Tag Archives: myrcene

Busting the THC Myth: When it Comes to the Best User Experience, Terpenes Reign Supreme

By Mark Lange, PhD
No Comments

The scent of pine from your Christmas tree. The fragrance of a ripe summer peach at the farmer’s market. The whiff of eucalyptus and lavender that greets you when you enter a spa.

Aroma is a keystone in how we experience the world. In any given environment, aroma can help shape your mood, solidify memories and instantly transport you to another place or time.

I have focused my career on studying the fascinating compounds that are often behind these powerful aromas: terpenes. They form the largest class of natural products (compounds produced by living organisms), found in nearly all living beings. There are around 50,000 currently known terpenes in nature — with potentially thousands yet to be discovered.

Terpene-rich plants you might be most familiar with are lavender, mint, oranges (in the peel), and yes, cannabis. In recent years, terpenes have rightfully become a central discussion in the recreational cannabis world. This is because terpenes — not THC level, not “Indica-Sativa” classification — are a key determinant of cannabis’s effect, both psychoactive and non-psychoactive. But the current lack of prioritization and understanding of the crucial role terpenes play may put the collective quality of U.S. cannabis at risk.

At this crucial inflection point for legal cannabis, on its path to becoming a $70 billion dollar global industry by 2028, we need to ensure that everyone across the cannabis space, from breeders to testers, growers and consumers, understands which traits to prioritize for a cannabis world brimming with diversity and predictable effects.

What the cannabis industry has to lose 

What do we lose if the cannabis industry continues to scale without a clear understanding of the compounds that define the uniqueness of each variety?

There is a ripple effect across the ecosystem. For cannabis testing labs, focusing on only twenty of the most dominant terpenes means we are missing out on tapping into potentially over a hundred of less common terpenes in cannabis. For the cannabis consumer, lack of understanding on the breeding and testing side may make it difficult to find cannabis that delivers on its promised effect time and time again. And, most detrimentally for breeders, not understanding the direct correlation between genetics and the formation of terpenes means we will have increasingly fewer terpene profiles and combinations to work with, especially when the industry-dominant focus has been on cannabinoid potency.

Let’s explore some misconceptions related to potency. In recent years, many breeders have prioritized high THC levels over genetic diversity. Consumers often associate high THC levels and that telltale strong “skunky” aroma with a strain’s quality and effect, when in reality, these are poor indicators of potency. (In fact, recent research indicates that this specific cannabis aroma is caused by a family of sulfur compounds.) Terpene profiling is a much more accurate way to determine a variety’s given effect. In focusing too much on increasing THC, breeders miss out on the true potency powerhouse: tapping into the terpene diversity that’s out there.

Terpenes are responsible for giving flowers (including cannabis), fruits and spices their distinctive flavors and aromas. Common terpenes include limonene, linalool, pinene and myrcene.

To illustrate the impact of breeding practices that prioritize crop yield over product quality, I first have a question for you: When was the last time you enjoyed a really good tomato?

If you’re lucky enough to have a great farmer’s market nearby, maybe you purchased an heirloom tomato at peak freshness last August. It was likely fragrant, flavorful and didn’t need much preparation to be enjoyable.

Or maybe you can’t remember the last time you’ve eaten a good tomato, as the last standard grocery store tomato you purchased was watery, tasteless and essentially scentless.

Tomatoes are a prime example of what is unfortunately true for a whole host of traditional crop plants in the U.S. When yield is the goal, flavor and aroma profiles often suffer. The culprit: lack of genetic diversity in the breeding process. The tragedy of the tomato serves as a harbinger for the cannabis industry — and we can draw parallels to what we’ve seen happen to cannabis.

What the cannabis industry should do: Tap into the diversity that’s out there

An important aspect of preventing cannabis from going the way of the tomato is to better understand the genes that generate these different terpene profiles. Different cultivars with varying aromas will hold different collections of genes. We as an industry must learn more about which terpenes correlate with desirable aromas, and then access already existing genetic diversity.

We have just begun to scratch the surface of the potential of terpenes in cannabis. With the right alignment across the industry and a stronger focus on genetics in breeding, we will see the rise of completely unique cannabis varieties. They will smell like lavender, lilac, orange peel or even brand-new aromas that have yet to be discovered. To ensure this future, we need to prioritize the right traits and the right genetics.

Who’s Afraid of Biotech Institute LLC?

By Brett Schuman, Daniel Mello, Nicholas Costanza, Olivia Uitto
No Comments

While cannabis patenting activity is still in its infancy, relatively speaking, a lot has been written already about the cannabis patenting activity of an entity called Biotech Institute LLC (BI) of Westlake Village, California.1 BI is building a sizable portfolio of utility and plant patents covering various aspects of the cannabis plant. According to some commentators, BI’s patents have “many in the cannabis industry concerned.”2

But how concerned should members of the cannabis industry really be about BI’s patents? Generally, patents are susceptible to numerous challenges in multiple fora. From 2012-2016, approximately 80% of challenged patents were invalidated by the Patent Trial and Appeal Board (PTAB) each year.3 The PTAB was created in 2011 by the Leahy-Smith America Invents Act, 35 U.S.C. § 6, to create a process for eliminating improvidently issued patents. And the statistics suggest that the process may be working as intended by Congress.

BI may be building its portfolio by taking advantage of some unique challenges in the cannabis patenting area. First, even though cannabis has been cultivated and consumed by humans for thousands of years, there is a relative lack of published prior art available to patentees and patent examiners examining patent applications.4 Second, patent examiners are not as familiar with cannabis patent applications as they may be with other types of patent applications.

So, we examined carefully BI’s earliest and arguably broadest utility patent, U.S. Patent No. 9,095,554, and concluded that maybe the cannabis industry need not be so concerned about this and some of BI’s other utility patents. Although the ’554 patent is lengthy – 247 columns of text and over an inch thick when printed in hardcopy – there appears to be little if any novelty to the claimed invention. Alternatively, the patent appears to be obvious in light of the available prior art.

In a patent, the claims define the metes and bounds of the patentee’s intellectual property. Claim 1 of the ’554 patent recites:

  1. A hybrid cannabis plant, or an asexual clone of said hybrid cannabis plant, or a plant part, tissue, or cell thereof, which produces a female inflorescence, said inflorescence comprising:
  1. a BT/BD genotype;
  2. a terpene profile in which myrcene is not the dominant terpene;
  3. a terpene oil content greater than about 1.0% by weight; and
  4. a CBD content greater than 3%;
  5. wherein the terpene profile is defined as terpinolene, alpha phelladrene, beta ocimene, careen, limonene, gamma terpinene, alpha pinene, alpha terpinene, beta pinene, fenchol, camphene, alpha terpineol, alpha humulene, beta caryophyllene, linalool, cary oxide, and myrcene, and wherein the terpene oil content is determined by the additive content of the terpenes in the terpene profile; and wherein the terpene contents and CBD content are measured by gas chromatography-flame ionization detection (GC-FID) and calculated based on dry weight of the inflorescence; wherein a representative sample of seed producing said plants has been deposited under NCIMB Nos. 42246, 42247, 42248, 42249, 42250, and 42254.

While claim elements define the metes and bounds of the invention, typically only certain claim elements are intended to distinguish the claimed invention from the prior art. Other claim elements merely help to describe the invention. For example, the preamble in the ‘554 patent, or the part of the claim before subpart (a), describes the flowering part of the cannabis plant. This is not intended to describe anything novel about the claimed invention, but rather it simply describes the part of the cannabis plant that is relevant to the invention.

The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

Before the priority date of the ’554 patent, it was known in the prior art that BT/Bgenotypes produce nearly equal amounts of THC and CBD (both are dominant; one is not recessive).5 Thus, it is not unexpected to have a CBD content greater than 3% in a genotype that can produce large amounts of CBD (known references state as high as 21% in CBD-dominant strains and 3%-15% in BT/Bgenotypes).6 Further, it was known in the prior art that terpenes generally constitute more than 1.0% percent by weight (usually between 2-4%) of the flower.7

As these databases continue to grow and studies of cannabis are publicly disclosed, cannabis patents like BI’s ’554 patent will become more and more susceptible to patent challenges and invalidation.Claim element (b), reciting a terpene profile in which myrcene is not the dominant terpene, appears to be one of – if not the only – claimed element of novelty of the BI invention. Terpenes are aromatic compounds produced in plants, and the cannabis plant has more than 100 different terpenes. Claim element (e) simply lists the most abundant terpenes in the cannabis plant. A majority of cannabis strains express high levels of myrcene; however, there are known prior art strains that express high levels of other terpenes, such as caryophyllene, limonene, pinene, etc. Additionally, it is well known in the art that terpenes have different therapeutic effects. For example, pinene and linalool are known to have antidepressant activity.8 Thus, a prior disclosure of a BT/Bgenotype that has a terpene profile where myrcene is not the dominate terpene very likely invalidates this claim. And even assuming there is any novelty to a high-CBD strain where myrcene is not the dominant terpene, there is a motivation to breed for a dominant terpene besides myrcene.

Because cannabis has been and remains a Schedule I drug under the Controlled Substances Act, previously known and used strains generally have not been chemically characterized, studied, researched, and the subject of publications that can be used as prior art for purposes of challenging cannabis patents. But that is changing. For example, the Open Cannabis Project (OCP) attempted to characterize and publish chemical details of cannabis plants. Even though OCP closed as of May 31, 2019, is database is still publicly available. Another example is CANNA, a non-profit initiative of the CANNA Espana Fertilizantes SL company, which carries out studies and conducts research on cannabis and its active compounds.9 In one study,10 CANNA found that some strains have terpene profiles where myrcene is not the dominant terpene, which could be relevant to a novelty-based or obviousness challenge to claim 1 of the ‘554 patent. As these databases continue to grow and studies of cannabis are publicly disclosed, cannabis patents like BI’s ’554 patent will become more and more susceptible to patent challenges and invalidation.


References

  1. See, e.g.,Amanda Chicago Lewis, The Great Pot Monopoly Mystery, GQ (August 23, 2017), https://www.gq.com/story/the-great-pot-monopoly-mystery;  Brian Wroblewski, Utility Patents on Marijuana? Who is BioTech Institute LLC?, The National Marijuana News, https://thenationalmarijuananews.com/utility-patents-marijuana-biotech-institute-llc/; Eric Sandy, Biotech Institute Has Applied for Patents on 8 Individual Cannabis Cultivars, Cannabis Business Times(June 24, 2019), https://www.cannabisbusinesstimes.com/article/biotech-institute-cannabis-patent-applications/.
  2. Nicole Grimm, George Lyons III, and Brett Scott, Biotech Institute’s Growing Patent Portfolio — U.S. Patent No. 9,095,554 and the Path Forward, JD Supra (November 17, 2017), https://www.jdsupra.com/legalnews/biotech-institute-s-growing-patent-17433/.
  3. World Intellectual Property Organization, An overview of patent litigation systems across jurisdictions,World Intellectual Property Indicators 2018, https://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2018-chapter1.pdf.
  4. Brett Schuman et al., Emerging Patent Issues In The Cannabis Industry, Law360(February 20, 2018), https://www.goodwinlaw.com/-/media/files/publications/emerging-patent-issues-in-the-cannabis-industry.pdf.
  5. Chandra, et al. Cannabis sativa L. – Botany and Biotechnology, pages 142-144, Springer, 2017 (citing de Meijer, Genetics163: 225-346 (2003)). See alsoMolecular Breeding (2006) 17:257-268, doi/10.1007/s11032-005-5681-x. 
  6. American Journal of Botany 91(6): 966:975 (2004). doi.org/10.3732/ajb.91.6.966; See e.g., Jikomes, Peak THC: The Limits on THC and CBD Levels for Cannabis Strainshttps://www.leafly.com/news/science-tech/peak-thc-cbd-levels-for-cannabis-strains.
  7. PLoS One. 2017; 12(3): e0173911. doi: 10.1371/journal.pone.0173911.  See also, Fischedick J. T., Hazekamp A., Erkelens T., Choi Y. H., Verpoorte R. (2010). Phytochemistry712058–2073 (2010). 10.1016/j.phytochem.2010.10.001
  8. J Ethnopharmacol. 2012 Sep 28;143(2):673-9. doi: 10.1016/j.jep.2012.07.026. Epub 2012 Jul 31.
  9. Retrieved from https://www.fundacion-canna.es/en/about-us, on August 6, 2019.
  10. Retrieved from https://www.fundacion-canna.es/en/variations-terpene-profiles-different-strains-cannabis-sativa-l, on August 6, 2019.

Orange Photonics Introduces Terpenes+ Module in Portable Analyzer

By Aaron G. Biros
No Comments

Last week at the National Cannabis Industry Association’s (NCIA) Cannabis Business Summit, Orange Photonics unveiled their newest product added to their suite of testing instruments for quality assurance in the field. The Terpenes+ Module for the LightLab Cannabis Analyzer, which semi-quantitatively measures terpenes, Cannabichromene (CBC) and degraded THC, adds three new chemical analyses to the six cannabinoids it already reports.

CBC, a cannabinoid typically seen in hemp and CBD-rich plants, has been linked to some potentially impactful medical applications, much like the findings regarding the benefits of CBD. The module that tests for it, along with terpenes and degraded THC, can be added to the LightLab without any changes to hardware or sample preparation.

Dylan Wilks, chief technology officer of Orange Photonics
Dylan Wilks, chief technology officer of Orange Photonics

According to Dylan Wilks, chief technology officer of Orange Photonics, this could be a particularly useful tool for distillate producers looking for extra quality controls. Cannabis distillates are some of the most prized cannabis products around, but the heat used to create them can also create undesirable compounds,” says Wilks. “Distillate producers can see potency drop more than 25% if their process isn’t optimized”. With this new Terpenes+ Module, a distillate producer could quantify degraded THC content and get an accurate reading for their QC/QA department.

We spoke with Stephanie McArdle, president of Orange Photonics, to learn more about their instruments designed for quality assurance for growers and extractors alike.

Stephanie McArdle, president of Orange Photonics
Stephanie McArdle, president of Orange Photonics

According to McArdle, this could help cultivators and processors understand and value their product when terpene-rich products are the end goal. “Rather than try to duplicate the laboratory analysis, which would require expensive equipment and difficult sample preparation, we took a different approach. We report all terpenes as a single total terpene number,” says McArdle. “The analyzer only looks for monoterpenes (some common monoterpenes are myrcene, limonene and alpha-pinene), and not sesquiterpenes (the other major group of cannabis terpenes, such as Beta- Caryophyllene and Humulene) so the analysis is semi-quantitative. What we do is measure the monoterpenes and make an assumption that the sesquiterpenes are similar to an average cannabis plant to calculate a total terpene content.” She says because roughly 80% of terpenes found in cannabis are monoterpenes, this should produce accurate results, though some exotic strains may not result in accurate terpene content using this method.

The LIghtLab analyzer on the workbench
The LIghtLab analyzer on the workbench

As growers look to make their product unique in a highly competitive market, many are looking at terpenes as a source of differentiation. There are a variety of areas where growers can target higher terpene production, McArdle says. “During production, a grower may want to select plants for growing based on terpene content, or adjust nutrient levels, lighting, etc. to maximize terpenes,” says McArdle. “During the curing process, adjusting the environmental conditions to maximize terpene content is highly desirable.” Terpenes are also beginning to get recognized for their potential medical and therapeutic values as well, notably as an essential piece in the Entourage Effect. “Ultimately, it comes down to economics – terpene rich products have a higher market value,” says McArdle. “If you’re the grower, you want to prove that your product is superior. If you’re the buyer, you want to ensure the product you buy is high quality before processing it into other products. In both cases, knowing the terpene content is critical to ensuring you’re maximizing profits.”

Orange Photonics’ LightLab operates very similarly to instruments you might find in a cannabis laboratory. Many cannabis testing labs use High Performance Liquid Chromatography (HPLC) to analyze hemp or cannabis samples. “The primary difference between LightLab and an HPLC is that we operate at lower pressures and rely on spectroscopy more heavily than a typical HPLC analysis does,” says McArdle. “Like an HPLC, LightLab pushes an extracted cannabis sample through a column. The column separates the cannabinoids in the sample by slowing down cannabinoids by different amounts based on their affinity to the column.” McArdle says this is what allows each cannabinoid to exit the column at a different time. “For example, CBD may exit the column first, then D9THC and so on,” says McArdle. “Once the column separates the cannabinoids, they are quantified using optical spectroscopy- basically we are using light to do the final quantification.”