Tag Archives: monitoring

Cannabis Manufacturing Considerations: From Raw Materials to Finished Goods

By David Vaillencourt, Kathleen May
2 Comments

Facility layout and design are important components of overall operations, both in terms of maximizing the effectiveness and efficiency of the process(es) executed in a facility, and in meeting the needs of personnel. Prior to the purchase of an existing building or investing in new construction, the activities and processes that will be conducted in a facility must be mapped out and evaluated to determine the appropriate infrastructure and flow of processes and materials. In cannabis markets where vertical integration is the required business model, multiple product and process flows must be incorporated into the design and construction. Materials of construction and critical utilities are essential considerations if there is the desire to meet Good Manufacturing Practice (GMP) compliance or to process in an ISO certified cleanroom. Regardless of what type of facility is needed or desired, applicable local, federal and international regulations and standards must be reviewed to ensure proper design, construction and operation, as well as to guarantee safety of employees.

Materials of Construction

The materials of construction for interior work surfaces, walls, floors and ceilings should be fabricated of non-porous, smooth and corrosive resistant surfaces that are easily cleanable to prevent harboring of microorganisms and damage from chemical residues. Flooring should also provide wear resistance, stain and chemical resistance for high traffic applications. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces22 provides a method for evaluating the antibacterial activity of antibacterial-treated plastics, and other non-porous, surfaces of products (including intermediate products). Interior and exterior (including the roof) materials of construction should meet the requirements of ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Covering7, UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings 8, the International Building Code (IBC) 9, the National Fire Protection Association (NFPA) 11, Occupational Safety and Health Administration (OSHA) and other applicable building and safety standards, particularly when the use, storage, filling, and handling of hazardous materials occurs in the facility. 

Utilities

Critical and non-critical utilities need to be considered in the initial planning phase of a facility build out. Critical utilities are the utilities that when used have the potential to impact product quality. These utilities include water systems, heating, ventilation and air conditioning (HVAC), compressed air and pure steam. Non-critical utilities may not present a direct risk to product quality, but are necessary to support the successful, compliant and safe operations of a facility. These utilities include electrical infrastructure, lighting, fire detection and suppression systems, gas detection and sewage.

  1. Water
Microbial monitoring methods can include frequent/consistent testing

Water quality, both chemical and microbial, is a fundamental and often overlooked critical parameter in the design phase of cannabis operations. Water is used to irrigate plants, for personnel handwashing, potentially as a component in compounding/formulation of finished goods and for cleaning activities. The United States Pharmacopeia (USP) Chapter 1231, Water for Pharmaceutical Purposes 2, provides extensive guidance on the design, operation, and monitoring of water systems. Water quality should be tested and monitored to ensure compliance to microbiological and chemical specifications based on the chosen water type, the intended use of the water, and the environment in which the water is used. Microbial monitoring methods are described in USP Chapter 61, Testing: Microbial Enumeration Tests 3and Chapter 62, Testing: Tests for Specified Microorganisms 4, and chemical monitoring methods are described in USP Chapter 643, Total Organic Carbon 5, and Chapter 645, Water Conductivity 6.Overall water usage must be considered during the facility design phase. In addition to utilizing water for irrigation, cleaning, product processing, and personal hygiene, water is used for heating and cooling of the HVAC system, fogging in pest control procedures and in wastewater treatment procedures  A facility’s water system must be capable of managing the amount of water required for the entire operation. Water usage and drainage must meet environmental protection standards. State and local municipalities may have water usage limits, capture and reuse requirements and regulations regarding runoff and erosion control that must also be considered as part of the water system design.

  1. Lighting

Lighting considerations for a cultivation facility are a balance between energy efficiency and what is optimal for plant growth. The preferred lighting choice has typically been High Intensity Discharge (HID) lighting, which includes metal halide (MH) and high-pressure sodium (HPS) bulbs. However, as of late, light-emitting diodes (LED) systems are gaining popularity due to increased energy saving possibilities and innovative technologies. Adequate lighting is critical for ensuring employees can effectively and safely perform their job functions. Many tasks performed on the production floor or in the laboratory require great attention to detail. Therefore, proper lighting is a significant consideration when designing a facility.

  1. HVAC
urban-gro
Proper lighting is a significant consideration when designing a facility.

Environmental factors, such as temperature, relative humidity (RH), airflow and air quality play a significant role in maintaining and controlling cannabis operations. A facility’s HVAC system has a direct impact on cultivation and manufacturing environments, and HVAC performance may make or break the success of an operation. Sensible heat ratios (SHRs) may be impacted by lighting usage and RH levels may be impacted by the water usage/irrigation schedule in a cultivation facility. Dehumidification considerations as described in the National Cannabis Industry Association (NCIA) Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification 26 are critical to support plant growth and vitality, minimize microbial proliferation in the work environment and to sustain product shelf-life/stability. All of these factors must be evaluated when commissioning an HVAC system. HVAC systems with monitoring sensors (temperature, RH and pressure) should be considered. Proper placement of sensors allows for real-time monitoring and a proactive approach to addressing excursions that could negatively impact the work environment.

  1. Compressed Air

Compressed air is another, often overlooked, critical component in cannabis operations. Compressed air may be used for a number of applications, including blowing off and drying work surfaces and bottles/containers prior to filling operations, and providing air for pneumatically controlled valves and cylinders. Common contaminants in compressed air are nonviable particles, water, oil, and viable microorganisms. Contaminants should be controlled with the use appropriate in-line filtration. Compressed air application that could impact final product quality and safety requires routine monitoring and testing. ISO 8573:2010, Compressed Air Specifications 21, separates air quality levels into classes to help differentiate air requirements based on facility type.

  1. Electrical Infrastructure

Facilities should be designed to meet the electrical demands of equipment operation, lighting, and accurate functionality of HVAC systems. Processes and procedures should be designed according to the requirements outlined in the National Electrical Code (NEC) 12, Institute of Electrical and Electronics Engineers (IEEE) 13, National Electrical Safety Code (NESC) 14, International Building Code (IBC) 9, International Energy Conservation Code (IECC) 15 and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ).

  1. Fire Detection and Suppression

“Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs.”Proper fire detection and suppression systems should be installed and maintained per the guidelines of the National Fire Protection Association (NFPA) 11, International Building Code (IBC) 9, International Fire Code (IFC) 10, and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ). Facilities should provide standard symbols to communicate fire safety, emergency and associated hazards information as defined in NFPA 170, Standard for Fire Safety and Emergency Symbols 27.

  1. Gas detection

Processes that utilize flammable gasses and solvents should have a continuous gas detection system as required per the IBC, Chapter 39, Section 3905 9. The gas detection should not be greater than 25 percent of the lower explosive limit/lower flammability limit (LEL/LFL) of the materials. Gas detection systems should be listed and labeled in accordance with UL 864, Standard for Control Units and Accessories for Fire Alarm Systems 16 and/or UL 2017, Standard for General-Purpose Signaling Devices and Systems 17 and UL 2075, Standard for Gas and Vapor Detectors and Sensors 18.

Product and Process Flow

Product and process flow considerations include flow of materials as well as personnel. The classic product and process flow of a facility is unidirectional where raw materials enter on one end and finished goods exit at the other. This design minimizes the risk of commingling unapproved and approved raw materials, components and finished goods. Facility space utilization is optimized by providing a more streamlined, efficient and effective process from batch production to final product release with minimal risk of errors. Additionally, efficient flow reduces safety risks to employees and an overall financial risk to the organization as a result of costly injuries. A continuous flow of raw materials and components ensures that supplies are available when needed and they are assessable with no obstructions that could present a potential safety hazard to employees. Proper training and education of personnel on general safety principles, defined work practices, equipment and controls can help reduce workplace accidents involving the moving, handling, and storing of materials. 

Facilities Management

Facilities management includes the processes and procedures required for the overall maintenance and security of a cannabis operation. Facilities management considerations during the design phase include pest control, preventative maintenance of critical utilities, and security.

Damage from whiteflies, thrips and powdery mildew could be prevented with an appropriate PCP

A Pest Control Program (PCP) ensures that pest and vermin control is carried out to eliminate health risks from pests and vermin, and to maintain the standards of hygiene necessary for the operation. Shipping and receiving areas are common entryways for pests. The type of dock and dock lever used could be a welcome mat or a blockade for rodents, birds, insects, and other vermin. Standard Operating Procedures (SOPs) should define the procedure and responsibility for PCP planning, implementation and monitoring.

Routine preventative maintenance (PM) on critical utilities should be conducted to maintain optimal performance and prevent microbial and/or particulate ingress into the work environment. Scheduled PMs may include filter replacement, leak and velocity testing, cleaning and sanitization, adjustment of airflow, the inspection of the air intake, fans, bearings and belts and the calibration of monitoring sensors.

In most medical cannabis markets, an established Security Program is a requirement as part of the licensing process. ASTM International standards: D8205 Guide for Video Surveillance System 23, D8217 Guide for Access Control System[24], and D8218 Guide for Intrusion Detection System (IDS) 25 provide guidance on how to set up a suitable facility security system and program. Facilities should be equipped with security cameras. The number and location of the security cameras should be based on the size, design and layout of the facility. Additional cameras may be required for larger facilities to ensure all “blind spots” are addressed. The facility security system should be monitored by an alarm system with 24/7 tracking. Retention of surveillance data should be defined in an SOP per the AHJ. Motion detectors, if utilized, should be linked to the alarm system, automatic lighting, and automatic notification reporting. The roof area should be monitored by motion sensors to prevent cut-and-drop intrusion. Daily and annual checks should be conducted on the alarm system to ensure proper operation. Physical barriers such as fencing, locked gates, secure doors, window protection, automatic access systems should be used to prevent unauthorized access to the facility. Security barriers must comply with local security, fire safety and zoning regulations. High security locks should be installed on all doors and gates. Facility access should be controlled via Radio Frequency Identification (RFID) access cards, biometric entry systems, keys, locks or codes. All areas where cannabis raw material or cannabis-derived products are processed or stored should be controlled, locked and access restricted to authorized personnel. These areas should be properly designated “Restricted Area – Authorized Personnel Only”.

Future Expansion

The thought of expansion in the beginning stages of facility design is probably the last thing on the mind of the business owner(s) as they are trying to get the operation up and running, but it is likely the first thing on the mind of investors, if they happen to be involved in the business venture. Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs. Thought must be given to how critical systems and product and process flows may be impacted if future expansion is anticipated. The goal should be to minimize down time while maximizing space and production output. Therefore, proper up-front planning regarding future growth is imperative for the operation to be successful and maintain productivity while navigating through those changes.


References:

  1. United States Environmental Protection Agency (EPA) Safe Drinking Water Act (SDWA).
  2. United States Pharmacopeia (USP) Chapter <1231>, Water for Pharmaceutical Purposes.
  3. United States Pharmacopeia (USP) Chapter <61>, Testing: Microbial Enumeration Tests.
  4. United States Pharmacopeia (USP) Chapter <62>, Testing: Tests for Specified Microorganisms.
  5. United States Pharmacopeia (USP) Chapter <643>, Total Organic Carbon.
  6. United States Pharmacopeia (USP) Chapter <645>, Water Conductivity.
  7. ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Coverings.
  8. UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings.
  9. International Building Code (IBC).
  10. International Fire Code (IFC).
  11. National Fire Protection Association (NFPA).
  12. National Electrical Code (NEC).
  13. Institute of Electrical and Electronics Engineers (IEEE).
  14. National Electrical Safety Code (NESC).
  15. International Energy Conservation Code (IECC).
  16. UL 864, Standard for Control Units and Accessories for Fire Alarm Systems.
  17. UL 2017, Standard for General-Purpose Signaling Devices and Systems.
  18. UL 2075, Standard for Gas and Vapor Detectors and Sensors.
  19. International Society for Pharmaceutical Engineers (ISPE) Good Practice Guide.
  20. International Society for Pharmaceutical Engineers (ISPE) Guide Water and Steam Systems.
  21. ISO 8573:2010, Compressed Air Specifications.
  22. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces.
  23. D8205 Guide for Video Surveillance System.
  24. D8217 Guide for Access Control Syst
  25. D8218 Guide for Intrusion Detection System (IDS).
  26. National Cannabis Industry Association (NCIA): Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification.
  27. NFPA 170, Standard for Fire Safety and Emergency Symbols.

3 Pillars of Cannabis Banking Compliance

By Mark Lozzi
No Comments

Few people will disagree that financial compliance isn’t the most exciting topic within the cannabis industry. But compliance is, and always will be, the engine grease to the legal cannabis market. Cannabis operators have the arduous task of dealing with multiple layers of compliance, both operational (maintaining and adhering to regulations enforced by the state licensing board) and financial. These compliance measures include managing everything from seed-to-sale systems for all plant-related activity to on-site requirements like facility access points and alarms systems to name a few.

With complex compliance requirements for the business, the last thing cannabis operators want to think about is financial compliance. We created Confia on this notion. Just as cannabis regulators impose the tracking of plants through the supply chain via a seed-to-sale system, we have developed a storyboard similarly designed to follow the money, which is the equivalent of a transaction-to-deposit system.

Having experience in regulatory technology, artificial intelligence and machine learning, we’ve been fortunate enough to work with some of the world’s largest banks across multiple countries. This experience has afforded us the luxury of working alongside regulators, chief compliance officers and chief risk officers, understanding how risk is perceived by financial institutions and how it ought to be mitigated. It was this access and knowledge that allowed us to effectively reform, enhance and improve the antiquated BSA programs with a technology-enabled process. Leveraging technology is a necessity, almost a requirement, for the cannabis industry as legalization nears and banking access begins to broaden.

Jamming cannabis requirements into an existing BSA program doesn’t scale well. BSA programs are very manual, descriptive and process oriented. So, we’ve taken our prior experience and success in banking to form Confia, distilling the complexities and simplifying the deliverables surrounding cannabis banking compliance. To best articulate cannabis banking requirements, I break it down into three pillars.

Pillar One: KYC-Enhanced Due Diligence

The first pillar is the client-onboarding bucket or KYC – Know Your Customer. In the complex world of cannabis banking, banks must know and understand their clients to great depths. It’s not enough to simply know that the client exists; you also have to understand whether or not that client could be a potential risk to the bank, and one step further, the financial system. Cannabis is a high-risk industry, so the KYC requirement is escalated to a deeper diligence and review, called Enhanced Due Diligence (EDD).

Cannabis is a high-risk industry so extra due diligence is needed

Banks need to know and understand their customers’ story, and all the key parties (officers, directors, and those with key decision-making powers or access to the bank accounts) within that organization. This includes reviewing personal, business, and legal history – not to mention watchlists and negative news presence. An initial onboarding review must then be followed with daily screening and monitoring of all watchlists and adverse media. Typically, banks do KYC refreshes every three years. In cannabis, a full refresh should be done annually with the daily monitoring systems in place.

The high-risk nature of the industry also requires a level of diligence on all parties to a transaction, even if one of the parties, whether a payer or recipient, is not a client of your bank. Unlike traditional banking sectors, reliance on other banks’ KYC programs is far less defensible in the cannabis industry.

Pillar Two: Transactional Monitoring & Detection

Tracking and monitoring the actual financial transactions comprises the second pillar required for cannabis banking. At Confia, we have focused on streamlining processes, so the cannabis operator can seamlessly support the compliance obligation for every transaction. A bank must demonstrate supporting documentation for every cannabis transaction, and gathering such information is a large undertaking in and of itself and can pose future issues if not done properly, see the pitfalls for lack of compliance. Banks are obligated to understand the nature and reason for each transaction, the source of funds, ensure cannabis licenses are in good standing for all parties, and collect evidence such as accounting records and seed-to-sale data.

Core to transaction monitoring in the traditional sense, is the overarching support through anomaly detection. Relying on information is important, but testing those inputs keeps everyone honest. It is important to evaluate transactions from a holistic point of view relative to peers and relative to the general contents of a transaction. This anomaly detection layer is your last line of defense, and as new information is collected, it continues to refine itself.

Pillar Three: Filing and Reporting Requirements

The third component to compliant cannabis banking is regulatory filing and reporting. Once a client is onboarded, the account requires an initial suspicious activity report or SAR-Initial within 30 days of that client being approved by the bank. Then, a report must be filed every 90 days after that for all the transactions of that cannabis operator. Banks must file the SAR-Initial and the Continuing-SAR reports for each cannabis client they have.

The high-risk nature of the industry requires a level of diligence on all parties to a transaction

Solutions like Confia automate the filing process and support the filing with transactional data evidenced on our distributed ledger of record. This provides immutable audibility and simplifies the process for all parties involved.

Compliance Requirements After US Legalization

The anticipation of federal legalization and banking reform bills has many operators hoping for easier banking. Yet, in my opinion, regulatory oversight and audits will likely increase after such reform or legalization. As other financial institutions start to support cannabis, it will inadvertently create greater opportunity and expose the financial system to nefarious or illegitimate transaction activity. This is why cannabis banking will be carefully monitored by regulators, and more so, why banks will be slow and pragmatic in standing up their internal cannabis banking programs. Some banks may forever avoid the cannabis industry due to the known pitfalls of an industry specific program, while others may simply mitigate the possible exposure to reputational risk.

Choose Wisely: Pitfalls for Lack of Compliance

Financial compliance is the responsibility and duty of the banks, but the real losers and result of non-compliance always fall on the cannabis operators. Regulatory action against an institution may result in the bank shutting down its cannabis program or may require them to complete a remediation of all their cannabis transactions for a certain period from its clients. At the end of the day, regardless of action, the cannabis operator is the one being punished. Operators either lose their bank account and have business massively disrupted, or they are asked to provide all the compliance docs for a historic period, which is a huge undertaking and operational distraction, ultimately impacting business and productivity. So, choose your banking partner wisely.

Summarizing Key Banking Requirements

In summary, banking in the cannabis industry will undoubtedly remain a high-risk industry, with or without legalization. Although banking opportunities may expand as US policies change, there will be continued compliance and regulatory requirements for the foreseeable future.

  • Onboarding and ongoing screening are critical
  • Evidence for every transaction is a significant portion of compliance and must not be dismissed
  • Evaluating activity with broader strokes is essential in mitigating against money laundering
  • Managing the staggered filing timelines and due dates for each client

Compliance is the most crucial factor in cannabis banking at this point. It cannot be overlooked or taken for granted. Cannabis operators must take an active role in evaluating the compliance programs of their financial providers. To open a bank account is one thing, but the consideration and effort that goes into keeping a bank account is the difference that will protect your business in the long run.

Leaders in Cannabis Testing – Part 1: A Q&A with Milan Patel, CEO and Co-Founder of PathogenDx

By Aaron Green
No Comments

In this “Leaders in Cannabis Testing” series of articles, Green interviews cannabis testing laboratories and technology providers that are bringing unique perspectives to the industry. Particular attention is focused on how these businesses integrate innovative practices and technologies to navigate a rapidly changing landscape of regulatory constraints and B2B demand.

PathogenDx is an Arizona-based provider of microbial testing technologies. Since their inception in 2014, they have broadened their reach to 26 states in the US. In addition to cannabis product testing, PathogenDx also provides technologies for food safety testing, environmental testing and recently started offering human diagnostics testing to support COVID-19 response efforts.

We interviewed Milan Patel, CEO and co-founder of PathogenDx. Milan founded PathogenDx as a spin-off from one of his investments in a clinical diagnostics company testing for genetic markers in transplant organs. Prior to PathogenDx, Milan worked in finance and marketing at Intel and later served as CFO at Acentia (now Maximus Federal).

Aaron Green: What’s the history of PathogenDx?

Milan Patel: PathogenDx was effectively a spin-off of a clinical diagnostics company that my partner Dr. Mike Hogan, the inventor of the technology, had founded when he was a professor at the University of Arizona, but previously at Baylor Medical College back in 2002. I had invested in the company back then and I had realized that his technology had a broad and wide sweeping impact for testing – not just for pathogens in cannabis specifically, but also for pathogens in food, agriculture, water and even human diagnostics. In the last 14 months, this became very personal for every single person on the planet having been impacted by SARS-CoV-2, the viral pathogen causing Covid-19. The genesis of the company was just this, that human health, food and agricultural supply, and the environment has and will continue to be targeted by bacterial, fungal and viral pathogens impacting the safety and health of each human on the planet.

We founded PathogenDx and we pivoted the company from its original human organ transplant genetics market scope into the bigger markets; we felt the original focus was too niche for a technology with this much potential. We licensed the technology, and we repurposed it into primarily cannabis. We felt that achieving commercial success and use in the hands of cannabis testing labs at the state level where cannabis was first regulated was the most logical next step. Ultimately, our goal was and is to move into markets that are approved at the federal regulatory side of the spectrum, and that is where we are now.

Green: What year was that?

Milan Patel, CEO and Co-Founder of PathogenDx
Photo credit: Michael Chansley

Patel: 2014.

Green: So, PathogenDx started in cannabis testing?

Patel: Yes, we started in cannabis testing. We now have over 100 labs that are using the technology. There is a specific need in cannabis when you’re looking at contamination or infection.

In the case of contamination on cannabis, you must look for bacterial and fungal organisms that make it unsafe, such as E. coli, or Salmonella or Aspergillus pathogens. We’re familiar with recent issues like the romaine lettuce foodborne illness outbreaks at Chipotle. In the case of fungal organisms such as Aspergillus, if you smoke or consume contaminated cannabis, it could have a huge impact on your health. Cannabis regulators realized that to ensure public health and safety there was more than just one pathogen – there were half a dozen of these bugs, at a minimum, that could be harmful to you.

The beauty of our technology, using a Microarray is that we can do what is called a multiplex test, which means you’re able to test for all bacterial and fungal pathogens in a single test, as opposed to the old “Adam Smith” model, which tests each pathogen on a one-by-one basis. The traditional approach is costly, time consuming and cumbersome. Cannabis is such a high value crop and producers need to get the answer quickly. Our tests can give a result in six hours on the same day, as opposed to the two or three days that it takes for these other approved methods on the market.

Green: What is your business model? Is there equipment in addition to consumables?

Patel: Our business model is the classic razor blade model. What that means is we sell equipment as well as the consumables – the testing kits themselves.

The PathogenDx technology uses standard, off-the-shelf lab equipment that you can find anywhere. We didn’t want to make the equipment proprietary so that a lab has to buy a specific OEM branded product. They can use almost any equipment that’s available commercially. We wanted to make sure that labs are only paying a fraction of the cost to get our equipment, as opposed to using other vendors. Secondly, the platform is open-ended, meaning it’s highly flexible to work with the volumes that different cannabis labs see daily, from high to low.

One equipment set can process many different types of testing kits. There are kits for regulated testing required by states, as well as required environmental contamination.

Green: Do you provide any in-house or reference lab testing?

Patel: We do. We have a CLIA lab for clinical testing. We did this about a year ago when we started doing COVID testing.

We don’t do any kind of in-house reference testing for cannabis, though we do use specific reference materials or standards from Emerald Scientific, for example, or from NCI. Our platform is all externally third-party reference lab tested whether it’s validated by our external cannabis lab customers or an independent lab. We want our customers to make sure that the actual test works in their own hands, in their own facility by their own people, as opposed to just shrugging our shoulders and saying, “hey, we’ve done it ourselves, believe us.” That’s the difference.

Green: Can you explain the difference between qPCR and endpoint PCR?

Patel: The difference between PathogenDx’s Microarray is it uses endpoint PCR versus qPCR (quantitative real time PCR). Effectively, our test doesn’t need to be enriched. Endpoint PCR delivers a higher level of accuracy, because when it goes to amplify that target DNA, whether it’s E. coli, Salmonella or Aspergillus pieces, it uses all the primer reagent to its endpoint. So, it amplifies every single piece of an E. Coli (for example) in that sample until the primer is fully consumed. In the case of qPCR, it basically reaches a threshold and then the reaction stops. That’s the difference which results in a much greater level of accuracy. This provides almost 10 times greater sensitivity to identify the pathogen in that sample.

The second thing is that we have separated out how the amplified sample hybridizes to the probe. In the case of our assay, we have a microarray with a well in it and we printed the actual probe that has the sequence of E. coli in there, now driving 100% specificity. Whereas in the qPCR, the reaction is not only amplifying, but it’s also basically working with the probe. So, in that way, we have a higher level of efficiency in terms of specificity. You get a definite answer exactly in terms of the organism you’re looking for.

In terms of an analogy, let’s take a zip code for example which has the extra four digits at the end of it.  In the case of endpoint PCR, we have nine digits. We have our primer probes which represent the standard five digits of a zip code, and the physical location of the probe itself in the well which serves as the extra four digits of that zip code. The analyte must match both primary and secondary parts of the nine-digit zip code for it to lock in, like a key and a lock. And that’s the way our technology works in a nutshell.

Endpoint PCR is completely different. It drives higher levels of accuracy and specificity while reducing the turnaround time compared to qPCR – down to six hours from sample to result. In qPCR, you must enrich the sample for 24 to 48 hours, depending on bacteria or fungus, and then amplification and PCR analysis can be done in one to three hours. The accuracies and the turnaround times are the major differences between the endpoint PCR and qPCR.

Green: If I understand correctly, it’s a printed microarray in the well plate?

Patel: That’s correct. It’s a 96-well plate, and in each well, you’ve now printed all the probes for all targets in a single well. So, you’re not running more than one well per target, or per organism like you are for qPCR. You’re running just one well for all organisms. With our well plates, you’re consuming fewer wells and our patented foil-cover, you only use the wells you need. The unused wells in the well plate can be used in future tests, saving on costs and labor.

Green: Do you have any other differentiating IP?

The PathogenDx Microarray

Patel: The multiplex is the core IP. The way we process the raw sample, whether it’s flower or non-flower, without the need for enrichment is another part of the core IP. We do triplicate probes in each well for E. Coli, triplicate probes for Salmonella, etc., so there are three probes per targeted organism in each of the wells. We’re triple checking that you’re definitively identifying that bug at the end of the day. This is the cornerstone of our technology.

We were just approved by the State of New York, and the New York Department of Health has 13 different organisms for testing on cannabis. Think about it: one of the most rigorous testing requirements at a state level – maybe even at a federal level – and we just got approved for that. If you had to do 13 organisms separately, whether it’s plate culture or qPCR, it would become super expensive and very difficult. It would break the very backs of every testing lab to do that. That’s where the multiplexing becomes tremendously valuable because what you’re doing is leveraging the ability to do everything as a single test and single reaction.

Green: You mentioned New York. What other geographies are you active in?

Patel: We’re active in 26 different states including the major cannabis players: Florida, Nevada, California, Arizona, Michigan, New York, Oklahoma, Colorado and Washington – and we’re also in Canada. We’re currently working to enter other markets, but it all comes down to navigating the regulatory process and getting approval.

We’re not active currently in other international markets yet. We’re currently going through the AOAC approval process for our technology and I’m happy to say that we’re close to getting that in the next couple of months. Beyond that, I think we’ll scale more internationally.

I am delighted to say that we also got FDA EUA federal level authorization of our technology which drives significant credibility and confidence for the use of the technology. About a year ago, we made a conscious choice to make this technology federally acceptable by going into the COVID testing market. We got the FDA EUA back on April 20, ironically. That vote of confidence by the FDA means that our technology is capable of human testing. That has helped to create some runway in terms of getting federalized with both the FDA and the USDA, and certification by AOAC for our different tests.

Green: Was that COVID-19 EUA for clinical diagnostics or surveillance?

Patel: It was for clinical diagnostics, so it’s an actual human diagnostic test.

Green: Last couple of questions here. Once you find something as a cannabis operator, whether its bacteria or fungus, what can you do?

Patel: There are many services that are tied into our ecosystem. For example, we work with Willow Industries, who does remediation.

There’s been a lot of criticism around DNA based technology. It doesn’t matter if it’s qPCR or endpoint PCR. They say, “well, you’re also including dead organisms, dead DNA.” We do have a component of separating live versus dead DNA with a biomechanical process, using an enzyme that we’ve created, and it’s available commercially. Labs can test for whether a pathogen is living or dead and, in many cases, when they find it, they can partner with remediation companies to help address the issue at the grower level.

Another product we offer is an EnviroX test, which is an environmental test of air and surfaces. These have 50 pathogens in a single well. Think about this: these are all the bad actors that typically grow where soil is – the human pathogens, plant pathogens, powdery mildew, Botrytis, Fusarium – these are very problematic for the thousands of growers out there. The idea is to help them with screening technology before samples are pulled off the canopy and go to a regulated lab. We can help the growers isolate where that contamination is in that facility, then the remediation companies can come in, and help them save their crop and avoid economic losses.

Green: What are you most interested in learning about?

Patel: I would prefer that the cannabis industry not go through the same mistakes other industries have gone through. Cannabis started as a cottage industry. It’s obviously doubled every year, and as it gets scaled, the big corporations come in. Sophistication, standards, maturity all help in legitimacy of a business and image of an industry. At the end of the day, we have an opportunity to learn from other industries to really leapfrog and not have to go through the same mistakes. That’s one of the things that’s important to me. I’m very passionate about it.

One thing that I’ll leave you with is this: we’re dealing with more bugs in cannabis than the food industry. The food industry is only dealing with two to four bugs and look at the number of recalls they are navigating – and this is a multi-billion-dollar industry. Cannabis is still a fraction of that and we’re dealing with more bugs. We want to look ahead and avoid these recalls. How do you avoid some of the challenges around antimicrobial resistance and antibiotic resistance? We don’t want to be going down that road if we can avoid it and that’s sort of a personal mission for myself and the company.

Cannabis itself is so powerful, both medicinally as well as recreationally, and it can be beneficial for both consumers and industry image if we do the right things, and avoid future disasters, like the vaping crisis we went through 18 months ago because of bad GMPs. We must learn from those industries. We’re trying to make it better for the right reasons and that’s what’s important to me.

Green: Okay, great. That concludes the interview. Thank you, Milan.

Patel: Thank you for allowing me to share my thoughts and your time, Aaron.

PlantTag

Quality Systems 101: CAPA Programs Drive Improvement & Prevent Costly Mistakes

By David Vaillencourt
No Comments
PlantTag

No business is perfect, especially when humans are part of the equation. But, how do you tackle fixing quality issues as they arise? The goal of this article is to shed some light on the value of a CAPA program and why many states are making them mandatory for cannabis businesses.

Let’s consider the following situations:

  • Analytical lab results for a production batch test above the limit for a banned pesticide or microbial contamination
  • You open a case of tincture bottles and some are broken
  • A customer returns a vape pen because it is leaking or ‘just doesn’t work’

Do you…

  • Document the issue?
  • Perform some sort of an investigation, asking questions of the people involved?
  • Ask for a retest? Then, if the test comes back positive, move on?

Let’s go through each one of these and understand why the suboptimal answer could be costing your business money:

You don’t document the issue

I hear excuses for skipping on documentation all the time.

  • “It’s not a big deal”
  • “It was a one off”
  • “The glasses probably broke in transit”
  • “They are cheap and easily replaceable”
  • “It’s not worth the time”
Tracking and documenting supplier shipments can help you identify supply chain issues.

In the situation of a couple of broken bottles in a shipment, what if it was the seventh time in the last two months? If you haven’t been documenting and tracking the issue, you have no way of knowing if it was a single occurrence. Remember when you were surprised that your filling team did not have enough bottles? Those broken bottles add up. Without documenting the incident, you will never know if it was truly a one-time mistake or the sign of a deeper issue. The reality is, it could be sloppy handling on the production line, issues with the shipper or even a sign of poor quality coming from the supplier.

Have you ever compared the number of fills vs the number of bottles ordered? How much money have you already lost due to those broken bottles adding up? Do you have the ability to answer this question?

You perform an investigation

Let’s say a customer returns a leaky vape pen. You perform an investigation by asking the production workers what they think went wrong. They say that it’s very difficult to get the seal for the cartridge into place. Their supervisor tells them to try harder, refunds the customer and moves on. But, why is it difficult to get the seal into place? Is it a design flaw? Should a special tool be used to assemble the cartridge properly? Without getting to the root cause of why the seals are leading to leaking cartridges, you are doomed to have repeat issues. Numerous studies have found that less than one in twenty dissatisfied customers will complain, and that approximately one in ten will simply leave for another brand or provider. How much is this unresolved issue truly costing your business?

Asking for a retest and if it passes, releasing the product and moving on.

labsphoto
In Colorado, 15% of the final tested cannabis flower products continue to fail.

Suppose a major producer of cereal received test results for its most popular cereal that were positive for levels of heavy metals that research has shown to be linked to cancer or developmental issues in children. Now, suppose the company stated that it was an isolated incident and a retest showed that the product met acceptable limits. Further investigation showed no paperwork, save for a couple of emails and a phone call between the lab and the producer. Would that give you peace of mind? This is known as “testing into compliance” and was the subject of a landmark lawsuit in 1993 that Barr Laboratories lost.

For many the answer would be a hard NO. But this happens every day. In Colorado, 12.5% of cannabis batches failed final product testing in 2018 and 2019. That’s one in eight batches! What happened to those products? Good question.

Enter: CAPA (Corrective Action and Preventive Action) programs! For people with a background in quality and GMPs (Good Manufacturing Practices), CAPA is a household name. And, it’s quickly becoming a requirement that cannabis regulatory bodies are looking at. Colorado was the first state to explicitly require CAPA programs for all license holders effective January of this year and has provided a free resource for them. But, for the large majority of people, including those in the cannabis industry, it’s just another acronym.

What does a CAPA program do?

The benefits are numerous but two major ones are:

An effective tool for investigating the true root cause

First of all, a CAPA program provides the framework for a tool for investigation – as Murphy’s Law posits – things go wrong all of the time. Whether you have a manual, labor-intensive process or a highly automated operation, the equipment is programmed, maintained and monitored by humans. The logical sequence of problem solving within a CAPA program allows you to thoroughly investigate and determine the root cause of the issue. With a complete understanding of root cause, you are then able to eliminate it and prevent future occurrences – not just in the one area investigated, but in all similar situations throughout the company.

System for continuous improvement

Gathering info from a customer complaint like batch or product IDs can be crucial in a CAPA system

Anyone who is in the market for a new car lately can appreciate the technological advances. In the 1980s, it was air bags and ABS brakes (those of you that drive in snowy climates and remember having to pump your brakes can appreciate technological advancements). Bluetooth technology for hands-free communication and radio control is another example of continuous improvement in cars.

This is one of the biggest predictors and differentiators between profitable and successful companies with satisfied clients and one that is barely scraping by. The cost of poor quality adds up!

Key inputs in a CAPA system 

If the output is an improved system and lower cost of quality, we need to make sure we’re considering the potential inputs. 

Information that feeds into your CAPA system:

Customer complaints

Every complaint must be recorded. Gather as much information as possible, but at a minimum: the product type/SKU, the customer name and date of purchase. If possible, the batch or product ID.

This is not necessarily to identify products for a recall, but to prevent…

Laboratory test results

This should not be restricted to final product testing, but include any in-process inspections. Say you have a product repeatedly failing final testing, what if it’s actually been consistently failing or very close to failing at the very first in-process inspection? It’s also important to work with your laboratory to understand their method validation process, including the accuracy, precision, robustness, etc.

Infrastructure & environmental controls/monitoring

Most people consider “environmental controls” to be things like temperature and humidity control. While that is true, it can also include pest and contamination control. Poorly designed infrastructure layouts are major contributors to product cross contamination as well.

Supplier information

Undetected supply chain issues (remember the broken bottles?) can add up fast! CAPAs for suppliers cannot just include supplier monitoring, but improvement in how you communicate your needs to your suppliers. It’s easy to overlook non-cannabis raw materials as sources of microbiological and chemical contamination. Conduct a risk assessment based on the type of contact with your product and the types of contamination possible and adjust your supplier qualification program accordingly.

Are you ready to recognize the benefits of a CAPA program?

One more major benefit of CAPA programs to mention before we go is … Preventive via predictive analytics.

In Colorado, 15% of the final tested cannabis flower products continue to fail, mostly due to mold and mildew. A quality system, with effective data capture that is funneled into a CAPA program can easily reduce this by 75%. For even a small business doing $2M per year in revenue, that equates to a revenue increase of nearly $200,000 with no additional expenses.

Whether you are operating in the State of Colorado or elsewhere, a CAPA and Recall program will provide immense value. In the best case, it will uncover systemic issues; worst case, it forces you to fix mild errors. What are you waiting for?

Growing the Seed of Sale: Integrating Security with Business Opportunity

By Ryan Schonfeld
No Comments

Anyone in the cannabis industry is well aware that theft of crops can economically devastate a grower. Security is critical, and thankfully, growers and dispensaries have many tools available to protect their investment. There is simply no excuse for not having a solid security posture to keep your business in compliance, from public-private partnerships to advanced security tools – in fact, it’s required in most jurisdictions.

In 2020, nationwide cannabis sales increased 67%, and support for legal marijuana reached an all-time high of 68%. New Frontier Data found that U.S. legal cannabis market is projected to double to $41.5 billion by 2025.

The industry’s advancement impacts numerous areas such as job and tax revenue creation and providing a wide variety of valuable opportunities. For cannabis facilities to keep up with the market expansion and experience success, they must face two significant challenges: achieving adequate security and efficient business operations. Though both can be seen as separate concerns, growers and producers must merge processes and solutions to tackle the issue as a whole.

Dispensaries are prime targets for burglary. Defending your storefront requires a comprehensive security plan

Along with rapid growth, dispensaries face traditional security risks, such as workplace violence and retail theft, while cybersecurity risks have also become more prevalent. These potential issues make it clear that the stakes are high, and as the potential impact on a business rises, the need for real-time, predictive response increases. Insider threats are another issue plaguing the industry when you look at the rate of theft, diversion and burglary that is attributable to employees.

The cannabis market is complex: it’s expanding rapidly, has to meet essential regulatory requirements and faces high-security risks. Therefore, security needs to be looked at holistically since it can be challenging to determine where a potential threat may originate.

With security top of mind, it is critical to move away from responsive behaviors and seek ways to manage security in a manner that gets ahead of threats, prevent them before they happen and respond to them in real-time. But does a grower or retailer have the time and expertise to manage all this while keeping an eye on how security affects the business?

Remote Security Operations

The ability to comply with government regulations and protect a valuable cannabis crop at all stages of its journey from seed to sale makes security systems a mission-critical asset for cannabis growers. Security operations centers create a safer and more productive environment and provide state-of-the-art tools to protect employees, retail locations and grow facilities. But some businesses in the cannabis market may not have the resources or space to have their centralized security operations, leading them to piece-meal security together or do the best with what they can afford at the time. Running these facilities can also be prohibitively expensive.

Security operations centers create a safer and more productive environment and provide state-of-the-art tools to protect employees, retail locations and grow facilities.

But new options take the process of security off the table. The business can focus on the growth of its core functions. Remote security operations services allow companies to take advantage of advanced security services typically only possible in larger enterprise environments. These services are offered on a subscription basis, delivered through the cloud, and are entirely customizable to detect risks unique to your business operations while saving each company significant expense.

Centralized security operations centers leverage intelligent tools, standard operating procedures and proven analytic methods to provide cannabis facilities with the information and guidance necessary to mitigate issues like retail or grow theft before they can have a significant impact.

The integrated, holistic response center staffed by experienced operators and security experts delivers a comprehensive security and regulatory compliance method. This approach is designed to provide complete data about what is happening across a cannabis business, from seed to sale, and how individual events can impact the company as a whole. As a result, stakeholders get the security intelligence they need, without the high overhead, personnel investments and complex daily management.

For those businesses in the cannabis market looking to supplement their security operations with other workforce but may not have the budget or infrastructure to do so, remote security operations services are something you should consider. With the experts handling all the heavy lifting, leaders can focus on growth. And, right now, in the cannabis industry, the sky is the limit in terms of opportunity.

Important Security Considerations When Designing Cannabis Facilities

By Heather Bender
No Comments

The cannabis industry is growing so quickly that even COVID-19 can’t slow it down. Before the pandemic, the industry amassed $13.6 billion in U.S. legal cannabis sales in 2019 – a figure that is expected to more than double to $30 billion in the next five years, according to New Frontier Data.  In states where cannabis is legal for medical or recreational use, dispensaries have been deemed necessary, essential businesses – especially when it comes to calming stress and anxiety in our ever-changing times.

Cannabis legalization and newly budding dispensaries have expanded across the U.S., which may come with an unfortunate counterpart – a higher incidence of crime. Despite lower prices in states that have legalized cannabis, as compared to states where it is still illegal, theft has run rampant across grow operations, warehouses and, most often, dispensaries.

Heavy-duty security doors at the front of the dispensary block sight access and provide a visual deterrent.

Dispensaries can be targeted more frequently. Robbers may perceive them as an easy target, because they are businesses that have larger amounts of cash on hand. Many dispensaries only accept cash because payment processors and financial institutions aren’t willing to work with them. This is primarily because cannabis is still deemed an illegal substance under federal law, and the actions of financial institutions are governed by federal, not state, laws. Once the Secure And Fair Enforcement (SAFE) Banking Act is approved, cannabis businesses will be able to work more easily with banks, in turn reducing the amount of cash on site and erasing the dollar signs in opportunistic thieves’ eyes.

However, cash isn’t the only high thieves seek when they break into dispensaries. There’s also the product itself. Protecting it – and providing peace of mind to the facilities’ owners and occupants – is a concern for dispensaries, grow operations and warehouses. Robbers are motivated by the opportunity to make even more fast cash through reselling the product found onsite.

To eliminate such easy targets, security requirements for the cannabis industry are a necessity. They are also involved, complicated, and vary from state to state. A number of security specifications apply between state laws and local ordinances. Inventory must be properly surveilled and managed at all stages of transportation and storage. Any discrepancies in inventory can result in large fines and other penalties. To aid in understanding security compliances, the National Cannabis Industry Association (NCIA), a national trade association, recommends that start-ups obtain attorneys to guide businesses through their state’s laws and regulations.

This is why, especially for new business owners, it is critical to consider the best, most advanced security solutions – especially when it comes to doors and points of egress – that are easily integrated into buildings during the design phase. These solutions protect the products, properties, and people throughout the cannabis supply chain.

Understanding State Security Regulations
While there are no federally recognized security requirements for the cannabis industry, there are similar requirements across all states that have legalized cannabis, including:

  • Maintaining strict access control throughout the facility – this is especially important for grow operations and warehouses
  • Functional alarm systems
  • Documented standard operating procedures
  • Video surveillance systems – many states mandate very precise requirements, such as length of storage time and even video resolution specifications
  • Notifying appropriate regulatory agencies immediately or within a strict timeframe after a security incident or theft
  • Securing all records and record storage

While these are common, state-mandated security requirements, it is critically important to know and understand all rules, regulations, and laws concerning the industry within the business’s specific state. Making sure the business is compliant with all aspects of state laws for security and preventing violations, including the hefty financial penalties that can accompany them, is key.

States require cannabis facilities to implement sophisticated security features for several reasons. One of the most obvious is the fact that the industry supplies a high-value product and is a cash-intensive business. Integrating security features into the building can be a challenging task for architects and designers. To help tackle these challenges, manufacturers have introduced products to the cannabis industry, creating easier, more effective and aesthetically pleasing security solutions.

Integrated Designs For High Level Security
Security shouldn’t be a constraint when considering design aesthetics. Certain elements can be discretely tucked away, including cameras and security doors by way of specifying a concealed rolling door, conveniently disguised in the ceiling during operating hours. These doors can even close under alarm eliminating the need for manual intervention. Other security measures, such as bullet resistant glass, are hidden in plain sight.

Rolling doors like this one can be conveniently disguised in the ceiling during operating hours.

Untrustworthy employees, smash-and-grab thefts or meticulously planned heists mean secure building design is of the utmost importance. In order to have the most effective security, there needs to be design vision – a clear intent for incorporating advanced security into the facility, whether visible or not.

Suggested security measures include video surveillance around the outdoor perimeter of the property as well as inside the facility. Physical barriers, such as specialized entrance locking systems – including fingerprint-scanning biometric technology – and security doors that may also include intrusion detection and automatic closure systems are recommended. All systems may be paired with 24/7 visual monitoring by security personnel.

Many state regulations also require restricted access to specific areas within dispensaries, grow operations and warehouses, with employee names and activities logged for reference. These necessary measures aid in inventory monitoring and control, further reducing the likelihood of internal theft.

When specifying building security, it’s important for architects to consider what type of building they are designing. There are differences in providing security for dispensaries versus warehouses and grow operations. Dispensaries and storefronts are frequently out in the open and in locations that are well-known to consumers. Warehouses and grow operations are usually tucked out of the way, rarely publicized, and less noticeable.

Rolling Grilles And Doors Deter Dispensary Theft
With a high-value product and cash on hand, dispensaries in particular have unique security challenges. And because they are retail businesses, egress and fire codes must be strictly adhered to, in addition to special security regulations.

Rolling grilles can be an effective deterrent against dispensary theft

In light of this, security doors require special consideration. They are necessary to provide secure protection against theft but shouldn’t distract from the architectural vision of the building or interior design.

Rolling security grilles are the ideal solution to protect the counter inside the dispensary and may also be ideal for the front of the store. They fit in small headspaces where there is limited ceiling room and can be easily concealed when not in use.

Even heavy-duty rolling doors used to protect the glass storefront of the dispensary and prevent intruders from entering the building’s dock area can be hidden when not in use. If building code allows, architects may specify a rolling door that coils up into the door’s header, residing behind an exterior soffit. These robust security doors’ lift-resistant bottom bars also can be obscured from sight.

Heavy-duty security doors at the front of the dispensary block sight access and provide a visual deterrent. They give the building a secured look when in use, but heavy-duty rolling doors don’t need to be imposing to customers during the dispensary’s operating hours.

Robust Visible Protection For Grow Operations And Warehouses
Grow operations and warehouses usually opt for more visible security doors to deter criminal activity. They also have different design considerations because of building layout and production needs. For instance, larger grow operations house plants and supplies which require heavy equipment to move throughout the facilities.

A heavy duty steel rolling grille

Heavy duty rolling security doors can be made with up to 12-gauge steel with interlocking slats and tamper resistant fasteners – making them stronger than standard garage doors. They provide high-end security at loading docks and limit access to restricted areas inside.

Rolling doors can also be used to block employee access to off-limits areas common in grow operations and warehouses. Because they are heavily reliant on utilities and infrastructure, such as water mains and humidity and temperature controls, warehouses and grow operations are ideal applications for rolling doors. If unauthorized personnel with ill intentions access these utility areas, it could spell disaster with ruined crops and damaged or unsafe products – turning into substantial financial losses. From a design standpoint, these doors do not need to be concealed. In fact, their visibility signals restricted access areas and hints at the security measures taken to protect these facilities.

Enhanced Security Features
Whether designing a dispensary, a grow operation facility, or a warehouse, rolling doors may be paired with automatic protection features to enhance the building’s security and help workers feel safe. These automatic closing systems allow the security doors to be immediately activated by a building alarm or the push of a panic button in emergency situations. The doors also feature advanced locking systems – some of which are hidden in non-traditional locations – providing further tamper resistance.

Some rolling door manufacturers offer in-house architectural design groups to guide architects and designers in choosing the ideal security doors. These groups can address and solve any design dilemmas that arise during the project. Every rolling door is built to a specific opening, making each product unique to that area of the project. Because of this customization, manufacturers can meet virtually any specification.

Meeting Insurance Requirements
Selecting the correct rolling door along with other advanced security features aids in meeting insurance requirements. Each insurance company has individual minimum-security conditions in its policy. Many insurance companies will not provide theft insurance if cannabis businesses do not have adequate security or cannot demonstrate they have it.

Planning Leads To Integrated Protection
The technical and legal aspects of securing dispensaries, grow operations, and warehouses can be overwhelming and, at times, confusing. Legal counsel, state agencies, industry associations, and manufacturers encourage new cannabis businesses to use them as resources as they unravel the nuances of the industry’s security regulations.

By combining robust security features such as video surveillance, proper access controls, rolling doors or grilles and automatic closure systems, cannabis facilities can meet state and insurance requirements and deter theft. With thoughtful design consideration and planning, these security features also have the capabilities to seamlessly blend with interior and exterior design aesthetics.

3 Ways IP Security Cameras Can Help Cannabusinesses Comply with COVID-19 Health Requirements

By Jeremy White
No Comments

The cannabis industry, like many others, felt the effects of the stay-at-home orders issued in March in response to the COVID-19 healthcare crisis. While medical cannabis companies were considered “essential” in most states, many recreational dispensaries had to close their doors, or pivot to a curbside pickup operations model. According to the State of the Cannabis Industry 2020 report, following a two-week spike in mid-March, as consumers stockpiled product ahead of stay-at-home mandates, sales took a temporary downturn.

The industry rebounded in a big way, however. The report notes that, since April 20, cannabis sales have steadily increased, and are, in fact, up approximately 40% from 2019. But while medical and recreational dispensaries are now open to the public and thriving, it’s far from business as usual.

Like any other retail store, cannabusinesses must follow local- and state-issued health and safety mandates designed to prevent the spread of COVID-19. Complying with these new requirements can be difficult for business owners and management teams on a normal business day – never mind in today’s climate, where demand for cannabis products continues to soar.

Turning to Technology

With more health regulations to follow than ever before and stores experiencing a consistent increase in daily foot traffic, it’s no longer realistic to expect managers to manually monitor every employee and customer to make sure guidelines are met. For example, it’s difficult to manage social distancing within the store – but there are commonly lines outside of cannabusinesses, where social distancing and mask-wearing precautions also need to be followed. Wouldn’t you rather have managers spend their time on customer service and initiatives that will deliver business value, rather than spending time making sure people are following safety protocols?

Technology can help mitigate these new health compliance challenges – and you may even already have the solution deployed: Internet Protocol (IP) security cameras. Often implemented by businesses as a security tool, IP cameras are now also an effective way to ensure employees and customers are following health and safety protocols.

Most IP cameras are equipped with artificial intelligence (AI) that can analyze information in real-time and make split-second response decisions. In the context of health compliance, they can be trained over time to recognize when requirements are not being followed and immediately alert the appropriate managers. This means managers only need to address violations, rather than observing everyone all the time, and they can resolve compliance gaps as they’re happening. In other words, AI takes on the compliance burden for you. And, as an added bonus, many AI-enabled surveillance systems give managers the ability to pull up live video feeds from their smartphone, so they can conduct compliance checks remotely, at any time. This is especially helpful to managers covering multiple stores (suddenly, they can be in more than one place at a time!).

Here are three specific ways IP security cameras can help dispensaries and other cannabusinesses ensure compliance with COVID-19-prompted health guidelines:

  1. Social distance monitoring

Six-feet social distancing rules are now the norm across the U.S., and IP security cameras are able to measure the space around employees and customers to detect when the six-foot rule is violated. For example, some systems place a ring around each person, and the ring’s color changes when people come within six feet of each other. This capability can be helpful when trying to do things such as supervise the line to get into your store, manage your checkout queue, or monitor the distance between customers browsing in store aisles.You can use IP security cameras to create a healthier and safer work environment

  1. Occupancy management

In many states, organizations must follow orders that restrict occupancy to 50% capacity. Rather than having an employee at your front door tallying the number of people going into and out of your store, IP security cameras can do the counting for you. With this capability, you can control foot traffic and keep the number of shoppers within defined occupancy requirements – without having to allocate personnel to do the task manually.

  1. Face mask detection

AI-enabled IP security cameras can also help businesses comply with mandatory face mask orders. The technology can be trained to detect employees and customers who aren’t wearing face masks or other required personal protective equipment, and then alert appropriate management personnel.

A Dual Purpose – Security and Compliance

IP security cameras now have a dual purpose. Beyond simply helping organizations protect their premises from crime, they now also empower them to ensure compliance with health and safety requirements. You can leverage the technology to remediate compliance issues in real-time and demonstrate to public officials that your business remains in compliance with all health mandates. Most importantly, you can use IP security cameras to create a healthier and safer work environment – and, in these uncertain times, this is a certainty you can count on.

HACCP

HACCP for Cannabis: A Guide for Developing a Plan

By Radojka Barycki
1 Comment
HACCP

Hazard Analysis and Critical Control Points (HACCP) is a systematic approach that evaluates hazards that may potentially be present in food products that can harm the consumer. The process used to manufacture the product is evaluated from raw material procurement, receiving and handling, to manufacturing, distribution and consumption of the finished product1. The documented process is what is known as HACCP plan. Although HACCP was designed to evaluate hazards in foods, it can be used to assess or evaluate hazards that may potentially be present in cannabis consumable products (edibles and vaping) that can cause harm to the consumer.

HACCP plan development requires a systematic approach that covers 5 preliminary steps and 7 principles. A systematic approach means that each step must be followed as outlined. Skipping a step will result in a HACCP plan that most likely will be ineffective to control potential hazards in the product.

The 5 preliminary steps are:

  1. Establish a HACCP team
  2. Describe the product
  3. Establish the intended use of the product
  4. Develop a flow diagram
  5. Verify the flow diagram

The 7 Principles are:HACCP

  1. Conduct a hazard analysis
  2. Identify the critical control points (CCPs)
  3. Establish critical limits (CL)
  4. Establish monitoring procedures
  5. Establish corrective actions
  6. Establish verification procedures
  7. Establish records and record keeping procedures1,2

It is important to mention that HACCP plans are supported by programs and procedures that establish the minimum operational and sanitary conditions to manufacture safe products. These programs and procedures are known as pre-requisite programs (PRP) or preventative controls1,2.

Figure 1. Flow Diagram

A multidisciplinary team must be established in order to ensure that all inputs of the product manufacturing process are considered during the hazards analysis discussions. The description of the product and its intended use provides detail information on ingredients, primary packaging material, methods of distribution, chemical characteristics, labeling and if any consumer might be vulnerable to the consumption of the product. A verified flow diagram is an accurate representation of the different steps followed during the product manufacturing process and will be used to conduct a hazard analysis. An inaccurate flow diagram will set the stage for an inadequate HACCP plan. Therefore, it is important that the HACCP team members verify the flow diagram. Figure 1 is a flow diagram for a fictional infused apple juice manufacturing plan that I will be using as an example.

The hazard analysis is the backbone of the HACCP plan. There are two elements that must be considered when conducting the hazard analysis:

  • Identification of the hazard associated with the ingredient(s) and/or the product manufacturing steps. These hazards have been categorized as: Biological, chemical (including radiological) and physical. Biological, chemical and physical hazards should be considered for each ingredient, primary packaging and process step. Also, it is important that the team is specific as to what hazard they are referring to. I often find that biological hazards are identified as “pathogens” for example. The team has to be specific on which pathogen is of concern. For example, if you are processing apple juice, the pathogens of concern are pathogenic coli and Salmonella sp. However, if you are processing carrot juice, you need to add Clostridium botulinum as a biological hazard also. If the choice of method to eliminate the hazards is pasteurization for example, the processing temperature-time combinations will differ greatly when manufacturing the apple juice vs. the carrot juice as C. botulinum is an organism that can sporulate and, therefore, is harder to kill.
  • Characterization of the hazard. This implies determining the significance of the potential hazard based on the severity of the consequence if it is consumed and the likelihood of occurrence in the ingredient or process step. Only steps in the process that has significant hazards should be considered further.
Table 1. Ingredient Hazard Analysis

In my professional experience, the hazard analysis is one of the most difficult steps to achieve because it requires the expertise of the multidisciplinary team and a lot of discussion to get to the conclusion of which hazard is significant. I find that a lot of teams get overwhelmed during this process because they consider that everything in the process may represent a hazard. So, when I am working with clients or providing training, I remind everyone that, in the bigger scheme of things, we can get stricken by a lighting in the middle of a thunderstorm. However, what will increase our chances would be whether we are close or not to a body of water for example. If I am swimming in the middle of a lake, I increase my chances to get stricken by the lighting. In comparison, if I am just sitting in my living room drinking a cup of coffee during the thunderstorm, the likelihood of being stricken by a lighting is a lot less. The same rationale should be applied when conducting the hazard analysis for manufactured products. You may have a hazard that will cause illness or death (high on the severity chart) but you also may have a program that mitigates the likelihood of introducing or having the hazard. The program will reduce the significance of the hazard to a level that may not need a critical control point to minimize or eliminate it.

Table 2. Process Hazard Analysis (1)

Clear as mud, right? So, how would this look like on the infused apple juice example? Table 1 shows the hazard analysis for the ingredients. Tables 2 and 3 show the hazard analysis for the part of the process. In addition, I have identified the CCPs: Patulin testing and pasteurization. There is a tool called the CCP decision tree that is often used to determine the CCPs in the process.

Once we have the CCPs, we need to establish the critical limits to ensure that the hazard is controlled. These limits must be validated. In the case of Patulin, the FDA has done several studies and has established 50 ppm as the maximum limit. In the case of pasteurization, a validation study can be conducted in the juice by a 3rd party laboratory. These studies typically are called thermal death studies (TDS) and provide the temperature and time combination to achieve the reduction of the pathogen(s) of concern to an acceptable level that they do not cause harm. In juice, the regulatory requirement is a 5-log reduction. So, let’s say that the TDS conducted in the infused apple juice determined that 165°F for 5 seconds is the critical limit for pasteurization. Note that the 5 seconds will be provided by the flow of the product through the holding tube of the pasteurizer. This is measured based on flow in gallons per minute.

Table 3. Process Hazard Analysis (2)

Monitoring is essential to ensure that the critical limits are met. A monitoring plan that outlines what, how, when and who is responsible for the monitoring is required.

Ideally, the system should not fail. However, in a manufacturing environment, failures can happen. Therefore, it is important to pre-establish steps that will be taken to ensure that the product is not out of the control of the facility in the event of a deviation from the HACCP plan. These steps are called corrective actions and must be verified once they are completed. Corrective actions procedures must address the control of the product, investigation of the event, corrective actions taken so the deviation doesn’t reoccur and product disposition.

Table 4. HACCP Plan Summary

Verification activities ensure that the HACCP plan is being followed as written. Typically, verification is done by reviewing the records associated with the plan. These records include but are not limited to monitoring records, calibration records, corrective action records, and preventive maintenance records for equipment associated with the CCPs. Record review must be done within 7 working days of the record being produced.

Finally, establishing records and record keeping procedures is the last step on developing HACCP plans. Records must be kept in a dry and secure location.

Table 4 show the summary of the HACCP plan for the infused apple juice example.

For more information on how to develop a HACCP plan for your facility, read the resources below:

  1. HACCP Principles and Application Guidelines – The National Advisory Committee on Microbiological Criteria for Foods (NACMCF)
  2. ASTM D8250-19: Standard Practice for Applying a Hazard Analysis Critical Control Points (HACCP) Systems for Cannabis Consumable Products

Processes, Protocols and Layers of Protection: Essential Security Measures for the Medical Cannabis and Hemp Industries

By Joshua Wall
No Comments

As legalization of cannabis products from hemp to medical cannabis takes root across the U.S., there’s a growing need to understand and build good security practices. While many think of security as safeguarding assets like facilities and product, effective security does much more. It protects a business’ workers, providing them secure workplaces and incomes. Ideally, it reaches from supply chain to customers by ensuring consistently safe products.

To truly understand the value of this for a brand or for the industry as a whole, consider the opposite: the destructive effect – on a brand and on the industry at large – of unsafe or tampered product reaching customers, or of crimes occurring, just as the industry seeks to demonstrate its validity and benefits. Security is vital not only to individual farmers, processors or customers but to all who value what the industry brings to those who rely on CBD or medical cannabis products for their wellbeing.

Know the Threats.

Part of the learning process involves understanding the value of the product.Security is all about anticipating and reducing risks. These can include physical threats from natural sources – think flood, fire, tornado or crop fail – or from human threats. Human threats can arise from organized criminals, hackers, amateur thieves, vandals – or insiders.

As regulated industries, hemp and cannabis businesses also face risk of losses, which can be significant, from penalties ranging from fines to being shut down for non-compliance. While rules vary from state to state and continue to change, a disciplined approach to security is foundational to reducing risk at many levels. Rigorous operational processes must incorporate security that addresses risks at multiple points of access, transport and sale of products.

Learn the Rules.

In a rapidly evolving industry, one of the most important things producers can do is to learn. Security requirements vary by region and providers need to be aware of what is available. Get to know your state, local and federal resources for your operating area. California law, for example, specifies use of high-resolution video surveillance in dispensaries, while others do not.

Joshua Wall, Chief Operating Officer at Harvest Connect LLC

Part of the learning process involves understanding the value of the product. With medicinal cannabis, it’s helpful to grasp both its commodity value and the street value that could make it attractive to thieves. In “Why Marijuana Plant Value is So Important for Adjusters,” Canadian Underwriter Magazine gave examples that indicate the size of losses that may occur in growing and processing operations:

“In the medical marijuana space, ClaimsPro has already seen losses primarily between $150,000 and $750,000. These losses, mostly on Vancouver Island, were for fire and water damage, as well as boiler machinery issues, physical damage to buildings and specialized greenhouse equipment, as well as extra expense and business interruption.”

The same article notes a claim over $20 million at another single flower greenhouse. Security needs to reflect what’s present on our premises.

Educating the community can reduce risk as well. Producers of industrial hemp may need to inform would-be thieves that what they are looking at is not street-valued product. To protect the crops, which are generally grown outdoors and do not require a full security detail, a best practice is simply posting signs on the property that say explicitly “No THC.” 

Begin with a Risk Assessment.

Security begins with a professional evaluation of site vulnerabilities, examining key weaknesses that could be exploited by attackers. These include:

  • Monitoring access to the site is a foundational principle of security.
  • Design limited access points into the facility as well as prepare for possible facility breaches with perimeter access control, technological redundancies and ballistic glass for defensive architecture measures.
  • Look at route vulnerabilities as well.
  • Hedge site risk by not limiting your operation to a single site where one incident could wipe out an entire year’s crop.

The nature of threats is always changing. A 2018 Newsweek article described the struggles of legal cannabis farmers against illegal and potentially cartel-backed and violent operations in California. While a 2020 Business Insider report described indications that legalization was prompting some cartels to leave cannabis alone and move on to fentanyl and meth. “While Mexican drug cartels made their money predominantly from marijuana in past decades, the market has somewhat dissipated with the state-level legalization of cannabis in dozens of states across the US.”

Define Levels of Risk and Access.

The best security matches spending to risk in a commonsense way. Are you more at risk from the occasional smash and grab incident or is there reason to anticipate an organized assault? As in many industries, the greatest risk often comes from employee fraud or theft. Hiring carefully, paying fairly and training staff well are important to long term security.

Iron Protection Group in a training session
Image credit: Tampa Bay Times

How will the product be moved around within the facility and beyond it – and what staff are responsible for each part of the journey? Who can enter the cultivation areas and what protocols must they follow? On site staff should be trained on what to look for if they observe a security breach. Consider biometrics such as retinal scans, fingerprint scans or similar.

In cases where valuable product or cash is present, guards can play an important role. Harvest Connect uses only high-level former military or police officers in these roles, an approach recognized by many. Hunter Garth of Iron Protection Group notes they have “the ability to de-escalate a potentially harmful situation and the fortitude to see a mission through to completion, no matter what external circumstances may arise.”

Inventory and Transaction Controls

Inside threats from sloppy processes can be just as insidious as attacks. Poor tracking of inventory by Oregon’s legal cannabis producers made headlines in 2018 as The Oregonian reported, “U.S. Attorney Billy Williams told a large gathering that included Gov. Kate Brown, law enforcement officials and representatives of the cannabis industry that Oregon has an ‘identifiable and formidable overproduction and diversion problem.’’ Discipline, applied by state pressure but carried out by producers themselves, has begun to reduce the diversion of untracked product into the black market a year later.

Cannabis businesses need a professional approach to monitoring all product and money that moves through its systems. These operational processes can include time, date and attendance stamps on all inventory. Similarly, accounting systems and software must follow the highest professional standards. Lastly, when breaches occur, it is essential that fraud and theft are caught, eliminated and prosecuted as appropriate.

Nurturing an Emerging Industry

Security resources are an integral part of maintaining the integrity of a business’ supply chain. As the product moves from the fields to processing centers to consumers, purity assurance becomes an operational objective. Ultimately, protecting the product through secure and professional practices is the optimal way to serve customers, build a brand, and sustain the industry.

The Power of Prevention: Pathogen Monitoring in Cannabis Cultivation and Processing Facilities

By Nathan Libbey
2 Comments

As the cannabis market matures and the value chain becomes modernized, it’s important to address product safety in a comprehensive way. In other areas of manufacturing, Hazard Analysis & Critical Control Points (HACCP) has been the standard for reducing hazards both for employees and for the products themselves. A Critical Control Point (CCP) is any spot from conception to consumption where a loss of control can potentially result in risk (Unnevehr, 1996). In the food realm, HACCP has been used to drive quality enhancements since the 1980s (Cichy, 1982).

In a nutshell, HACCP seeks to help identify where a problem may enter a product or environment and how that problem may be addressed before it escalates. In cannabis, these hazards include many of the same problems that food products have: specifically molds, yeasts, and pathogenic bacteria (Listeria, E. coli, etc.). While the current industry standard is to test products at the end stage for these contaminants, this late-stage pass/fail regimen leads to huge lots of destroyed product and a risk for consumer distrust (Yamashiro, 2019). HACCP, therefore, should be applied at every stage of the production process.

Pathogen Environmental Monitoring (PEM) is a tool that can be used to identify CCPs in a cannabis cultivation or processing facility. The main goal of a PEM program is to find a contaminant before it reaches a surface that touches the product or the product itself. PEM is conducted using a pre-moistened swab or a sponge to collect a sample from the cannabis environment. The swab can then be sent to a lab for microbial testing. Keys to an effective PEM are:

1. Start with a broad stroke – When the FDA comes to a facility suspected of producing pathogen-laced food products, they conduct what is known as a Swab-a-thon. A Swab-a-thon is a top to bottom collection of samples, usually totaling 100 or more. Similarly, preemptively swabbing should be the first step in any PEM—swab everything to see what exists as a baseline.

2. Map your scene – identify on a map of your facility the following:

  • Cannabis contact surfaces (CCS) (belts, clippers, tables, etc)
  • Non-cannabis contact surfaces (Non-CCS) (floors, lighting, drains, etc)
  • Flow of air and people (where do air and people enter and where do they go?

Identifying the above zones will help deepen your understanding of where contaminants may come into contact with cannabis and how they may migrate from a Non-CCS to a CCS. 

3. Plan and execute:

  • Based on the results of mapping, and Swab-a-thon, identify where and when you will be collecting samples on a consistent and repeatable basis. Emphasis should be placed on areas that are deemed a risk based on 1) and 2). Samples should be collected at random in all zones to ensure comprehensive screening.

4. Remediate and modify:

  • If you get a positive result during PEM, don’t panic—pathogens are ubiquitous.
  • Remediate any trouble spots with deep cleaning, remediation devices or other protocols.
  • Re-test areas that were positive for pathogens to ensure remediation is successful.
  • Revisit and modify the plan at least once a year and each time a new piece of equipment is added or production flow is otherwise changed.

The steps above are a good starting point for a grower or processor to begin a PEM. Remember that this is not a one-size-fits-all approach to safety; each facility has its own unique set of hazards and control points.

Comprehensive guides for PEM can be found at the links below, many of the concepts can be applied to cannabis production.


https://affifoodsafety.org/lcp/advanced-search/

http://www.centerforproducesafety.org/amass/documents/document/263/Listeria%20Guidance%20UFPA%202013.pdf

Cichy, R. (1982). HACCP as a quality assurance tool in a commissary food-service system. International Journal of Hospitality Management, 1(2), 103-106.

Unnevehr, L., & Jensen, H. (1996). HACCP as a Regulatory Innovation to Improve Food Safety in the Meat Industry. American Journal of Agricultural Economics, 78(3), 764-769.

Yamashiro, C, & Baca, Y. (2019).  Prevent high-value cannabis crop loss with innovative environmental monitoring tool.