By Dr. Allison Justice, Vice President of Cultivation at Outco
This presentation discusses:
Prized French wines are aged for years in oak barrels, as are famous whiskies. Tobacco is air-, fire-, flue- or sun-cured. Cannabis, however, is quickly dried and stored in a plastic bucket. Although many cannabis growers have proprietary ways of making flower flavorful and aromatic, little to no research is available for consistency.
Anecdotal examples show that chemical makeup is not only dictated by the strain/cultivar, but also influenced by grow methods, drying and curing. The lack of data prompted us to research what is happening during these processes. In this session, we will present our research at OutCo of how to affect and control the chemical makeup of flower; new protocols to monitor the dry and cure of cannabis flowers so we are able to modulate the terpene and cannabinoid profiles in our strain offering; and our latest findings in this exciting field of post-harvest cannabis research.
Hazard analysis and critical control points (HACCP) is a robust management system that identifies and addresses any risk to safety throughout production. Originally designed for food safety through the entire supply chain, the risk assessment scheme can ensure extra steps are taken to prevent contamination.
The FDA as well as the Food Safety and Inspection Service currently require HACCP plans in a variety of food markets, including high-risk foods like poultry that are particularly susceptible to pathogenic contamination. As California and other states develop and implement regulations with rigorous safety requirements, cannabis cultivators, extractors and infused product manufacturers can look to HACCP for guidance on bolstering their quality controls. Wikipedia actually has a very helpful summary of the terms referenced and discussed here.
The HACCP system consists of six steps, the first of which being a hazard analysis. For Dr. Markus Roggen, vice president of extraction at Outco, a medical cannabis producer in Southern California, one of their hazard analyses takes place at the drying and curing stage. “When we get our flower from harvest, we have to think about the drying and curing process, where mold and bacteria can spoil our harvest,” says Dr. Roggen. “That is the hazard we have to deal with.” So for Dr. Roggen and his team, the hazard they identified is the potential for mold and bacteria growth during the drying and curing process.
The next step in the HACCP system is to identify a critical control point. “Correct drying of the flower will prevent any contamination from mold or bacteria, which is a control point identified,” says Dr. Roggen. “We also have to prevent contamination from the staff; it has to be the correct environment for the process.” That might include things like wearing gloves, protective clothing and hand washing. Once a control point is identified, the third step in the process is to develop a critical limit for those control points.
A critical limit for any given control point could be a maximum or minimum threshold before contamination is possible, reducing the hazard’s risk. “When we establish the critical limit, we know that water activity below 0.65 will prevent any mold growth so that is our critical limit, we have to reach that number,” says Dr. Roggen. The fourth step is monitoring critical control points. For food manufacturers and processors, they are required to identify how they monitor those control points in a written HACCP plan. For Dr. Roggen’s team, this means using a water activity meter. “If we establish the critical control point monitoring, water activity is taken throughout the drying process, as well as before and after the cure,” says Dr. Roggen. “As long as we get to that number quickly and stay below that number, we can control that point and prevent mold and bacteria growth.”
When monitoring is established and if the critical limit is ever exceeded, there needs to be a corrective action, which is the fifth step in a HACCP plan. In Dr. Roggen’s case, that would mean they need a corrective action ready for when water activity goes above 0.65. “If we don’t have the right water activity, we just continue drying, so this example is pretty simple,” says Dr. Roggen. “Normal harvest is 7 days drying, if it is not dry enough, we take longer to prevent mold or bacteria growth.”
The sixth step is establishing procedures to ensure the whole system works. In food safety, this often means requiring process validation. “We have to double check that our procedure and protocols work,” says Dr. Roggen. “Checking for water activity is only a passive way of testing it, so we send our material to an outside testing lab to check for mold or bacteria so that if our protocols don’t work, we can catch those problems in the data and correct them.” They introduced weekly meetings where the extraction and cultivation teams get together to discuss the processes. Dr. Roggen says those meetings have been one of the most effective tools in the entire system.
The final step in the process is to keep records. This can be as simple as keeping a written HACCP plan on hand, but should include keeping data logs and documenting procedures throughout production. For Dr. Roggen’s team, they log drying times, product weight and lab tests for every batch. Using all of those steps, Dr. Roggen and his team might continue to update their HACCP plans when they encounter a newly identified hazard. While this example is simplistic, the conceptual framework of a HACCP plan can help detect and solve much more complex problems. For another example, Dr. Roggen takes us into his extraction process.
Dr. Roggen’s team, on the extraction side of the business, uses a HACCP plan not just for preventing contamination, but for protecting worker safety as well. “We are always thinking about making the best product, but I have to look out for my team,” says Dr. Roggen. “The health risk to staff in extraction processes is absolutely a hazard.” They use carbon dioxide to extract oil, which carries a good deal of risks as well. “So when we look at our critical control points we need to regularly maintain and clean the extractor and we schedule for that,” says Dr. Roggen.
“My team needs respirators, protective clothing, eyewear and gloves to prevent contamination of material, but also to protect the worker from solvents, machine oil and CO2 in the room.” That health risk means they try and stay under legal limits set by the government, which is a critical limit of 3,000 ppm of carbon dioxide in the environment. “We monitor the CO2 levels with our instruments and that is particularly important whenever the extractor is opened.” Other than when it is being opened, Dr. Roggen, notes, the extractor stays locked, which is an important worker safety protocol.
The obvious corrective action for them is to have workers leave the room whenever carbon dioxide levels exceed that critical limit. “We just wait until the levels are back to normal and then continue operation,” says Dr. Roggen. “We updated our ventilation system, but if it still happens they leave the room.” They utilize a sort of double check here- the buddy system. “I took these rules from the chemistry lab; we always have two operators working on the machine on the same time, never anyone working alone.” That buddy check also requires they check each other for protective gear. “Just like in rock climbing or mountain biking, it is important to make sure your partner is safe.” He says they don’t keep records for employees wearing protective gear, but they do have an incident report system. “If any sort of incident takes place, we look at what happened, how could we have prevented it and what we could change,” says Dr. Roggen.
He says they have been utilizing some of these principles for a while; it just wasn’t until recently that they started thinking in terms of the HACCP conceptual framework. While some of those steps in the process seem obvious, and it is very likely that many cannabis processors already utilize them in their standard operating procedures and quality controls, utilizing the HACCP scheme can help provide structure and additional safeguards in production.
Formed in 2015, Outco is a vertically integrated, licensed producer of medical cannabis in Southern California. Outco manages Outliers Collective, the first licensed dispensary continually operating in San Diego County. They operate the first licensed cultivation on Native American land in Southern California, the first cultivation building permit in Southern California and the first licensed extraction facility in San Diego County. Outco is on track to be the largest licensed producer of medical cannabis in Southern California.
The company prides themselves on attention to detail; the well versed team implements real science in their cultivation and extraction processes. Lincoln Fish, co-founder and chief executive officer of Outco, has more than 30 years of experience as an entrepreneur. Before entering the cannabis industry, Linc started and sold companies in the healthcare technology and nutraceutical spaces.
Fish’s experience with FDA regulations in nutraceuticals prepared him for running a business in such a tumultuous, highly regulated environment like cannabis. “One thing I took from the nutraceutical industry is how to present products to consumers and letting them know it is safe, effective and consistent,” says Fish. He says he noticed a serious lack of consistency in products. They tested 25 different vape cartridges, with their own oil, to find a consistent product they can use and know that consumers will safely and consistently get the same results. “There is a lot of room for more professionals and a lot of room for more science,” says Fish. “We try to position ourselves in a way that is consistent with where we think policy will go so we are very careful with recommendations from a scientific standpoint, patient information and product safety.”
According to Fish, they currently distribute cannabis products to about 75 licensed dispensaries in Orange County, San Diego and Los Angeles. With construction underway at their cultivation facility on Native American land, Fish says they plan to generate roughly 2600 pounds of cannabis each month. Gearing up for that in addition to the expanding recreational market requires some planning in advance, says Fish. Part of that plan is making sure quality controls are in place to keep consistency in the product quality and dosage. They are also actively seeking to open their distribution channels further.
“We are building out a full lab of our own in addition to third party testing to perform internal quality controls,” says Fish. Equipped with their own laboratory instrumentation like HPLC and GC, they hope to establish proper in-house quality controls as well as provide that resource to younger startup companies. As one of the founding partners of Canopy San Diego, an ancillary startup accelerator, Fish sees great potential in working with younger companies to get them off the ground. Fish met Outco’s vice president of extraction, Dr. Markus Roggen, at a Canopy San Diego event. It was there that they had the idea to build a startup accelerator for companies that actually touch the plant- extractors, cultivators and infused-product manufacturers, as opposed to a startup accelerator that would only help ancillary businesses.
Dr. Roggen, who is an organic chemist by training, heads up Outco’s supercritical CO2 extraction operation. “I came to the ‘art’ of cannabis extraction with an open, yet scientifically focused mind,” says Dr. Roggen. “My approach was to look past the myths and stories about extraction methods and focus on finding data, as there really wasn’t much available. I therefore, from the beginning, started to study the capabilities of our extraction equipment by chemometric methods.” Chemometrics is the science of relating measurements made on a chemical system or process to the state of the system via applications of mathematical methods. “Already the first sets of experiments showed that long-held beliefs in the cannabis community were inaccurate,” says Dr. Roggen. “For example the particle size of extracted material matters. Or that it is possible to preserve and even isolate terpenes by CO2 extraction methods.” With plans to have a full plant and analytical chemistry laboratory on site, they hope to perform more research that focuses on optimizing extraction processes.
Dr. Allison Justice leads their cultivation team with a background in greenhouse management and commercial horticulture. Dr. Justice says plants are grown, starting at a young age (seed or vegetative cutting), with the protection of biological control agents. “Biological control is a management strategy that entails the release of beneficial insects or fungi, such as parasitoids and predators, in order to suppress or regulate insect populations in greenhouses and grow rooms,” says Dr. Justice.
When implemented properly, this eliminates the need to use synthetic pesticides. “Biological control agents are not put in place to eradicate pest populations yet are applied as preventives to minimize plant damage and maintain their own populations.” They are constantly evaluating light types, spectrum and intensity to determine optimal ranges, according to Dr. Justice. They don’t use any pre-mixed “cannabis” nutrient supplements for their plants, instead they design an experiment to determine the desired levels and ratios of essential plant nutrients. “We have found it crucial to determine what ratios of nutrients the plant actually needs and by knowing this, we know how to manipulate the recipe determined by the plant’s given nutritional symptoms,” says Dr. Justice. Every type of adjustment in cultivation and extraction is based on results from experimentation rooted in legitimate science. Instead of guessing when it might be time to harvest, they use a water activity meter, logging and recording all the data to determine the appropriate time to trim and cure plants. Performing analytical testing at every step is key, says Fish.
Looking toward the recreational market, Fish sees an obvious opportunity to expand their wholesale operations substantially, with several larger new cultivation projects planned. “The key though is to produce flower and concentrate offerings with the same standards we employ for medical cannabis,” says Fish.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.