Tag Archives: MIP

Facility Considerations for Cultivation & Manufacturing: A Case Study

By David Vaillencourt
1 Comment

The cannabis industry is growing and evolving at an unprecedented pace and regulators, consumers and businesses continually struggle to keep up.

Cannabis businesses: How do you maintain an edge on the market, avoid costly mistakes?

Case Study: Costly Facility Build Out Oversights

David Vaillencourt will be joining a panel discussion, Integrated Lifecycle of Designing a Cultivation Operation, on December 22 during the Cannabis Quality Virtual Conference. Click here to register. A vertically integrated multi-state operator wants to produce edibles. The state requires adherence to food safety practices (side note – even if the state did not, adherence to food safety practices should be considered as a major facility and operational requirement). They are already successfully producing flower, tinctures and other oil derivatives. Their architect and MEP firm works with them to design a commercial kitchen for the production of safe edibles. The layout is confirmed, the equipment is specified – everything from storage racks, an oven and exhaust hoods, to food-grade tables. The concrete is poured and walls are constructed. The local health authority comes in to inspect the construction progress, who happens to have a background in industrial food-grade facilities (think General Mills). They remind the company that they must have three-compartment sinks with hot running water for effective cleaning and sanitation, known as clean-out-of-place (COP). The result? Partial demolition of the floor to run pipeline, and a retrofit to make room for the larger sinks, including redoing electrical work and a contentious team debate about the size of the existing equipment that was designed to fit ‘just right.’

Unfortunately, this is just one more common story our team recently witnessed. In this article, I outline a few recommendations and a process (Quality by Design) that could have reduced this and many other issues. For some, following the process may just be the difference between being profitable or going out of business in 2021.

The benefits of Quality by Design are tangible and measurable:

  1. Reduce mistakes that lead to costly re-work
  2. Mitigate inefficient operational flow
  3. Reduce the risk of cross-contamination and product mix-ups. It happens all the time without carefully laid out processes.
  4. Eliminate bottlenecks in your production process
  5. Mitigate the risk of a major recall.

The solution is in the process

Regardless of whether you fall in the category of a food producer, manufacturer of infused products (MIP), food producers, re-packager or even a cultivator, consider the following and ask these questions as a team.

People

Food processing and sanitation
By standardizing and documenting safety procedures, manufacturers mitigate the risk of cannabis-specific concerns

For every process, who is performing it? This may be a single individual or the role of specific people as defined in a job description.

Does the individual(s) performing the process have sufficient education and training? Do you have a diverse team that can provide different perspectives? World class operations are not developed in a vacuum, but rather with a team. Encourage healthy discourse and dialogue.

Process

Is the process defined? Perhaps in a standard operating procedure (SOP) or work instruction (WI). This is not the general guidance an equipment vendor provided you with, this is your process.

How well do you know your process? Does your SOP or WI specify (with numbers) how long to run the piece of equipment, the specification of the raw materials used (or not used) during the process, and what defines a successful output?

Do you have a system in place for when things deviate from the process? Processes are not foolproof. Do not get hung up on deviations from the process, but don’t turn a blind eye to them. Record and monitor them. In time, they will show you clear opportunities for improvement, preventing major catastrophes.

Materials

What are the raw materials being used? Where are they coming from (who is your supplier and how did you qualify them)?

Start with the raw materials that create your product or touch your product at all stages of the process. We have seen many cases where cannabis oils fail for heavy metals, specifically lead. Extractors are quick to blame the cultivator and their nutrients, as cannabis is a very effective phytoremediator (it uptakes heavy metals and toxins from soil substrate). The more likely culprit – your glassware! Storing cannabis oil, both work in process or final product in glass jars, while preferred over plastic, requires due diligence on the provider of your glassware. If they change the factory in which it is produced, will you be notified? Stipulate this in your contract. Don’t find yourself in the next cannabis lead recall that gets the attention of the FDA.

Savings is gained through simple control of your raw materials. Variability in your raw material going into the extractor is inevitable, but the more you can do to standardize the quality of your inputs, the less work re-formulating needs to be done downstream. Eliminate the constant need to troubleshoot why yields are lower than expected, or worst case, having to rerun or throw an entire batch out because it was “hot” (either too much THC in the hemp/CBD space or pesticides/heavy metals). These all add up to significant downstream bottlenecks – underutilized equipment, inefficient staff (increase in labor cost) all because of a lack of upstream controls. Use your current process as a starting point, but implement a quality system to drive improvement in operational efficiency and watch your top line grow while your bottom-line decreases.

Consistency in quality standards requires meticulous SOPs

Have you tested and confirmed the quality of your raw material? This isn’t just does it have THC and is it cannabis, but is it a certain particle size, moisture level, etc.? Again, define the quality of your raw materials (specifications) and test for it.

Rememberranges are your friend. It is much better to say 9-13% moisture than “about 10%”. For your most diligent extractor, 11% will be unacceptable, but for a guy that just wants to get the job done, 13% just may do!

Test your final product AFTER the process. Again, how does it stack up against your specifications? You may need to have multiple specifications based on different types of raw material. Perhaps one strain with a certain range of cannabinoids and terpenes can be expected for production.

Review the data and trend it. Are you getting lower yields than normal? This may be due to an issue with the equipment, maybe a blockage has formed somewhere, a valve is loose, and simple preventive maintenance will get you back up and running. Or, it could be that the raw biomass quality has changed. Either way, having that data available for review and analysis will allow you to identify the root cause and prevent a surprise failure of your equipment. Murphy’s law applies to the cannabis industry too.

  1. You are able to predict and prevent most failures before they occur
  2. You increase the longevity of your equipment
  3. You are able to predict with a level of confidence – imagine estimating how much product you will product next month and hitting that target – every time!
  4. Business risks are significantly mitigated – a process that spews out metal, concentrates heavy metals or does not kill microbes that were in the raw material is an expensive mistake.
  5. Your employees don’t feel like they are running around with their hair on fire all the time. It’s expensive to train new employees. Reduce your turnover with a less stressed-out team.

Takeaways

Maintaining a competitive edge in the cannabis industry is not easy, but it can be made easier with the right team, tools and data. Our recommendations boil down to a few simple steps:

  1. Make sure you have a chemical or mechanical engineer to understand, optimize and standardize your process (you should have one of these on staff permanently!)
  2. Implement a testing program for all raw materials
    1. Test your raw materials – cannabis flower, solvents, additives, etc. before using. Work with your team to understand what you should and should not test for, and the frequency for doing so. Some materials/vendors are likely more consistent or reliable than others. Test the less reliable ones more frequently (or even every time!)
  3. Test your final product after you extract it – Just because your local regulatory body does not require a certain test, it does not mean you should not look for it. Anything that you specified wanting the product to achieve needs to be tested at an established frequency (and this does not necessarily need to be every batch).
  4. Repeat, and record all of your extraction parameters.
  5. Review, approve and set a system in place for monitoring any changes.

Congratulations, you have just gone through the process of validating your operation. You may now begin to realize the benefits of validating your operation, from your personnel to your equipment and processes.

3 Essential Components of Microbial Safety Testing

By Heather Ebling
1 Comment

Microbial contamination on cannabis products represents one of the most significant threats to cannabis consumers, particularly immunocompromised patients who are at risk of developing harmful and potentially fatal infections.

As a result, regulatory bodies in the United States and Canada mandate testing cannabis products for certain microbes. The two most popular methods for microbial safety testing in the cannabis industry are culture-based testing and quantitative polymerase chain reaction (qPCR).

When considering patient safety, labs should choose a method that provides an accurate account of what is living on the sample and can specifically target the most harmful microbes, regardless of the matrix.

1. The Method’s Results Must Accurately Reflect the Microbial Population on the Sample

The main objective of any microbial safety test is to give the operator an indication of the microbial population present on the sample.

Figure 1: MA data collected directly from plant material before and after culture on 3M petrifilm and culture-based platforms.

Culture-based methods measure contamination by observing how many organisms grow in a given medium. However, not all microbial organisms grow at the same rate. In some cases, certain organisms will out-compete others and as a result, the population in a post-culture environment is radically different than what was on the original sample.

One study analyzed fifteen medicinal cannabis samples using two commercially available culture-based methods. To enumerate and differentiate bacteria and fungi present before and after growth on culture-based media, all samples were further subjected to next-generation sequencing (NGS) and metagenomic analyses (MA). Figure 1 illustrates MA data collected directly from plant material before and after culture on 3M petrifilm and culture-based platforms.

The results demonstrate substantial shifts in bacterial and fungal growth after culturing on the 3M petrifilm and culture-based platforms. Thus, the final composition of microbes after culturing is markedly different from the starting sample. Most concerning is the frequent identification of bacterial species in systems designed for the exclusive quantification of yeast and mold, as quantified by elevated total aerobic count (TAC) Cq values after culture in the total yeast and mold (TYM) medium. The presence of bacterial colonies on TYM growth plates or cartridges may falsely increase the rejection rate of cannabis samples for fungal contamination. These observations call into question the specificity claims of these platforms.

The Live Dead Problem

Figure 2: The enzyme is instantaneously inactivated when lysis buffer is added

One of the common objections to using qPCR for microbial safety testing is the fact that the method does not distinguish between live and dead DNA. PCR primers and probes will amplify any DNA in the sample that matches the target sequence, regardless of viability. Critics claim that this can lead to false positives because DNA from non-viable organisms can inflate results. This is often called the Live-Dead problem. However, scientists have developed multiple solutions to this problem. Most recently, Medicinal Genomics developed the Grim Reefer Free DNA Removal Kit, which eliminates free DNA contained in a sample by simply adding an enzyme and buffer and incubating for 10 minutes. The enzyme is instantaneously inactivated when lysis buffer is added, which prevents the Grim Reefer Enzyme from eliminating DNA when the viable cells are lysed (see Figure 2).

2. Method Must Be Able to Detect Specific Harmful Species 

Toxic Aspergillus spp., which is responsible for at least one confirmed death of a cannabis patient, grows poorly in culture mediums and is severely underreported by current culture-based platforms. And even when Aspergillus does grow in culture, there is a certain non-pathogenic Aspergillus species that look remarkably similar to their pathogenic cousins, making it difficult to speciate using visual identification alone.

Figure 3: The team spiked a known amount of live E. coli into three different environments

Conversely, qPCR assays, such as the PathoSEEK, are designed to target DNA sequences that are unique to pathogenic Aspergillus species, and they can be run using standard qPCR instruments such as the Agilent AriaMx. The primers are so specific that a single DNA base difference in the sequence can determine whether binding occurs. This specificity reduces the frequency of false positives in pathogen detection, a frequent problem with culture-based cannabis testing methods.

Additionally, Medicinal Genomics has developed a multiplex assay that can detect the four pathogenic species of Aspergillus (A. flavus, A. fumigatus, A. niger, and A. terreus) in a single reaction.

3. The Method Must Work on Multiple Matrices 

Figure 4: The team also placed TSB without any E. coli onto a petrifilm to serve as a control.

Marijuana infused products (MIPs) are a very diverse class of matrices that behave very differently than cannabis flowers. Gummy bears, chocolates, oils and tinctures all present different challenges to culture-based techniques as the sugars and carbohydrates can radically alter the carbon sources available for growth. To assess the impact of MIPs on colony-forming units per gram of sample (CFU/g) enumeration, The Medicinal Genomics team spiked a known amount of live E. coli into three different environments: tryptic soy broth (TSB), hemp oil and hard candy. The team then homogenized the samples, pipetted amounts from each onto 3M™ Petrifilm E. coli / Coliform Count (EC) Plates, and incubated for 96 hours. The team also placed TSB without any E. coli onto a petrifilm to serve as a control. Figures 3 and 4 show the results in 24-hour intervals.

Table 1: DNA was spiked into various MIPs

This implies the MIPs are interfering with the reporter assay on the films or that the MIPs are antiseptic in nature.

Many MIPs use citric acid as a flavoring ingredient which may interfere with 3M reporter chemistry. In contrast, the qPCR signal from the Agilent AriaMx was constant, implying there is microbial contamination present on the films, but the colony formation or reporting is inhibited.

Table 3: SenSATIVAx DNA extraction can successfully lyse the cells of the microbes
Table 2: Different numbers of DNA copies spiked into chocolate

This is not an issue with DNA-based methods, so long as the DNA extraction method has been validated on these matrices. For example, the SenSATIVAx DNA extraction method is efficient in different matrices, DNA was spiked into various MIPs as shown in Table 1, and at different numbers of DNA copies into chocolate (Table 2). The SenSATIVAx DNA extraction kit successfully captures the varying levels of DNA, and the PathoSEEK detection assay can successfully detect that range of DNA. Table 3 demonstrates that SenSATIVAx DNA extraction can successfully lyse the cells of the microbes that may be present on cannabis for a variety of organisms spiked onto cannabis flower samples.