Tag Archives: methods

AOAC Accreditation: Why Third-Party Approval Matters More Than Ever

By Anthony Repay
No Comments

When people have to make important decisions, we often consult a third party to increase our knowledge and confidence in a product. For instance, when choosing a car, an individual may weigh heavily on safety ratings and other awards from organizations such as Consumer Reports. These awards are often boasted and a heavy focus in car commercials because it tells the consumer that a third party has deemed their car valuable to own. For more than 100 years, the Association of Official Agricultural Chemists (AOAC® International) has operated in this exact manner, and has set the bar and guidelines for testing in the cannabis industry through its special program called the Cannabis Analytical Science Program, also known as CASP.

The CASP program is designed to develop standards and validation guidance to evaluate testing methods, as well as the methods’ ability to detect the target organism or compound on the cannabis matrix. With the addition of new states permitting the legal sale of both medical and adult use cannabis and no federal governing body overseeing testing regulations, the value of AOAC cannot be understated, as these guidelines allow cannabis testing laboratories to have their own third-party reference to look to when choosing a compliant testing method to implement in their laboratory.

AOAC was founded in 1884 by the US government as the standard setting body in the country and, in 1991, became an independent association known as AOAC International, with a goal of building a reputation as an international, consensus-based standard-setting body and a conformity assessment organization in analytical sciences. As an independent third-party resource, AOAC has the Performance Tested Methods (PTM) and Official Methods of AnalysisSM (OMA) programs for certification of analytical testing methods in both biology and chemistry.

If analytical methods, including proprietary test kits, are deemed acceptable, AOAC provides approved certification, their seal of approval that the method works as designed. Though multiple factors are considered to determine if AOAC approval is given; accuracy and precision of the method are among the most important. For example, when validating a cannabis method for microbiology, AOAC will contract an independent testing facility to conduct a series of tests with known spiked samples to measure the recovery limit of the target microorganism. This allows the organization to determine if the method is sensitive enough to be named an AOAC-approved method through either the PTM or OMA conformity programs. Another way of ensuring the validity of results is by conducting an inclusivity and exclusivity study on a method. In this type of experiment, target organisms are tested while also spiking with non-target organisms to see if there will be a high rate of false positives.

In cannabis, discussions have grown surrounding testing of four strains of Aspergillus, which are A. terreus, A. flavus, A. fumigatus and A. niger. By spiking cannabis with one of the four Aspergillus strains and on a separate sample with a non-target Aspergillus strain such as A. clavatus, it ensures that only the target strains are being recognized and recorded on the method being tested.

This methodology limits the likelihood of unconfirmed positives occurring, ensuring the validity of the results. Of course, when a method is undergoing an actual AOAC evaluation for approval, the testing requirements for both the sensitivity and inclusivity/exclusivity experiments are much more thorough than the explanation above.

Regardless of which AOAC-approved method you select, you can feel confident that most of the “heavy-lifting” is done and that the method is accurate and precise enough to implement in a cannabis testing facility. In turn, the cannabis testing laboratory then only needs to complete their own internal method verification to ensure the method works with their processes, people, environment and product, but on a much smaller scale and aligns with state regulations.

labsphotoOn a consumer safety level, AOAC-approved methods are designed to keep cannabis consumers safe. Whether they are an adult using cannabis or medicinal cannabis patient, the product that is being sold should be held to the highest safety standards. By having a laboratory that is utilizing an independently approved AOAC method, an additional layer of confidence is achieved that the product being consumed is safe. This ultimately limits the number of costly recalls from dispensaries and minimizes risk to consumers. At the end of the day, cannabis testing laboratories want to keep the public safe and it is our job to do so. This means implementing these independently approved methods from agencies such as AOAC at various touch points in the seed to sale cycle to ensure the data is validated and reliable.

Overall, just as it is equally important to get a non-biased and reputable third-party approach to your automobile search, a scientist that is responsible for choosing methods in their cannabis compliance laboratory should also consider these third-party approvals. As a scientist, the goal every day is to report accurate data to help the client and the consumer equally. The cannabis compliance laboratories are the last line of defense in preventing harmful or contaminated products from getting into the marketplace and any extra assurance we have with our testing methodology is always encouraged. Ultimately, AOAC’s work is important and their standard of quality and safety is a must-have in the cannabis laboratory.

2nd Annual Cannabis Labs Virtual Conference Announced

By Cannabis Industry Journal Staff
No Comments

The 2ndAnnual Cannabis Labs Virtual Conference is set to take place on Tuesday, April 2, 2019, starting at 12:00 Noon and concluding at 4:00 PM EDT. This complimentary series of webinars will take a deep dive into a variety of subjects related to cannabis testing and the laboratory industry.

The virtual event will help attendees better understand some of the more technical aspects of starting and operating a laboratory. Topics discussed will include pesticide testing, cannabinoid and terpene testing, the new ISO 17025:2017 accreditation and a lesson in starting a laboratory in a new market.

Attendees registering for this complimentary series of webinars will get access to four veterans of the cannabis lab testing industry, who are available for Q&A after each presentation. In addition to getting the opportunity to chat with these subject matter experts on April 2, a recording of the presentations will be made available to all who register.

Charles Deibel, President & CEO – Deibel Labs, Inc.

Here is a snapshot of the agenda:

Pesticide Testing: Methods, Strategies & Sampling
Charles Deibel, President & CEO – Deibel Labs, Inc.

Pesticides represent the number one area for batch failures in the US cannabis market. These are concerns not only for consumers, but are a very big concern for cultivators and manufacturers of cannabis products. remediation of the pesticides, once they are in the product are not always feasible From the lab level, they are also the hardest test to run in the laboratory, even one equipped with state-of-the-art equipment. The best instruments on the market are very expensive and there are no standardized methods, meaning lab to lab variability has happened.

  • What are the pesticides in cannabis and are there any that are the “main concerns” or ones that stand out as particularly damaging?
  • What is a basic breakdown of the testing and methods used for pesticide testing?
  • What are the best strategies for the sampling of cannabis products?

    Chris Martinez
    Chris Martinez, Co-Founder & President, EVIO Labs FL

Building a Lab in an Emerging Market
Chris Martinez, Co-Founder & President, EVIO Labs FL

  • Will present a discussion of the genesis of EVIO Labs Florida, how to start a lab in a new market
  • Challenges in how we navigated changing regulations in a state with newly legalized cannabis
  • Expanding a lab to a second location – logistics, hiring, training, consistency.

Cannabinoid & Terpene Testing: Methods, Strategies & Standardization

Dr. Cindy Orser, Chief Science Officer, Digipath Labs

  • Appreciation of “measurement uncertainty” in cannabis testing

    Dr. Cindy Orser, Chief Science Officer, Digipath Labs
  • Standardization of testing methods is a high priority
  • Terpenes are the distinguishing chemicals in cannabis sensory perception and chemotaxonomy

Benefits of Accreditation to the ISO 17025:2017 Standard
Jane Weitzel, Independent Consultant

  • The ISO/IEC 17025:2017 standard is now being used to accredit cannabis testing laboratories. From this presentation you will learn the key new aspects of the standard. This includes risk-based thinking. Many aspects of this risk approach require the use of measurement uncertainty. This means the measurement uncertainty must be adequately evaluated. You will be introduced to evaluating and using measurement uncertainty.
  • The 2017 standard emphasizes conflict of interest and impartiality. Procedures and practices to achieve impartiality will be shown. This reduces the risk of potentially damaging leaks of information or the risk of people not working to the best interests of the laboratory and its clients.

    Jane Weitzel, Independent Consultant
  • The 2017 standard is a valuable and useful business tool that can save the laboratory resources, effort and money. Are you doing too much testing? Are you doing too little testing? When you evaluate the measurement uncertainty you can use it to learn the steps in your test method that need enhancement to reduce the risk of making mistakes. You can also use the measurement uncertainty to focus on the significant steps and stop wasting time on steps and activities that are insignificant.
  • These benefits of laboratory accreditation will be demonstrated with examples from the cannabis industry.

To learn more about this complimentary series of webinars, click here to look at the agenda and register.

Top 10 Common Findings Detected During Cannabis Laboratory Assessments: A Guide to Assist with Accreditation

By Tracy Szerszen
No Comments

With the cannabis industry growing rapidly, laboratories are adapting to the new market demand for medical cannabis testing in accordance to ISO/IEC 17025. Third-party accreditation bodies, such as Perry Johnson Laboratory Accreditation, Inc. (PJLA), conduct these assessments to determine that laboratories are following relevant medical cannabis testing standard protocols in order to detect potency and contaminant levels in cannabis. Additionally, laboratories are required to implement and maintain a quality management system throughout their facility. Obtaining accreditation is a challenge for laboratories initially going through the process. There are many requirements outlined in the standard that laboratories must adhere to in order to obtain a final certificate of accreditation. Laboratories should evaluate the ISO 17025 standard thoroughly, receive adequate training, implement the standard within their facility and conduct an internal audit in order to prepare for a third-party assessment. Being prepared will ultimately reduce the number of findings detected during the on-site assessment. Listed below is research and evidence gathered by PJLA to determine the top ten findings by clause specifically in relation to cannabis testing laboratories.

PJLA chart
The top 10 findings by clause

4.2: Management System

  • Defined roles and responsibilities of management system and its quality policies, including a structured outline of supporting procedures, requirements of the policy statement and establishment of objectives.
  • Providing evidence of establishing the development, implementation and maintenance of the management system appropriate to the scope of activities and the continuous improvement of its effectiveness.
  • Ensuring the integrity of the management system during planned and implemented changes.
  • Communication from management of the importance of meeting customer, statutory and regulatory requirements

4.3: Document Control

  • Establishing and maintaining procedures to control all documents that form the management system.
  • The review of document approvals, issuance and changes.

4.6: Purchasing Services and Supplies

  • Policies and procedures for the selection and purchasing of services and supplies, inspection and verification of services and supplies
  • Review and approval of purchasing documents containing data describing the services and supplies ordered
  • Maintaining records for the evaluation of suppliers of critical consumables, supplies and services, which affect the quality of laboratory outputs.

4.13: Control of Records

  • Establishing and maintaining procedures for identification, collection, indexing, access, filing, storage and disposal of quality and technical records.
  • Providing procedures to protect and back-up records stored electronically and to prevent unauthorized access.

4.14: Internal Audits

  • Having a predetermined schedule and procedure for conducting internal audits of its activities and that addresses all elements that verify its compliance of its established management system and ISO/IEC 17025
  • Completing and recording corrective actions arising from internal audits in a timely manner, follow-up activities of implementation and verification of effectiveness of corrective actions taken.

5.2: Personnel

  • Laboratory management not ensuring the competence and qualifications of all personnel who operate specific equipment, perform tests, evaluate test results and sign test reports. Lack of personnel undergoing training and providing appropriate supervision
  • Providing a training program policies and procedures for an effective training program that is appropriate; identification and review of training needs and the program’s effectiveness to demonstrate competence.
  • Lack of maintaining records of training actions taken, current job descriptions for managerial, technical and key support personnel involved in testing

5.4: Test and Calibration Methods and Method Validation

  • Utilization of appropriate laboratory methods and procedures for all testing within the labs scope; including sampling, handling, transport, storage and preparation of items being tested, and where appropriate, a procedure for an estimation of the measurement of uncertainty and statistical techniques for analysis
  • Up-to-date instructions on the use and operation of all relevant equipment, and on the handling and preparation of items for testing
  • Introduction laboratory-developed and non-standard methods and developing procedures prior to implementation.
  • Validating non-standard methods in accordance with the standard
  • Not completing appropriate checks in a systematic manner for calculations and data transfers

5.6: Measurement Traceability

  • Ensuring that equipment used has the associated measurement uncertainty needed for traceability of measurements to SI units or certified reference materials and completing intermediate checks needed according to a defined procedure and schedules.
  • Not having procedures for safe handling, transport, storage and use of reference standards and materials that prevent contamination or deterioration of its integrity.

5.10: Reporting the Results

  • Test reports not meeting the standard requirements, statements of compliance with accounting for uncertainty, not providing evidence for measurement traceability, inaccurately amending reports.

SOP-3: Use of the Logo

  • Inappropriate use of PJLA’s logo on the laboratories test reports and/or website.
  • Using the incorrect logo for the testing laboratory or using the logo without prior approval from PJLA.
dSPE cleanups

The Grass Isn’t Always Greener: Removal of Purple Pigmentation from Cannabis

By Danielle Mackowsky
1 Comment
dSPE cleanups
strains
Cannabis strains used (clockwise from top left): Agent Orange, Tahoe OG, Blue Skunk, Grand Daddy and Grape Drink

Cannabis-testing laboratories have the challenge of removing a variety of unwanted matrix components from plant material prior to running extracts on their LC-MS/MS or GC-MS. The complexity of the cannabis plant presents additional analytical challenges that do not need to be accounted for in other agricultural products. Up to a third of the overall mass of cannabis seed, half of usable flower and nearly all extracts can be contributed to essential oils such as terpenes, flavonoids and actual cannabinoid content1. The biodiversity of this plant is exhibited in the over 2,000 unique strains that have been identified, each with their own pigmentation, cannabinoid profile and overall suggested medicinal use2. While novel methods have been developed for the removal of chlorophyll, few, if any, sample preparation methods have been devoted to removal of other colored pigments from cannabis.

QuEChERS
Cannabis samples following QuEChERS extraction

Sample Preparation

Cannabis samples from four strains of plant (Purple Drink, Tahoe OG, Grand Daddy and Agent Orange) were hydrated using deionized water. Following the addition of 10 mL acetonitrile, samples were homogenized using a SPEX Geno/Grinder and stainless steel grinding balls. QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) non-buffered extraction salts were then added and samples were shaken. Following centrifugation, an aliquot of the supernatant was transferred to various blends of dispersive SPE (dSPE) salts packed into centrifugation tubes. All dSPE tubes were vortexed prior to being centrifuged. Resulting supernatant was transferred to clear auto sampler vials for visual analysis. Recoveries of 48 pesticides and four mycotoxins were determined for the two dSPE blends that provided the most pigmentation removal.

Seven dSPE blends were evaluated for their ability to remove both chlorophyll and purple pigmentation from cannabis plant material:

  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg PSA
  • 150 mg MgSO4, 25 mg C18
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18
  • 150 mg MgSO4, 25 mg PSA, 7.5 mg GCB
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg GCB

Based on the coloration of the resulting extracts, blends A, F and G were determined to be the most effective in removing both chlorophyll (all cannabis strains) and purple pigments (Purple Drink and Grand Daddy). Previous research regarding the ability of large quantities of GCB to retain planar pesticides allowed for the exclusion of blend G from further analyte quantitation3. The recoveries of the 48 selected pesticides and four mycotoxins for blends A and F were determined.

dSPE cleanups
Grand Daddy following various dSPE cleanups

Summary

A blend of MgSO4, C18, PSA and Chlorofiltr® allowed for the most sample clean up, without loss of pesticides and mycotoxins, for all cannabis samples tested. Average recovery of the 47 pesticides and five mycotoxins using the selected dSPE blend was 75.6% were as the average recovery when including GCB instead of Chlorofiltr® was 67.6%. Regardless of the sample’s original pigmentation, this blend successfully removed both chlorophyll and purple hues from all strains tested. The other six dSPE blends evaluated were unable to provide the sample clean up needed or had previously demonstrated to be detrimental to the recovery of pesticides routinely analyzed in cannabis.


References

(1)           Recommended methods for the identification and analysis of cannabis and cannabis products, United Nations Office of Drugs and Crime (2009)

(2)            W. Ross, Newsweek, (2016)

(3)            Koesukwiwat, Urairat, et al. “High Throughput Analysis of 150 Pesticides in Fruits and Vegetables Using QuEChERS and Low-Pressure Gas Chromatography Time-of-Flight Mass Spectrometry.” Journal of Chromatography A, vol. 1217, no. 43, 2010, pp. 6692–6703., doi:10.1016/j.chroma.2010.05.012.