Tag Archives: NIR

teganheadshot
Quality From Canada

Near Infrared, GC and HPLC Applications in Cannabis Testing

By Tegan Adams, Michael Bertone
5 Comments
teganheadshot

When a cannabis sample is submitted to a lab for testing there is a four-step process that occurs before it is tested in the instrumentation on site:

  1. It is ground at a low temperature into a fine powder;
  2. A solution is added to the ground powder;
  3. An extraction is repeated 6 times to ensure all cannabinoids are transferred into a common solution to be used in testing instrumentation.
  4. Once the cannabinoid solution is extracted from the plant matter, it is analyzed using High Pressure Liquid Chromatograph (HPLC). HPLC is the key piece of instrumentation in cannabis potency testing procedures.

While there are many ways to test cannabis potency, HPLC is the most widely accepted and recognized testing instrumentation. Other instrument techniques include gas chromatography (GC) and thin layer chromatography (TLC). HPLC is preferred over GC because it does not apply heat in the testing process and cannabinoids can then be measured in their naturally occurring forms. Using a GC, heat is applied as part of the testing process and cannabinoids such as THCA or CBDA can change form, depending on the level of heat applied. CBDA and THCA have been observed to change form at as low as 40-50C. GC uses anywhere between 150-200C for its processes, and if using a GC, a change of compound form can occur. Using HPLC free of any high-heat environments, acidic (CBDA & THCA) and neutral cannabinoids (CBD, THC, CBG, CBN and others) can be differentiated in a sample for quantification purposes.

Near Infrared

Near infrared (NIR) has been used with cannabis for rapid identification of active pharmaceutical ingredients by measuring how much light different substances reflect. Cannabis is typically composed of 5-30% cannabinoids (mainly THC and CBD) and 5-15% water. Cannabinoid content can vary by over 5% (e.g. 13-18%) on a single plant, and even more if grown indoors. Multiple NIR measurements can be cost effective for R&D purposes. NIR does not use solvents and has a speed advantage of at least 50 times over traditional methods.

The main downfall of NIR techniques is that they are generally less accurate than HPLC or GC for potency analyses. NIR can be programmed to detect different compounds. To obtain accuracy in its detection methods, samples must be tested by HPLC on ongoing basis. 100 samples or more will provide enough information to improve an NIR software’s accuracy if it is programmed by the manufacturer or user using chemometrics. Chemometrics sorts through the often complex and broad overlapping NIR absorption.

Bands from the chemical, physical, and structural properties of all species present in a sample that influences the measured spectra. Any variation however of a strain tested or water quantity observed can affect the received results. Consistency is the key to obtaining precision with NIR equipment programming. The downfall of the NIR technique is that it must constantly be compared to HPLC data to ensure accuracy.

At Eurofins Experchem , our company works with bothHPLC and NIR equipment simultaneously for different cannabis testing purposes. Running both equipment simultaneously means we are able to continually monitor the accuracy of our NIR equipment as compared to our HPLC. If a company is using NIR alone however, it can be more difficult to maintain the equipment’s accuracy without on-going monitoring.

What about Terpenes?

Terpenes are the primary aromatic constituents of cannabis resin and essential oils. Terpene compounds vary in type and concentration among different genetic lineages of cannabis and have been shown to modulate and modify the therapeutic and psychoactive effects of cannabinoids. Terpenes can be analyzed using different methods including separation by GC or HPLC and identification by Mass Spectrometry. The high-heat environment for GC analysis can again cause problems in accuracy and interpretation of results for terpenes; high-heat environments can degrade terpenes and make them difficult to find in accurate form. We find HPLC is the best instrument to test for terpenes and can now test for six of the key terpene profiles including a-Pinene, Caryophyllene, Limonene, Myrcene, B-Pinene and Terpineol.

Quality Systems

Quality systems between different labs are never one and the same. Some labs are testing cannabis under good manufacturing practices (GMP), others follow ISO accreditation and some labs have no accreditation at all.

From a quality systems’ perspective some labs have zero or only one quality system employee(s). In a GMP lab, to meet the requirements of Health Canada and the FDA, our operations are staffed in a 1:4 quality assurance to analyst ratio. GMP labs have stringent quality standards that set them apart from other labs testing cannabis. Quality standards we work with include, but are not limited to: monthly internal blind audits, extensive GMP training, yearly exams and ongoing tests demonstrating competencies.

Maintaining and adhering to strict quality standards necessary for a Drug Establishment License for pharmaceutical testing ensures accuracy of results in cannabis testing otherwise difficult to find in the testing marketplace.

Important things to know about testing

  1. HPLC is the most recommended instrument used for product release in a regulated environment.
  2. NIR is the best instrument to use for monitoring growth and curing processes for R&D purposes, only if validated with an HPLC on an ongoing basis.
  3. Quality Systems between labs are different. Regardless of instrumentation used, if quality systems are not in place and maintained, integrity of results may be compromised.
  4. GMPs comprise 25% of our labour costs to our quality department. Quality systems necessary for a GMP environment include internal audits, out of specification investigations, qualification and maintenance of instruments, systems controls and stringent data integrity standards.