Tag Archives: product

Steven Burton

Top 4 Food Safety Hazards for the Cannabis Industry

By Steven Burton
18 Comments
Steven Burton

As many US States and Canadian provinces approach legalization of cannabis, the question of regulatory oversight has become a pressing issue. While public awareness is mainly focused on issues like age restrictions and impaired driving, there is another practical question to consider: should cannabis be treated as a drug or a food product when it comes to safety? In the US, FDA governs both food and drugs, but in Canada, drugs are regulated by Health Canada while food products are regulated under the CFIA.There are many food safety hazards associated with cannabis production and distribution that could put the public at risk, but are not yet adequately controlled

Of course, there are common issues like dosage and potency that pharmaceutical companies typically worry about as the industry is moving to classifying its products in terms of percentage of chemical composition (THC, CBD, etc. in a strain), much as we categorize alcohol products by the percentage of alcohol. However, with the exception of topical creams and ointments, many cannabis products are actually food products. Even the herb itself can be brewed into teas, added to baked goods or made into cannabis-infused butters, oils, capsules and tinctures.

FDAlogoAs more people gain access to and ingest cannabis products, it’s only a matter of time before food safety becomes a primary concern for producers and regulators. So when it comes to food safety, what do growers, manufacturers and distributors need to consider? The fact is, it’s not that different from other food products. There are many food safety hazards associated with cannabis production and distribution that could put the public at risk, but are not yet adequately controlled. Continue reading below for the top four safety hazards for the cannabis industry and learn how to receive free HACCP plans to help control these hazards.

Aflatoxins on Cannabis Bud

Just like any other agricultural product, improper growing conditions, handling and storage can result in mold growth, which produce aflatoxins that can cause liver cancer and other serious health problems. During storage, the danger is humidity; humidity must be monitored in storage rooms twice a day and the meter must be calibrated every month. During transportation, it is important to monitor and record temperatures in trucks. Trucks should also be cleaned weekly or as required. Products received at a cannabis facilities should be tested upon receiving and contaminated products must always be rejected, segregated and disposed of safely.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate certain foods and cause aspergillosis, an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Chemical Residues on Cannabis Plants

Chemical residues can be introduced at several points during the production and storage process. During growing, every facility should follow instructions for applying fertilizers and pesticides to crops. This includes waiting for a sufficient amount of time before harvesting. When fertilizer is being applied, signs must be posted. After cannabis products have been harvested, chemical controls must be in place. All chemicals should be labelled and kept in contained chemical storage when not in use to prevent contamination. Only food-grade chemicals (e.g. cleaners, sanitizers) should be used during curing, drying, trimming and storage.

Without a comprehensive food safety program, problems will inevitably arise.There is also a risk of excessive concentration of chemicals in the washing tank. As such, chemical concentrations must be monitored for. In general, water (obviously essential for the growing process) also carries risks of pathogenic bacteria like staphylococcus aureus or salmonella. For this reason, city water (which is closely controlled in most municipalities) should be used with an annual report and review. Facilities that use well water must test frequently and water samples must be tested every three months regardless.

Pathogenic Contamination from Pest Infestations

Insects, rodents and other pests spread disease. In order to prevent infestations, a pest control program must be implemented, with traps checked monthly by a qualified contractor and verified by a designated employee. It is also necessary to have a building procedure (particularly during drying), which includes a monthly inspection, with no holes or gaps allowed. No product should leave the facility uncovered to prevent fecal matter and other hazards from coming into contact with the product. Contamination can also occur during storage on pallets, so pallets must be inspected for punctures in packaging material.

Furthermore, even the best controlled facility can fall victim to the shortcomings of their suppliers. Procedures must be in place to ensure that suppliers are complying with pest and building control procedures, among others. Certifications should be acquired and tracked upon renewal.

Pathogenic Contamination Due to Improper Employee Handling

Employee training is key for any food facility. When employees are handling products, the risk of cross-contamination is highest. Facilities must have GMP and personnel hygiene policies in place, with training conducted upon hiring and refreshed monthly. Employees must be encouraged to stay home when sick and instructed to wear proper attire (gloves, hair nets, etc.), while glass, jewelry and outside food must not be allowed inside the facility. Tools used during harvesting and other stages may also carry microorganisms if standard cleaning procedures are not in place and implemented correctly by employees.

As the cannabis industry grows, and regulatory bodies like the FDA and CFIA look to protect public safety, we expect that more attention will be paid to other food safety issues like packaging safety (of inks and labels), allergen control and others. In the production of extracts, for example, non-food safe solvents could be used or extracts can be mixed with ingredients that have expiration dates, like coconut oil. There is one area in which the cannabis industry may lead the way, however. More and more often, risks of food terrorism, fraud and intentional adulteration are gripping the food industry as the global food chain becomes increasingly complex. It’s safe to say that security at cannabis facilities is probably unparalleled.

All of this shows that cannabis products, especially edibles (and that includes capsules and tinctures), should be treated the same as other food products simply because they have the same kinds of hazards. Without a comprehensive food safety program (that includes a plan, procedures, training, monitoring and verification), problems will inevitably arise.

autoclave

10 Treatment Methods to Reduce Mold in Cannabis

By Ketch DeGabrielle
9 Comments
autoclave

As the operations manager at Los Sueños Farms, the largest outdoor cannabis farm in the country, I was tasked with the challenge of finding a yeast and mold remediation treatment method that would ensure safe and healthy cannabis for all of our customers while complying with stringent regulations.

While outdoor cannabis is not inherently moldy, outdoor farms are vulnerable to changing weather conditions. Wind transports spores, which can cause mold. Each spore is a colony forming unit if plated at a lab, even if not germinated in the final product. In other words, perfectly good cannabis can easily fail microbial testing with the presence of benign spores.

Fun Fact: one square centimeter of mold can produce over 2,065,000,000 spores.

If all of those landed on cannabis it would be enough to cause over 450 pounds of cannabis to fail testing, even if those spores remained ungerminated.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

It should also be known that almost every food item purchased in a store goes through some type of remediation method to be considered safe for sale. Cannabis is finally becoming a legitimized industry and we will see regulations that make cannabis production look more like food production each year.

Regulations in Colorado (as well as Nevada and Canada) require cannabis to have a total yeast and mold count (TYMC) of ≤ 10,000 colony forming units per gram. We needed a TYMC treatment method that was safe, reliable, efficient and suitable for a large-scale operation. Our main problem was the presence of fungal spores, not living, growing mold.

Below is a short list of the pros and cons of each treatment method I compiled after two years of research:

Autoclave: This is the same technology used to sterilize tattoo needles and medical equipment. Autoclave uses heat and pressure to kill living things. While extremely effective, readily available and fiscally reasonable, this method is time-consuming and cannot treat large batches. It also utilizes moisture, which increases mold risk. The final product may experience decarboxylation and a change in color, taste and smell.

Dry Heat: Placing cannabis in dry heat is a very inexpensive method that is effective at reducing mold and yeast. However, it totally ruins product unless you plan to extract it.

autoclave
An autoclave
Image: Tom Beatty, Flickr

Gamma Ray Radiation: By applying gamma ray radiation, microbial growth is reduced in plants without affecting potency. This is a very effective, fast and scalable method that doesn’t cause terpene loss or decarboxylation. However, it uses ionizing radiation that can create new chemical compounds not present before, some of which can be cancer-causing. The Department of Homeland Security will never allow U.S. cannabis farmers to use this method, as it relies on a radioactive isotope to create the gamma rays.

Gas Treatment: (Ozone, Propylene Oxide, Ethylene Oxide, Sulfur Dioxide) Treatment with gas is inexpensive, readily available and treats the entire product. Gas treatment is time consuming and must be handled carefully, as all of these gases are toxic to humans. Ozone is challenging to scale while PPO, EO and SO2 are very scalable. Gases require special facilities to apply and it’s important to note that gases such as PPO and EO are carcinogenic. These methods introduce chemicals to cannabis and can affect the end product by reducing terpenes, aroma and flavor.

Hydrogen Peroxide: Spraying cannabis plants with a hydrogen peroxide mixture can reduce yeast and mold. However, moisture is increased, which can cause otherwise benign spores to germinate. This method only treats the surface level of the plant and is not an effective remediation treatment. It also causes extreme oxidation, burning the cannabis and removing terpenes.

Microwave: This method is readily available for small-scale use and is non-chemical based and non-ionizing. However, it causes uneven heating, burning product, which is damaging to terpenes and greatly reduces quality. This method can also result in a loss of moisture. Microwave treatment is difficult to scale and is not optimal for large cultivators.

Radio Frequency: This method is organic, non-toxic, non-ionizing and non-chemical based. It is also scalable and effective; treatment time is very fast and it treats the entire product at once. There is no decarboxylation or potency loss with radio frequency treatment. Minimal moisture loss and terpene loss may result. This method has been proven by a decade of use in the food industry and will probably become the standard in large-scale treatment facilities.

Steam Treatment: Water vapor treatment is effective in other industries, scalable, organic and readily available. This method wets cannabis, introducing further mold risk, and only treats the product surface. It also uses heat, which can cause decarboxylation, and takes a long time to implement. This is not an effective method to reduce TYMC in cannabis, even though it works very well for other agricultural products

extraction equipment
Extraction can be an effective form of remediating contaminated cannabis

Extraction: Using supercritical gas such as butane, heptane, carbon dioxide or hexane in the cannabis extraction process is the only method of remediation approved by the Colorado Marijuana Enforcement Division and is guaranteed to kill almost everything. It’s also readily available and easy to access. However, this time-consuming method will change your final product into a concentrate instead of flower and usually constitutes a high profit loss.

UV Light: This is an inexpensive and readily available method that is limited in efficacy. UV light is only effective on certain organisms and does not work well for killing mold spores. It also only kills what the light is touching, unless ozone is captured from photolysis of oxygen near the UV lamp. It is time consuming and very difficult to scale.

After exhaustively testing and researching all treatment methods, we settled on radio frequency treatment as the best option. APEX, a radio frequency treatment machine created by Ziel, allowed us to treat 100 pounds of cannabis in an hour – a critical factor when harvesting 36,000 plants during the October harvest.

NACB Releases Packaging and Labeling Standards for Public Review

By Aaron G. Biros
No Comments

Last week, the National Association of Cannabis Businesses (NACB) announced the publication of their Packaging and Labeling National Standard, initiating a comment period for public review. The NACB, which launched in June of 2017, is the first-ever self-regulatory organization (SRO) for cannabis businesses in the United States.

According to the press release, the Packaging and Labeling National Standard, the first standard for them to publish, is designed to help protect consumers and show regulators and financial institutions that members of NACB operate ethically and responsibly.

Andrew Kline, president of NACB

According to Andrew Kline, president of NACB, the standard is based on regulators’ priorities, among other stakeholder inputs. “The NACB believes that self-regulation is the most effective course of action for our members to control their own destiny in the face of regulators’ growing need to intervene,” says Kline. “The creation and adoption of national, voluntary standards that are aligned with regulators’ priorities takes input from government, NACB members, and subject matter experts into careful consideration. Through this process, the SRO identified product packaging and labeling as our first priority because it impacts so many issues related to health and safety.”

Here are some of the major areas the standard addresses, from the press release:

  • Child-resistant packaging guidelines for all cannabis products
  • Consistent labeling that identifies the cannabis product’s origin, cultivator and processor
  • Inclusion of warning statements regarding health risks associated with cannabis consumption, such as advising consumers to not drive or operate heavy machinery while using the product, and that the intoxicating effects of the product may be delayed after consumption
  • Avoiding packaging and labeling that appeal to minors
  • Requirements and methods for listing all ingredients present in the product
  • Inclusion of major food allergen warnings and information on cannabis edibles based upon U.S. Food & Drug Administration guidelines
  • Guidelines on how to address health and medical claims for cannabis products

The public review and comment period lasts until February 21st. During that time, every comment submitted will be reviewed and could impact the final language of the standard. Prior to adopting the new standard, they write a final draft after the comment period and bring it to members for a final vote.

Once the final standard is in place, the NACB enforces the standard with their members. If a member doesn’t comply, they can be removed from the organization or penalized.

Towards the end of the press release, they hint at news coming in 2018 for their members. “To help aid members in complying with the requirements of state governments and the NACB’s National Standards, the NACB expects to launch a technology solution exclusively for members in 2018,” reads the press release. “The technology platform is also expected to help members meet the rigorous due diligence required by financial institutions and business partners, by creating an auditable ledger of compliance and financial records.”

Microbiology 101 Part Two

By Kathy Knutson, Ph.D.
No Comments

Microbiology 101 Part One introduced the reader to the science of microbiology and sources of microbes. In Part Two, we discuss the control of microorganisms in your products.

Part 2

The cannabis industry is probably more informed about patients and consumers of their products than the general food industry. In addition to routine illness and stress in the population, cannabis consumers are fighting cancer, HIV/AIDS and other immune disorders. Consumers who are already ill are immunocompromised. Transplant recipients purposely have their immune system suppressed in the process of a successful transplant. These consumers have pre-existing conditions where the immune system is weakened. If the immunocompromised consumer is exposed to viral or bacterial pathogens through cannabis products, the consumer is more likely to suffer from a viral infection or foodborne illness as a secondary illness to the primary illness. In the case of consumers with weakened immune systems, it could literally kill them.Bacteria, yeast, and mold are present in all environments.

The cannabis industry shoulders great responsibility in both the medical and adult use markets. In addition to avoiding chemical hazards and determining the potency of the product, the cannabis industry must manufacture products safe for consumption. There are three ways to control pathogens and ensure a safe product: prevent them from entering, kill them and control their growth.

Prevent microorganisms from getting in

Think about everything that is outdoors that will physically come in a door to your facility. Control the quality of ingredients, packaging, equipment lubricants, cleaning agents and sanitizers. Monitor employee hygiene. Next, you control everything within your walls: employees, materials, supplies, equipment and the environment. You control receiving, employee entrance, storage, manufacturing, packaging and distribution. At every step in the process, your job is to prevent the transfer of pathogens into the product from these sources.

Kill microorganisms

Colorized low-temperature electron micrograph of a cluster of E. coli bacteria.
Image courtesy of USDA ARS & Eric Erbe

The combination of raw materials to manufacture your product is likely to include naturally occurring pathogens. Traditional heat methods like roasting and baking will kill most pathogens. Remember, sterility is not the goal. The concern is that a manufacturer uses heat to achieve organoleptic qualities like color and texture, but the combination of time and temperature may not achieve safety. It is only with a validated process that safety is confirmed. If we model safety after what is required of food manufacturers by the Food and Drug Administration, validation of processes that control pathogens is required. In addition to traditional heat methods, non-thermal methods for control of pathogens includes irradiation and high pressure processing and are appropriate for highly priced goods, e.g. juice. Killing is achieved in the manufacturing environment and on processing equipment surfaces after cleaning and by sanitizing.

If you have done everything reasonable to stop microorganisms from getting in the product and you have a validated step to kill pathogens, you may still have spoilage microorganisms in the product. It is important that all pathogens have been eliminated. Examples of pathogens include Salmonella, pathogenic Escherichia coli, also called Shiga toxin-producing E. coli (STEC) and Listeria monocytogenes. These three common pathogens are easily destroyed by proper heat methods. Despite steps taken to kill pathogens, it is theoretically possible a pathogen is reintroduced after the kill step and before packaging is sealed at very low numbers in the product. Doctors do not know how many cells are required for a consumer to get ill, and the immunocompromised consumer is more susceptible to illness. Lab methods for the three pathogens mentioned are designed to detect very low cell numbers. Packaging and control of growth factors will stop pathogens from growing in the product, if present.

Control the growth of microorganisms

These growth factors will control the growth of pathogens, and you can use the factors to control spoilage microbes as well. To grow, microbes need the same things we do: a comfortable temperature, water, nutrients (food), oxygen, and a comfortable level of acid. In the lab, we want to find the pathogen, so we optimize these factors for growth. When you control growth in your product, one hurdle may be enough to stop growth; sometimes multiple hurdles are needed in combination. Bacteria, yeast, and mold are present in all environments. They are at the bottom of the ocean under pressure. They are in hot springs at the temperature of boiling water. The diversity is immense. Luckily, we can focus on the growth factors for human pathogens, like Salmonella, pathogenic E. coli, and Listeria monocytogenes.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

Temperature. Human pathogens prefer to grow at the temperature of the human body. In manufacture, keep the time a product is in the range of 40oF to 140oF as short as possible. You control pathogens when your product is at very hot or very cold temperatures. Once the product cools after a kill step in manufacturing, it is critical to not reintroduce a pathogen from the environment or personnel. Clean equipment and packaging play key roles in preventing re-contamination of the product.

Water. At high temperatures as in baking or roasting, there is killing, but there is also the removal of water. In the drying process that is not at high temperature, water is removed to stop the growth of mold. This one hurdle is all that is needed. Even before mold is controlled, bacterial and yeast growth will stop. Many cannabis candies are safe, because water is not available for pathogen growth. Packaging is key to keep moisture out of the product.

Nutrients. In general, nutrients are going to be available for pathogen growth and cannot be controlled. In most products nutrients cannot be removed, however, recipes can be adjusted. Recipes for processed food add preservatives to control growth. In cannabis as in many plants, there may be natural compounds which act as preservatives.

Oxygen. With the great diversity of bacteria, there are bacteria that require the same oxygen we breathe, and mold only grows in oxygen. There are bacteria that only grow in the absence of oxygen, e.g. the bacteria responsible for botulism. And then there are the bacteria and yeast in between, growing with or without oxygen. Unfortunately, most human pathogens will grow with or without oxygen, but slowly without oxygen. The latter describes the growth of Salmonella, E. coli, and Listeria. While a package seals out air, the growth is very slow. Once a package is opened and the product is exposed to air, growth accelerates.

Acid. Fermented or acidified products have a higher level of acid than non-acid products; the acid acts as a natural preservative. The more acid, the more growth is inhibited. Generally, acid is a hurdle to growth, however and because of diversity, some bacteria prefer acid, like probiotics which are non-pathogenic. Some pathogens, like E. coli, have been found to grow in low acid foods, e.g. juice, even though the preference is for non-acidic environments.

Each facility is unique to its materials, people, equipment and product. A safe product is made by following Good Agricultural Practices for the cannabis, by following Good Manufacturing Practices and by suppressing pathogens by preventing them coming in, killing them and controlling their growth factors. Future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail.

Microbiology 101 Part One

By Kathy Knutson, Ph.D.
No Comments

I have been studying microorganisms for over 35 years, and the elusive critters still fascinate me! Here in Microbiology 101, I write about the foundation of knowledge on which all microbiologists build. You may have a general interest in microbiology or have concerns in your operation. By understanding microbiology, you understand the diversity of microorganisms, their source, control of microorganisms and their importance.

Part 1

The term microbiology covers every living being we cannot see with the naked eye. The smallest microbe is a virus. Next in size are the bacteria, then yeast and mold cells, and the largest microbes are the protozoans. The tiny structure of a virus may be important in the plant pathology of cannabis, but will not grow in concentrates or infused products. A virus is not living, until it storms the gate of a living cell and overtakes the functions within the cell. Viruses are the number one cause of foodborne illness, with the number one virus called Norovirus. Think stomach flu. Think illness on cruise ships. Viruses are a food service problem and can be prevented by requiring employees to report sickness, have good personal hygiene including good hand washing, and, as appropriate, wear gloves. Following Good Manufacturing Practices (GMPs) is critical in preventing the transfer of viruses to a product where the consumer can be infected.

The petri dishes show sterilization effects of negative air ionization on a chamber aerosolized with Salmonella enteritidis. The left sample is untreated; the right, treated. Photo courtesy of USDA ARS & Ken Hammond

The largest microbial cell is the protozoan. They are of concern in natural water sources, but like viruses, will not grow in cannabis products. Control water quality through GMPs, and you control protozoans. Viruses and protozoans will not be further discussed here. Bacteria, yeast and mold are the focus of further discussion. As a food microbiologist, my typical application of this information is in the manufacturing of food. Because Microbiology 101 is a general article on microbiology, you can apply the information to growing, harvesting, drying, manufacture of infused products and dispensing.

It is not possible to have sterile products. Even the canning process of high temperature for an extended time allows the survival of resistant bacterial spores. Astronauts take dehydrated food into space, and soldiers receive MREs; both still contain microbes. Sterility is never the goal. So, what is normal? Even with the highest standards, it is normal to have microbes in your products. Your goal is to eliminate illness-causing microorganisms, i.e. pathogens. Along the way, you will decrease spoilage microbes too, making a product with higher quality.

Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate foods and cause an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Yeast and mold were discussed on CIJ in a previous article, Total Yeast & Mold Count: What Cultivators & Business Owners Need to Know. Fuzzy mold seen on the top of food left in the refrigerator too long is a quality issue, not a safety issue. Mold growth is a problem on damaged cannabis plants or cuttings and may produce mycotoxin, a toxic chemical hazard. Following Good Agricultural Practices (GAPs) will control mold growth. Once the plant is properly dried, mold will not grow and produce toxin. Proper growing, handling and drying prevents mycotoxins. Like mold, growth of yeast is a quality issue, not a safety issue. As yeast grow, they produce acid, alcohol and carbon dioxide gas. While these fermentation products are unwanted, they are not injurious. I am aware that some states require cannabis-infused products to be alcohol-free, but that is not a safety issue discussed here.

What are the sources of microorganisms?

People. Employees who harvest cannabis may transfer microorganisms to the plant. Later, employees may be the source of microbes at the steps of trimming, drying, transfer or portioning, extract processing, infused product manufacture and packaging.

Ingredients, Supplies and Materials. Anything you purchase may be a source of microorganisms. Procure quality merchandise. Remember the saying, “you get what you pay for.”

Environment. Starting with the outdoors, microbes come from wind, soil, pests, bird droppings and water. When plants are harvested outdoors or indoors, microbes come from the tools and bins. Maintain clean growing and harvesting tools in good working condition to minimize contamination with microbes. For any processing, microbes come from air currents, use of water, and all surfaces in the processing environment from dripping overhead pipes to floor drains and everything in between.

In Part 2 I will continue to discuss the diversity of microorganisms, and future articles will cover Hazard Analysis and Critical Control Points (HACCP) and food safety in more detail. What concerns do you have at each step of operations? Are you confident in your employees and their handling of the product? As each state works to ensure public health, cannabis-infused products will receive the same, if not more, scrutiny as non-cannabis food and beverages. With an understanding and control of pathogens, you can focus on providing your customers with your highest quality product.

Tikun Olam Expands to Washington, D.C.

By Aaron G. Biros
No Comments

Today, Tikun Olam announced their expansion into the Washington, D.C. market. Partnering with the cultivator, Alternative Solutions, they will license them to grow, manufacture and distribute Tikun-branded products.

Tikun Olam is an international cannabis company with roots in Israel, where they are working in clinical trials to produce strains targeting a handful of medical conditions. The company has made serious investments in the United States market previously, with operations in Delaware, Washington and Nevada, and has plans to enter the Rhode Island, Maryland, Massachusetts and Illinois markets in 2018.

cannabis close up
The Tikun Olam strain Avidekel being grown in Israel.

The five-year licensing deal signed with Alternative Solutions is the latest development in their expansion plans in North America. They also have similar partnerships developing around the world, including in Canada, Australia, United Kingdom and South Africa.

Tikun plans on having their full line of products ready for distribution with Alternative Solutions in the Washington, D.C. market some time in 2018. “Alternative Solutions is thrilled to be Tikun Olam’s exclusive partner in DC,” says Matt Lawson-Baker, chief operating officer of Alternative Solutions. “We look forward to making Tikun’s products available at all DC dispensaries, giving access to these clinically proven strains to the more than 5,600 registered MMJ patients in Washington DC.”

Bernard Sucher, chief executive officer of Tikun Olam, says he is excited to get working with Alternative Solutions. “Its cultivation and manufacturing operations will make it possible for Tikun to serve every single patient in a single jurisdiction–a first for us and something we hope to accomplish within every U.S. state. “

New Drug Delivery Mechanisms For Cannabis Products

By Aaron G. Biros
No Comments

Next Frontier Biosciences announced the launch of their new product line, Verra Wellness, in the Colorado market this week. The products are designed with relatively new concepts for the cannabis market, including nasal, sublingual and topical administration.

The company claims their product is the first-ever cannabis nasal mist. Co-founded by biotech executives Marc Graboyes and Dr. Paul Johnson, Ph.D, Next Frontier Biosciences is developing this product line with three formulations, each with a different ratio of THC and CBD. According to a press release, Next Frontier Biosciences is focused on developing cannabis products with these new drug delivery methods, and even offering a microdosing option.

“We believe that leveraging science and research is the key to optimizing product development,” says Dr. Johnson, one of the co-founders. “With the introduction of our Verra Wellness line of products, we are reshaping the cannabis industry by offering trusted products that provide uniform composition, formulation and dosing in highly consistent modes of administration.”

Their topical salves in the Verra Wellness product line are “designed to permeate skin and muscle tissue deeply without penetrating the blood stream or causing psychoactive effects,” reads a press release. In addition to the nasal mist and topical salve, they also launched a sublingual spray.

Marc Graboyes, chief executive officer and co-founder of Next Frontier Biosciences

According to Marc Graboyes, chief executive officer and co-founder of Next Frontier Biosciences, drug delivery mechanisms like a nasal mist are superior to smoking, vaporizing and edible administration. “Nasal administration is among the most effective delivery technologies due to the extensive vascularization and large surface area of the nasal cavity, allowing for rapid uptake and reliable results,” says Graboyes. “The cannabis nasal mist is a novel technology that other brands have not yet tapped into.”

He says this drug delivery mechanism is efficient, fast acting and a healthy alternative to smoking. “For many, nasal delivery is a desirable alternative delivery mechanism because it does not present the health risks associated with smoking,” says Graboyes. “In addition, as previously mentioned, the large surface area of the nasal cavity permits high drug absorption, and the fine-mist sprayer allows for accurate, consistent dosing and an excellent safety profile. Further, nasal delivery avoids first-pass metabolism by the liver, where a large fraction of orally delivered cannabinoids are inactivated.”

While the Verra Wellness product line is available in Colorado starting this week, the company has plans to expand into a number of other states as well. “We are executing a multi-state expansion, with plans to move into the California, Oregon, Washington and Nevada markets in the coming year,” says Graboyes.

FDAlogo

FDA Issues Warning To CBD Companies

By Aaron G. Biros
No Comments
FDAlogo

On November 1st, the U.S. Food and Drug Administration (FDA) published a press release addressing warning letters issued to four companies. The warning letters, sent to companies marketing cannabidiol (CBD) products with therapeutic claims, cites unsubstantiated claims about their products’ ability to treat or cure cancer and other diseases.

A snippet of the warning letter issued to Greenroads

According to the press release, the four companies that received warning letters are Greenroads Health, Natural Alchemist, That’s Natural! Marketing and Consulting, and Stanley Brothers Social Enterprises LLC. The press release called their marketing campaigns “deceptive” for “unproven treatments.” Here is the letter they sent to Greenroads Health.

“As part of the U.S. Food and Drug Administration’s ongoing efforts to protect consumers from health fraud, the agency today issued warning letters to four companies illegally selling products online that claim to prevent, diagnose, treat, or cure cancer without evidence to support these outcomes,” reads the FDA statement. “Selling these unapproved products with unsubstantiated therapeutic claims is not only a violation of the Federal Food, Drug and Cosmetic Act, but also can put patients at risk as these products have not been proven to be safe or effective.”

According to the press release, the FDA has issued ninety warning letters in the past ten years, with around twelve this year, to companies making fraudulent claims about cancer therapies. Here are some examples of claims made by companies that the FDA took issue with:

  • “Combats tumor and cancer cells;”
  • “CBD makes cancer cells commit ‘suicide’ without killing other cells;”
  • “CBD … [has] anti-proliferative properties that inhibit cell division and growth in certain types of cancer, not allowing the tumor to grow;” and
  • “Non-psychoactive cannabinoids like CBD (cannabidiol) may be effective in treating tumors from cancer – including breast cancer.”

“Substances that contain components of marijuana will be treated like any other products that make unproven claims to shrink cancer tumors,” says FDA Commissioner Scott Gottlieb, M.D. “We don’t let companies market products that deliberately prey on sick people with baseless claims that their substance can shrink or cure cancer and we’re not going to look the other way on enforcing these principles when it comes to marijuana-containing products. There are a growing number of effective therapies for many cancers. When people are allowed to illegally market agents that deliver no established benefit they may steer patients away from products that have proven, anti-tumor effects that could extend lives.”

 

Colorado To Begin Requiring Potency Testing For Medical Infused Products

By Aaron G. Biros
No Comments

After a delay due to their proficiency testing program roll out, the Colorado Marijuana Enforcement Division (MED) will now require all medical infused products and concentrates be tested for potency and homogeneity, starting November 1st, 2017.

After November 1st, all production batches of concentrates from medical product manufacturers will need to have a potency test before being sold, transferred or processed. The same goes for medical infused products, such as edibles and topicals. The homogeneity test refers to making sure THC or other active ingredients are distributed evenly throughout the product.

According to Alex Valvassori, author of a regulatory compliance-focused blog post on Complia’s website, these new testing requirements could lead to a surge in pricing, passed on to patients. He also recommends dispensaries take a close look at labels coming in from suppliers. They need to make sure potency data is listed clearly on the label to stay compliant.

Production batches created before November 1st are not required to meet the new testing regulations, but any and all batches after that date will be required to perform those tests.

Nevada Cannabis Lab License Suspended

By Aaron G. Biros
1 Comment

Last month, G3 Labs LLC, a Las Vegas-based cannabis-testing lab, had their license suspended for an unknown regulatory compliance issue. According to Stephanie Klapstein, spokeswoman for the Nevada Department of Taxation, the reason why their license was suspended is confidential. “We can’t disclose the details of the suspension, including anything about penalties,” says Klapstein.

When asked about the license suspension, Klapstein told us it was a compliance issue, but could not go into detail. “I can confirm that we did suspend G3’s license for compliance issues,” says Klapstein. “We are working with them to bring them back into compliance. In the meantime, they cannot operate.” Klapstein told the Las Vegas Review-Journal that the Nevada Department of Agriculture tested cannabis samples from the lab to determine if there was a need for a recall. She also confirmed with us that the compliance issue does not necessitate any product recalls.

According to the Las Vegas Review-Journal, this is the first time a cannabis business license is suspended in the state since the beginning of adult-use sales back in July of this year. Nevada’s cannabis regulations require independent lab testing of products before they reach shelves. That required testing includes checking for potency, microbials, pesticides, residual solvents, moisture content, growth regulators, Mycotoxins and foreign matter.

When we reached out to G3 Labs, they did not immediately respond to a request for comment.

Dr. Chao-Hsiung Tung, lab director at G3 Labs, told the Las Vegas Review-Journal that they couldn’t comment, based on advice from their legal counsel. “G3 Labs is actively sorting out the issues with the Department,” Dr. Tung told the Review-Journal in an email.