5-Color Aspergillus Multiplex Assays under the same AOAC Performance Tested Methods program.
Both assays are specifically designed with cannabis and hemp testing in mind and designed to expedite and simplify microbiological testing. PathogenDx’s QuantX quantifies the total amount of yeast and mold in a sample while also measuring against safety standards.
In addition to the total yeast and mold count test, PathogenDx has also introduced a 96-well plate, improved sample preparation and new data reporting with a custom reporting portal for compliance testing.
The Medicinal Genomics platform can detect four species, including A. flavus, A. fumigatus, A. niger, and A. terreus in both flower and infused edibles. The PathoSEEK microbial testing platform uses a PCR-based assay and provides an internal plant DNA control for every reaction.
This technique verifies the performance of the assay when detecting pathogens, allegedly minimizing false negative results commonly due to set up errors and experimental conditions.
AOAC International is a standards organization that works in the cannabis testing space through their CASP program to evaluate and approve standard testing methods for the industry.
According to a press release published last week, Medicinal Genomics has hired Sherman Hom, Ph.D. to be their first director of regulatory affairs. Dr. Hom is coming from a position at New Jersey’s Division of Public Health and Environmental Laboratories (PHEL) where he was the leading research scientist for the state’s cannabis testing lab as well as coordinating their pre-analytical activities for SARS-CoV-2 testing.
As project manager for the state’s cannabis testing lab, he was responsible for validating microbial testing in cannabis. He has also been a professor of microbiology, a lab manager, a senior research scientist, a writer and an inventor, according to the press release.
“My passion is regulatory affairs,” says Dr. Hom. “For the last 4 years, we’ve been building a facts and comparison database of required state medical cannabis testing. It’s formidable. Of course, the states will all have the same regulations eventually. In the meantime, it’s my job to help them craft the safest, most efficient and effective set of regulations possible. I’m here because I know Medicinal Genomics shares that passion.”
Microbial contamination on cannabis products represents one of the most significant threats to cannabis consumers, particularly immunocompromised patients who are at risk of developing harmful and potentially fatal infections.
As a result, regulatory bodies in the United States and Canada mandate testing cannabis products for certain microbes. The two most popular methods for microbial safety testing in the cannabis industry are culture-based testing and quantitative polymerase chain reaction (qPCR).
When considering patient safety, labs should choose a method that provides an accurate account of what is living on the sample and can specifically target the most harmful microbes, regardless of the matrix.
1. The Method’s Results Must Accurately Reflect the Microbial Population on the Sample
The main objective of any microbial safety test is to give the operator an indication of the microbial population present on the sample.
Culture-based methods measure contamination by observing how many organisms grow in a given medium. However, not all microbial organisms grow at the same rate. In some cases, certain organisms will out-compete others and as a result, the population in a post-culture environment is radically different than what was on the original sample.
One study analyzed fifteen medicinal cannabis samples using two commercially available culture-based methods. To enumerate and differentiate bacteria and fungi present before and after growth on culture-based media, all samples were further subjected to next-generation sequencing (NGS) and metagenomic analyses (MA). Figure 1 illustrates MA data collected directly from plant material before and after culture on 3M petrifilm and culture-based platforms.
The results demonstrate substantial shifts in bacterial and fungal growth after culturing on the 3M petrifilm and culture-based platforms. Thus, the final composition of microbes after culturing is markedly different from the starting sample. Most concerning is the frequent identification of bacterial species in systems designed for the exclusive quantification of yeast and mold, as quantified by elevated total aerobic count (TAC) Cq values after culture in the total yeast and mold (TYM) medium. The presence of bacterial colonies on TYM growth plates or cartridges may falsely increase the rejection rate of cannabis samples for fungal contamination. These observations call into question the specificity claims of these platforms.
The Live Dead Problem
One of the common objections to using qPCR for microbial safety testing is the fact that the method does not distinguish between live and dead DNA. PCR primers and probes will amplify any DNA in the sample that matches the target sequence, regardless of viability. Critics claim that this can lead to false positives because DNA from non-viable organisms can inflate results. This is often called the Live-Dead problem. However, scientists have developed multiple solutions to this problem. Most recently, Medicinal Genomics developed the Grim Reefer Free DNA Removal Kit, which eliminates free DNA contained in a sample by simply adding an enzyme and buffer and incubating for 10 minutes. The enzyme is instantaneously inactivated when lysis buffer is added, which prevents the Grim Reefer Enzyme from eliminating DNA when the viable cells are lysed (see Figure 2).
2. Method Must Be Able to Detect Specific Harmful Species
Conversely, qPCR assays, such as the PathoSEEK, are designed to target DNA sequences that are unique to pathogenic Aspergillus species, and they can be run using standard qPCR instruments such as the Agilent AriaMx. The primers are so specific that a single DNA base difference in the sequence can determine whether binding occurs. This specificity reduces the frequency of false positives in pathogen detection, a frequent problem with culture-based cannabis testing methods.
Additionally, Medicinal Genomics has developed a multiplex assay that can detect the four pathogenic species of Aspergillus (A. flavus, A. fumigatus, A. niger, and A. terreus) in a single reaction.
3. The Method Must Work on Multiple Matrices
Marijuana infused products (MIPs) are a very diverse class of matrices that behave very differently than cannabis flowers. Gummy bears, chocolates, oils and tinctures all present different challenges to culture-based techniques as the sugars and carbohydrates can radically alter the carbon sources available for growth. To assess the impact of MIPs on colony-forming units per gram of sample (CFU/g) enumeration, The Medicinal Genomics team spiked a known amount of live E. coli into three different environments: tryptic soy broth (TSB), hemp oil and hard candy. The team then homogenized the samples, pipetted amounts from each onto 3M™ Petrifilm E. coli / Coliform Count (EC) Plates, and incubated for 96 hours. The team also placed TSB without any E. coli onto a petrifilm to serve as a control. Figures 3 and 4 show the results in 24-hour intervals.
This implies the MIPs are interfering with the reporter assay on the films or that the MIPs are antiseptic in nature.
Many MIPs use citric acid as a flavoring ingredient which may interfere with 3M reporter chemistry. In contrast, the qPCR signal from the Agilent AriaMx was constant, implying there is microbial contamination present on the films, but the colony formation or reporting is inhibited.
This is not an issue with DNA-based methods, so long as the DNA extraction method has been validated on these matrices. For example, the SenSATIVAx DNA extraction method is efficient in different matrices, DNA was spiked into various MIPs as shown in Table 1, and at different numbers of DNA copies into chocolate (Table 2). The SenSATIVAx DNA extraction kit successfully captures the varying levels of DNA, and the PathoSEEK detection assay can successfully detect that range of DNA. Table 3 demonstrates that SenSATIVAx DNA extraction can successfully lyse the cells of the microbes that may be present on cannabis for a variety of organisms spiked onto cannabis flower samples.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.