Tag Archives: resin

Defining Hemp: Classifications, Policies & Markets, Part 2

By Darwin Millard
2 Comments

In Part 1 of this series we answered the question: What is “hemp”; and addressed some of the consequences of defining “hemp” as a thing. In Part 2, I will explore this topic in more detail and provide some commonsense definitions for several traditional hemp products based on a classification approach rather than separating “cannabis” from “hemp”.

Classifications, Specifications, and Test Methods – Establishing Market Protections for Hemp Products Through Standardization

Does making a distinction between “hemp” and “cannabis” make it easier to protect the interests of the seed and fiber markets?

On the face of it, this question seems obvious. Yes, it does.

Up to this point in history, the bifurcation of the cannabis plant into resin types and non-resin types has served to provide protections for the seed and fiber markets by making it easier for producers to operate, since the resins (the scary cannabinoids, namely d9-THC) were not involved. Today, however, the line in the sand, has been washed away, and “hemp” no longer only refers to non-resin producing varieties of the cannabis plant.

The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

As more and more hemp marketplaces come online with varying limits for d9-THC the need for standardization becomes even more pressing. Without standardization, each marketplace will have its own requirements, forcing businesses looking to sell their products in multiple jurisdictions to comply with each region’s mandates and adds a significant level of burden to their operations.

Providing an internationally harmonized definition for hemp is an important first step but allowing the d9-THC limit to vary from jurisdiction to jurisdiction has some unintended (or intended) consequences (#NewReeferMadness). These discrepancies between legal marketplaces will inevitably lead to the establishment of global trade regions; where, if your product cannot meet the definition of “hemp” in that region, then you could effectively be barred from participating in it.

A process which has already started. Harmonizing around 0.3% is great for the US, Canada, and European Union, but what about other stakeholders outside of these markets?

And, at what point does the conflict of hemp from one region with a d9-THC content of 0.3% and hemp from another region with a d9-THC content of 1% being sold into the same market become a problem?

Perhaps a better long-term solution for protecting the market interests of “hemp product” stakeholders would be to establish specifications, such as identity metrics, total cannabinoid content, especially d9-THC, and other quality attributes which have to be verified using test methods for a product to be classified as “hemp”. This system of standards (classifications, specifications, and test methods) would allow for more innovation and make it significantly easier for cannabis raw materials that meet these specifications to find a use rather than being sent to the landfill. Bolstering advancements and opening the door for more market acceptance of the cannabis plant, its parts, and products.

An Alternative Approach to Defining Hemp

Below are some proposed definitions related to common terminology used in the hemp marketplace based on the concept that there are no hemp plants, there are only cannabis plants that can be classified as hemp, and hemp products are simply cannabis products that meet certain specifications to allow them to be classified and represented as hemp.

  • Hemp, n—commercial name given to a cannabis plant, its parts, and products derived therefrom with a total d9-THC content no more than the maximum allowable limit for the item in question. (Maybe not the best definition, but it makes it clear that not only does the limit for d9-THC vary from jurisdiction to jurisdiction it varies from product type to product type as well.)
  • Hemp flower, n—commercial name for the inflorescence of a cannabis plant that can be classified as hemp.
  • Hemp seed, n—commercial name for the seeds of a cannabis plant which are intended to be used to grow another cannabis plant that can be classified as hemp.
  • Hempseed, n—commercial name for the seeds of a cannabis plant which are intended to be used as food or as an ingredient in food.
  • Hemp seed oil, n—commercial name for the oils expressed from the seeds of a cannabis plant.
  • Hemp seed cake, n—commercial name for the solid material byproduct generated during the expression of the oil from the seeds of a cannabis plant.
  • Hemp flour/meal/dietary-fiber, n—commercial name for the powdered seed cake of a cannabis plant intended to be used as a food or as an ingredient in food with a protein content no more than 35% by weight.
  • Hemp protein powder, n—commercial name for the powdered seed cake of a cannabis plant intended to be used as a food or as an ingredient in food with a protein content between 35% and 80% by weight.
  • Hemp protein isolate, n—commercial name for the powdered seed cake of a cannabis plant intended to be used as a food or as an ingredient in food with a protein content above 80% by weight.
  • Hemp fiber, n—commercial name for the cellulosic-based natural fibers of a cannabis plant.
  • Hemp shives, n—commercial name for the hurd of a cannabis plant which have been processed to defined specifications.
  • Hempcrete, n—commercial name for a solid amalgamation of various aggregates and binders, typically comprised of the hurd (shives) of a cannabis plant and lime.

The d9-THC limits for each product were purposefully omitted because these specifications still need to be defined for each product type. Leaving the d9-THC limit up to each authority having jurisdiction, however, is not the answer. It is fine if you comply with a lower d9-THC limit and want to sell into a market with a higher d9-THC limit, but what do you do if you are above the limit for the market you want to sell into? For now, you lose out on potential revenue.

Hemp-derived CBD extract

I am not advocating that everyone starts selling “hemp” as “cannabis,” or vice versa, far from it. I am advocating for a more commonsense and inclusive approach to the marketplace though. One that would allow for the commercialization of materials that would normally be going to waste.

To me it is simply logical. There are no hemp plants, there are only cannabis plants that can be classified as hemp. There are no hemp products, there are only cannabis products that can be classified as hemp. In order for a cannabis product to be marketed, labeled, and sold as a hemp product, i.e. to be classified as a hemp, it would need to meet a set of specifications and be verified using a set of test methods first. But fundamentally the product would be a cannabis product being certified as “hemp”. And that is the shift in thinking that I am trying to get across.

Exclusionary Actions – Disenfranchising Stakeholders

The cannabis plant is an amazing plant and to fully capitalize on the potential of this crop we have to start allowing for the commercialization of cannabis raw materials that are not controlled by the UN Single Conventions, i.e. the seeds, stalks, roots, and leaves when not accompanied by the fruiting tops or the resin glands. Not to do so disenfranchises a significant number of stakeholders from participating in established legal avenues of trade for these goods. A concept proposed and endorsed the ASTM D37 in the published standard D8245-19: Guide for Disposal of Resin-Containing Cannabis Raw Materials and Downstream Products.

If you are stakeholder in the hemp marketplace, you may feel threatened by the idea of the market getting flooded with material, but how are the demands of the so called “green economy” going to be met without access to more supply? Organic hemp seed for food production is scarce but there is plenty of conventional hemp seed for the current demand, but what happens when hempmilk is positioned to displace soymilk in every major grocery store? To feed the growth of the human population and allow for a transition to a truly “green economy,” we need to ensure that the policies that we are putting in place are not excluding those looking to participate in the industry and disenfranchising stakeholders from burgeoning marketplaces, nor alienating a segment of the marketplace simply because their plant cannot be classified as “hemp”.

Until next time…

Live long and process.

Defining Hemp: Classifications, Policies & Markets, Part 1

By Darwin Millard
2 Comments

What is “hemp”?

The word “hemp” has many meanings. Historically the term has been used as the common name for the Cannabis sativa L. plant. Just like other plants, the cannabis plant has two names, a common name, hemp, and a scientific name, Cannabis sativa L. After the ratification of the UN Single Conventions on Narcotic Drugs and Psychotropic Substances, in 1961 and 1972 respectively, the term started to be used to distinguish between resin producing varieties of the cannabis plant and non-resin producing varieties of the cannabis plant. Nowadays the term is generally used to refer to cannabis plants with a delta-9-tetrahydrocannabinol (d9-THC), a controlled substance, content equal to or less than the maximum allowable limit defined by each marketplace.

Tetrahydrocannabinol (THC), just one of hundreds of cannabinoids found in cannabis.

In the United States and Canada, the limit is defined as 0.3% on a dry weight bases, and until November 2020, in the European Union, the limit was defined as 0.2%. After years of effort the “hemp” industry in Europe was successfully able to get the limit raised to 0.3% to be in line with the United States and Canada – creating the largest global trade region for hemp products. But there exist several marketplaces around the world where, either through the consequences of geographic location or more progressive regulations, the d9-THC content in the plant can be substantially higher than 0.3% and still considered “hemp” by the local authority.

To address these variances, ASTM International’s Technical Committee D37 on Cannabis has been working on a harmonized definition of hemp, or industrial hemp, depending on the authority having jurisdiction, through the efforts of its Subcommittee D37.07 on Industrial Hemp. The following is a proposed working definition:

hemp, n—a Cannabis sativa L. plant, or any part of that plant, in which the concentration of total delta-9 THC in the fruiting tops is equal to or less than the regulated maximum level as established by an authority having jurisdiction.

Discussion: The term “Industrial Hemp” is synonymous with “Hemp”.

Note: Total delta-9 THC is calculated as Δ⁹-tetrahydrocannabinol (delta-9 THC) + (0.877 x Δ⁹-tetrahydrocannabinolic acid).

This definition goes a long way to harmonize the various definitions of hemp from around the world, but it also defines “hemp” as a thing rather than as a classification for a type of cannabis plant or cannabis product. This is a concept rooted in the regulatory consequences of the UN Single Conventions, and one I strongly disagree with.

The definition also leaves the total d9-THC limit open-ended rather than establishing a specified limit. An issue I will address further in this series.

Can “hemp products” only come from “hemp plants”?

If you are an invested stakeholder in the traditional “hemp” marketplace, you would say, yes.

But are there such things as “hemp plants” or are there only cannabis plants that can be classified as “hemp”? (The definition for hemp clearly states that it is a cannabis plant…)

A field of hemp plants, (Cannabis sativa L.)

There is no distinction between the cannabinoids, seeds, and fibers derived from a cannabis plant that can be classified as “hemp” and those derived from a cannabis plant that cannot. The only difference is the word: “cannabis,” and the slew of negative connotations that come along with it. (Negative connotations that continue to be propagated subconsciously, or consciously, whenever someone says the “hemp plant” has 50,000+ uses, and counting, and will save the world because it’s so green and awesome, but not the “cannabis plant”, no that’s evil and bad, stay away! #NewReeferMadness)

The declaration that “hemp products” only come from “hemp plants” has some major implications. “Hemp seeds” can only come from “hemp plants”. “Hemp seed oils” can only come from “hemp seeds”. “Hemp fibers” can only come from “hemp plants”. Etc.

What does that really mean? What are the real-world impacts of this line of thinking?

Flat out it means that if you are growing a cannabis plant with a d9-THC content above the limit for that plant or its parts to be classified as “hemp”, then the entire crop is subjected to the same rules as d9-THC itself and considered a controlled substance. This means that literal tons of usable material with no resin content whatsoever are destroyed annually rather than being utilized in a commercial application simply because a part or parts of the plant they came from did not meet the d9-THC limit.

Some of the many products on the market today derived from hemp

It is well known that d9-THC content is concentrated in the glandular trichomes (resin glands) which are themselves concentrated to the fruiting tops of the plant. Once the leaves, seeds, stalks, stems, roots, etc. have been separated from the fruiting tops and/or the resin glands, then as long as these materials meet the authority having jurisdiction’s specifications for “hemp” there should be no reason why these materials could not be marketed and sold as “hemp”.

There are several reasons why a classification approach to “hemp plants” and “hemp products” makes more long-term sense than a bifurcation of the “cannabis” and “hemp” marketplaces, namely from a sustainability aspect, but also to aid in eliminating the frankly unwarranted stigma associated with the cannabis plant. #NewReeferMadness

That said, say you are a producer making shives from the stalks of cannabis plants that can be classified as “hemp” and then all of a sudden, the market opens up and tons of material from cannabis plants that cannot be classified as “hemp,” that was being sent to the landfill, become available for making shives. Would you be happy about this development? Or would you fight tooth and nail to prevent it from happening?

In this segment, we looked at the history of the term “hemp” and some of the consequences from drawing a line in the sand between “cannabis” and “hemp”. I dive deeper into this topic and provide some commonsense definitions for several traditional hemp products in Part 2 of Defining Hemp: Classifications, Policies & Markets.

Advancements in Extraction & the Growth of the Concentrate Category

By Dr. Dominick Monaco
No Comments

Due to quick progressions in legalization, today’s cannabis industry bears little resemblance to the industry of five years ago. As the cannabis space gains mainstream acceptance, it resembles more “traditional” industries closely. In turn, how we consume cannabis has changed dramatically within this novel legal framework.

A brief visit to a cannabis dispensary quickly illuminates just how much the industry has changed in the past few years.

Within the dynamic of modern cannabis, perhaps no vertical has seen the same advancements as cannabis extracts. It’s precisely the growth of the concentrate category that has given rise to the many branded products that define the legal market.

To give a clear picture of how advancements in extraction have stimulated the concentrate category’s growth, we put together this brief exploration.

Standards & Technology

extraction equipmentBefore legalization, the production of cannabis extracts was a shady affair done in clandestine and often dangerous ways. Especially concerning BHO (Butane Hash Oil), home-based laboratories have long since been notorious fire hazards. Even more, with a total lack of regulation, black-market extracts are infamous for containing harmful impurities.

In the few short years that cannabis has been legal in Nevada, Washington and other states, extract producers have adopted standards and technology from more professional arenas. By borrowing from the food and pharmaceutical industries, concentrate companies have achieved excellence undreamed of a decade ago.

Good Manufacturing Practices

One of the essential elements in the extracts vertical advancements is the adoption of good manufacturing practices. According to the World Health Organization website, “Good Manufacturing Practice (GMP) is that part of quality assurance which ensures that products are consistently produced and controlled to the quality standards appropriate to their intended use.”

When adult-use cannabis was legalized in markets such as Colorado, cannabis companies were able to come out of the shadows and discuss GMPs with legit businesses. In doing so, they implemented professional controls on extract manufacturing in accordance with “quality standards” of state regulatory agencies.

Supercritical CO2 Extraction

As cannabis businesses adopted GMP from other industries, extract producers also embraced more sophisticated technology. Of these, supercritical CO2 has pushed the cannabis concentrates vertical into the future.

IVXX processingAccording to the equipment manufacturer Apeks Supercritical, “CO2 is considered to be a safer method of extraction because the solvent is non-volatile. The extract is purer because no trace of the solvent is left behind. It is also versatile and helps protect sensitive terpenes, by allowing cold separation.” By deriving methods from food production, supercritical equipment manufacturers have given cannabis companies a viable option for the commercial production of extracts.

Supercritical technology has helped push the concentrates vertical forward by providing a clean and efficient way to produce cannabis extracts. Nonetheless, supercritical CO2 equipment is highly sophisticated and carries a hefty price tag. Producers can expect to pay well over $100,000 for commercial supercritical CO2 extraction setup.

Products

Just as standards and technology have evolved in the cannabis extracts vertical, we have also seen products rapidly mature. Notably, the legal environment has allowed manufacturers to exchange ideas and methods for the first time. In turn, this dialogue has led to the development of new products, like isolates and live resin.

Isolates

Just as the name implies, isolates are concentrates made from a singular, pure cannabinoid. In today’s market, CBD isolates have grown increasingly popular because people can consume pure CBD without ingesting other cannabinoids or plant materials, including the legal 0.3% THC found in hemp.

Isolates are made by further purifying cannabis extracts in the process of purification, filtration and crystallization. As seen with other concentrates, isolates are used as the base for many cannabis products, such as gummies.

There is also growing interest in CBG isolate, which is another non-psychoactive cannabinoid when consumed orally.

Live Resin

The cannabis concentrate live resin has taken the industry by storm over the past few years. Live resin is a form of extract that is originally sourced from freshly harvested and frozen cannabis plants. The primary selling point behind this extract is the fact that fresh flowers produce much more vibrant aromas and flavors than dried cannabis. Interestingly, this pungency is tied to the preservation of terpenes in live resin.

Just a few of the dozens of various products types on the market today.

To make live resin, producers “flash freeze” fresh cannabis plants immediately after harvest. Valuable cannabinoids and terpenes are then extracted from the fresh, frozen plant material using hydrocarbon solvents. This whole process is done at extremely cold temperatures, ensuring no thermal degradation to the precious and volatile terpenes.

In lieu of these intricate steps to preserve the flower and extracts, live resin has continuously gained popularity. Namely because vaping with live resin is the best way to sample fresh cannabis terpene profiles in its most authentic fashion

It is amazing to see how much cannabis extracts have grown and progressed with legalization. Due to such amazing advancements in standards, technology, and products, the concentrates category has exploded on the dispensary scene. In today’s market, flowers have been largely sidelined in favor of concentrate-based products like gummies. These products now adorn dispensary shelves in beautiful packaging replete with purity and testing specifications.

It’s an often-overlooked fact that the purity standards of the legal extracts have made reliable cannabis brands possible in the first place. You cannot develop a cannabis brand without consistent products that customers can rely on; all things considered, it can be said that advancements in extraction have not only stimulated the concentrate category but the entire industry as we know it today.

Drug Plastics & Glass Launches Carbon Footprint Tool

By Cannabis Industry Journal Staff
No Comments

According to a press release, Drug Plastics & Glass, a packaging company that specializes in cannabis bottles and closures, announced new tools for their customers to calculate their carbon footprint. The company launched six new sustainability calculators with the goal to help their customers get more informed about their carbon footprint.

According to Jeff Johnson, director of marketing and business development for Drug Plastics, they want to show how small, incremental changes can have a lasting impact on a company’s environmental sustainability.“From switching to more eco-friendly resin and eliminating flame treatment, to calculating the savings gained from choosing PET plastic over glass, or eliminating collateral packaging, these calculators show how making simple changes can have a big impact on the environment,” says Johnson.

Here are some of their sustainability calculators they recently launched:

  • PCR PET Resin Sustainability Calculator: Reduce greenhouse gases by making new products from PCR PET removes plastic from the environment by converting PET plastic discarded by the consumer back into resin that can be used again.
  • Flaming Elimination Calculator: Conserve fossil fuels by opting out of the flame treatment process traditionally used to ensure water-based adhesive labels and silk screening would adhere properly to HDPE, LDPE, and PP bottles. Today, this is not always necessary.*
  • Bag Reduction Calculator: Determine the individual savings when you move to single bagging instead of double bagging bottles and closures inside the carton.
  • Concentrate Elimination Calculator: Switch from white pigmented bottles to those made with resin in its natural color state and eliminate CO2
  • Glass to PET Conversion Calculator: PET requires less energy to produce and saves on transportation costs.
  • Glass to HDPE Conversion Calculator: See the sustainable improvements in weight, transportation costs, and durability when you use HDPE instead of glass.

Cannabis Extracts for the Informed Consumer: Solvent or Solventless

By Nick J. Bucci
1 Comment

Editor’s Note: Nick Bucci is a freelance cannabis writer. You can view his work here 


As cannabis markets continue to gain traction, inconsistent and largely unpredictable markets have left recreational consumers in an informational fog. Try as the industry may, or may not to inform consumers, the lack of knowledge was evident when an established Colorado hash company opened a second operation in California. Expecting high demand for their solventless concentrates, the demand for their solvent-based counterparts came as a surprise. Initially hoping to eliminate solvent extracts from their product line-up, the company was forced to devote about half their overall production to solvent extracts, until information spreads and attitudes start to change. Over the past year several companies have joined the solventless side of history, but consumer understanding remains largely stagnant. For those immediately overwhelmed by terminology, cannabis extracts, concentrates or hash are all interchangeable terms describing concentrated cannabis. Under these umbrella terms, two distinct categories emerge depending upon whether chemical solvents were or were not used to extract the hash. Hence: solvent or solventless. A brief overview of cannabis concentrates will help consumers to understand the evolution away from solvent extractions and toward a superior solventless future.

ecxtractionfig2
Science and economics merge when considering all the possible uses of concentrated compounds to final product formulations

Before regulated cannabis markets, cannabis extracts had long been in use. These old-world methods of cannabis extraction use very basic solventless techniques to create more potent, concentrated forms of cannabis. Dry sifting is easily the oldest form of cannabis extraction and a prime example of one solventless technique. Something as simple as shaking dried cannabis over metal screens and collecting the residue underneath creates a solventless product called keif. Dark brown bubble-hash, made popular decades ago, is another ancient technique using only ice and water to perform extractions without chemical solvents. After decades of stagnant and limited old-world methods, changes in legislation allowed cannabis sciences to flourish. These old-world hash methods were quickly forgotten, replaced by the astonishing progress of modern solvent extractions.

Tetrahydrocannabinol (THC), just one of hundreds of cannabinoids found in cannabis.

The emergence of solvent extracts revolutionized cannabis around 2011, creating new categories of cannabis products that exploded onto the scene. Not only did solvent extracts produce the most potent and cleanest forms of hash ever seen at this point, it also created new possibilities for hash-oil vape cartridges and cannabis extract infused edibles. These solvent extracts use butane, propane, or other hydrocarbon solvents to extract, or “blast” cannabinoids from the plant. By running solvents through cannabis and then purging or removing leftover, residual solvents, a super-potent, premium hash product is achieved. Regulated markets require testing to ensure only a safe level, if any, of the solvent used in the extraction process remains in the final product. This technology ushered in the first wave of concentrates to medical and recreational markets under the descriptive titles of wax, shatter and crumble. While these effective and affordable products can still be found today, far superior products have largely replaced wax and shatter. Distillation techniques can further purify and isolate THC-a, while removing harmful residual solvents. For a time, Solvent-free was used to describe this ultra-purified distillate, but the needless term has fallen out of use. Solvent-free is still a solvent extraction using chemical solvents, don’t be fooled. Distillation and CO2 extractions have fallen into general disfavor as they destroy the flavorful terpenes and valuable cannabinoids, that when present create an “entourage effect.” This “entourage effect” happens when the medicinal and recreational properties are most effective, pronounced, and impactful due to a full range of terpenes and cannabinoids being present in the final product. With companies manually reintroducing terpenes to their final extracts, it’s an attempt to restore what was lost during solvent extraction processes. Many brands claim to use cannabis derived or food-grade terpenes to infuse or reintroduce terpenes into their purified hash oils. While this adds flavor and taste, especially to distillate cartridges, it’s far from an ideal solution. Armed with this new information, the informed consumer looks for a full profile of terpenes and cannabinoids in their hash.

THC-A crumble, terpene-rich vape oil, THC sap (from left to right).

With terpene preservation a new priority, all aspects of hash making were reevaluated. By using fresh-frozen cannabis flower, solvent extractions quickly reached new heights. Using the same techniques as prior solvent extractions, the cannabis plant is frozen immediately upon harvesting, rather than trimming and drying the crop as usual. Freezing the plant preserves valuable terpenes helping to create a new category for hydrocarbon extracts under the general label of live resins. This live resin, containing vastly greater profiles of terpenes and cannabinoids than earlier waxes, shatters or crumbles is sold as live-resin sauce, sugar, badder, frosting, diamonds and more. Many versions of live resin re-use previous terms that describe consistencies. These live resin solvent extracts outperform the wax, crumble and shatters of old, and are priced accordingly. Some of the best solvent extracts available today use butane to extract hash oil, which forms THC-a crystals and diamonds seen in live resin sauces. Having learned the value of terpenes and cannabinoids, early efforts to purify THC were clearly misled. The industry defining use of fresh-frozen cannabis flowers greatly improved the quality of all extracts having realized the psychoactive effects are largely dependent on the various profiles of cannabinoids and terpenes. Pure THC-a crystals and isolates are easily achieved with solvent extractions but, produce inferior effects both medicinally and recreationally. Discovering the “entourage effect” as described earlier, these elements of cannabis allowed old-world solventless techniques to be re-inspired and reinvigorated with the benefit of healthy genetics and a hearty understanding of past mistakes.

Having gone full circle, solventless techniques are again at the forefront of the cannabis industry, having attained near perfection for our current understanding of cannabis anatomy.

figure1 extract
The increasingly finer mesh works to separate and extract microscopic trichomes

Using the lessons and tendencies of prior extractions, the solventless method, in all its final forms, begin with the same initial process to make ice-water hash oil. Often referred to as solventless hash oil (SHO), fresh-frozen flowers are submerged in ice and water, soaked and agitated before the water is filtered through mesh screens. As these mesh screens are measured by microns, the increasingly finer mesh works to separate and extract microscopic trichomes that break free from the cannabis plant. The 120- and 90-micron mesh screens usually collect pristine trichome heads. After scraping the remaining material from the screens, its sieved onto trays where the hash can dry using modern techniques of sublimation. The results are beyond phenomenal and are sure to shock even life-long cannabis consumers. This technique isolates only the most potent and psychoactive parts of the plant, to produce white to clear solventless ice water hash. When done with precision 6-star ice water hash is formed. The hash can be sold and consumed as is or undergo additional solventless techniques to produce hash-rosin. Not to be confused with live-resins, rosin uses pressure and slight heat to squeeze ice-water hash, into hash-rosin. Some companies have elected to whip their rosins into a solventless badder or allow their hash rosins to undergo a cold cure process that creates textures and varieties like hash rosin sauce. Regardless of the final solventless product, they all begin as ice water extractions. These simple, natural methods of extraction are quickly being adopted by companies known for live resin. As solventless extracts are safer, cleaner and superior in quality to solvent chemical extractions, the race is on as the industry shifts toward a solventless future.

While I’d be happy to never see another solvent extract again, without the miraculous breakthroughs and advances in all aspects of cannabis manufacturing and production we may have not yet arrived where we are today. When using solvents to extract, the trichomes, which contain the full spectrum of terpenes and cannabinoids, are dissolved by the solvent, which is then evaporated off, leaving behind dissolved trichomes. In solventless hash, these trichomes remain whole and are never dissolved or broken down. Instead they are broken free by agitation in ice and water, separating the trichome heads from their less-active stems. These valuable trichomes heads contain everything pertinent and are never destroyed, dissolved or melted like solvent-extractions are forced to do. The benefit of keeping the heads of these trichomes whole results in a far superior product expressing the full profile of terpenes and cannabinoids the way mother nature intended. This natural profile of trichomes lends itself directly to the entourage effect that solvent extracts were found to be missing.

Extraction techniques are not equal and depend upon whether quality or mass production is the aim. Solvent extracts have quickly begun to represent the old-guard of mass-produced cannabis concentrates, with the solventless new-guard focusing on quality, small batch, hash-rosin excellence.

Sustainable Plastic Packaging Options for Your Cannabis Products

By Danielle Antos
7 Comments

A large part of your company’s brand image depends on the packaging that you use for your cannabis product. The product packaging creates a critical first impression in a potential customer’s mind because it is the first thing they see. While the primary function of any cannabis packaging is to contain, protect and identify your products, it is a reflection of your company in the eyes of the consumer.

For all types of businesses across the US, sustainability has become an important component for success. It is increasingly common for companies to include sustainability efforts in their strategic plan. Are you including a sustainability component in your cannabis business’ growth plan? Are your packaging suppliers also taking sustainability seriously? More and more, consumers are eager to purchase cannabis products that are packaged thoughtfully, with the environment in mind. If you are using or thinking about using plastic bottles and closures for your cannabis products, you now have options that are produced from sustainable and/or renewable resources. Incorporating sustainable elements into your cannabis packaging may not only be good for the environment, but it may also be good for your brand.

Consider Alternative Resins

Traditionally, polyethylene produced from fossil fuels (such as oil or natural gas), has been used to manufacture HDPE (high density polyethylene) bottles and closures. However, polyethylene produced from ethanol made from sustainable sources like sugarcane (commonly known as Bioresin) are becoming more common.

HDPE bottles produced with Bioresin.

Unlike fossil fuel resources which are finite, sustainable resources like sugarcane are renewable – plants can be grown every year. For instance, a benefit of sugarcane is that it captures and fixes carbon dioxide from the atmosphere every growth cycle. As a result, production of ethanol-based polyethylene contributes to the reduction of greenhouse gas emissions when compared to conventional polyethylene made from fossil fuels, while still exhibiting the same chemical and physical properties as conventional polyethylene. Although polyethylene made from sugarcane is not biodegradable, it can be recycled.

Switching to a plastic bottle that is made from ethanol derived from renewable resources is a great way for cannabis companies to take positive climate change action and help reduce their carbon footprint.

For instance, for every one ton of Bioresin used, approximately 3.1 tons of carbon dioxide is captured from the atmosphere on a cradle-to-gate basis. Changing from a petrochemical-derived polyethylene bottle to a bottle using resins made from renewable resources can be as seamless as approving an alternate material – the bottles look the same. Ensure that your plastic bottle manufacturer is using raw materials that pass FDA and ASTM tests. This is one way to help reverse the trend of global warming due to increasing levels of carbon dioxide (CO2) in our atmosphere.

PET bottles derived from 100% recycled post-consumer material.

Another option is to use bottles manufactured with recycled PET (polyethylene terephthalate). Consisting of resin derived from 100% recycled post-consumer material, it can be used over and over. This is an excellent choice because it helps keep plastic waste to a minimum. Regardless of the resin you select, look for one that is FDA approved for food contact.

Consider Alternative Manufacturing Processes

Flame Treatment Elimination

When talking about plastic bottle manufacturing, an easy solution to saving fossil fuels is eliminating the flame treatment in the manufacturing process. Historically, this process was required to allow some water-based adhesives, inks, and other coatings to bond with HDPE (high density polyethylene) and PP (polypropylene) bottles. Today, pressure-sensitive and shrink labels make this process unnecessary. Opt out and conserve natural gas. For instance, for every 5 million bottles not flamed approximately 3 metric tons of CO2is eliminated. This is an easy way to reduce the carbon footprint. Ask your cannabis packaging manufacturer if eliminating this process is an option.

Source Reduction (Right-Weighting)

When considering what type and style of bottle you want to use for your cannabis product, keep in mind that the same bottle may be able to be manufactured with less plastic. A bottle with excess plastic may be unnecessary and can result in wasted plastic or added costs. On the other hand, a bottle with too little plastic may be too thin to hold up to filling lines or may deform after product is filled. Why use a bottle that has more plastic than you actually need for your product when a lesser option may be available? This could save you money, avoid problems on your filling lines, and help you save on your bottom line. In addition, this will also help limit the amount of natural resources being used in production.

Convert to Plastic Pallets

If you are purchasing bottles in large quantities and your supplier ships on pallets, consider asking about plastic pallets. Reusable plastic pallets last longer than wood pallets, eliminate pallet moisture and improve safety in handling. They also reduce the use of raw materials in the pallet manufacturing process (natural gas, metal, forests, etc.) aiding in efforts towards Zero Net Deforestation. And, returnable plastic pallets provide savings over the long term.

If You Don’t Know, Ask Your Cannabis Packaging Partner

It is important to find out if your plastic packaging partner offers alternative resins that are produced from renewable sources or recycled plastics. It is also prudent to partner with a company that is concerned about the impact their business has on the planet. Are they committed to sustainability? And, are they eliminating processes that negatively affect their carbon footprint? What services can they provide that help you do your part?

When you opt to use sustainably produced plastic bottles and closures for your cannabis products, you take an important step to help ensure a viable future for the planet. In a competitive market, this can improve the customer’s impression of your brand, increase consumer confidence and help grow your bottom line. Not only will you appeal to the ever-growing number of consumers who are environmentally-conscience, you will rest easy knowing that your company is taking action to ensure a sustainable future.

Flooring Tips for Cannabis Growing Facilities

By Sophia Daukus
5 Comments

In the burgeoning cannabis market, grow facilities are facing more and more competition every day. New indoor cultivation enterprises are often being set up in formerly vacant industrial buildings and commercial spaces, while in other cases, companies are planning and constructing new grow facilities from the ground up. For all these establishments, continually lowering production costs while supplying the highest possible quality in ever-increasing yields is the way forward.

Whether in existing or new structures, concrete floors are ubiquitous throughout the majority of cannabis growing facilities. With the right treatment, these indoor concrete traffic surfaces can greatly contribute to a company achieving its operational objectives. Alternatively, insufficiently protected concrete floors can create annoying and costly barriers to accomplishing company goals.

Challenges in Cannabis Grow Facility Construction

As with any emergent industry, mainstream acceptance and market growth is bringing regulation to cannabis cultivation. Local governments are paying more attention to how cannabis growing facilities are constructed and operated. In addition to the standard business matters of building safety, employee working conditions and tax contributions, elected officials are increasingly under pressure from constituents to analyze the overall effect of grow facilities on their communities at large.

High consumption of energy for grow room lights and high water usage are just part of the equation. The temperature and humidity needs of a grow facility can be similar to that of an indoor swimming pool environment. While warmth and moisture are ideal for cannabis growth, they also provide the ideal conditions for the growth and proliferation of fungi and other undesirable microorganisms. Therefore, to help preserve plant health in the moist indoor climate, fumigation often comes into play.

Carbon dioxide (CO2) enrichment of grow room air, a common practice proven to increase crop yields, presents another set of safety and health considerations in dense urban environments.

Adding to these challenges, many cannabis grow facilities are producing plants destined for either pharmacological or nutritional use. This in itself demands scrutiny by regulators for the sake of the consuming public.

As a result, grow room managers and owners must stay informed about the evolution of the industry in terms of local and federal agency regulations concerning their facilities, their overall operation and their products.

Bare Concrete Floors in Grow Rooms

As a foundational construction material, concrete continues to lead the way in commercial and industrial construction. Despite the many advantages of concrete floors, when left unprotected they can present significant challenges specific to cannabis grow rooms.

  • Untreated, bare concrete is naturally porous, easily absorbing liquids and environmental moisture. Substances found in grow rooms, such as fertilizers, fungicides and other chemicals, can leach through the porous concrete floor slab into the soil and ground water. Whether organic or synthetic, concentrations of such substances can be highly detrimental to the surrounding environment.
  • Whether in an existing or newly constructed facility, it is not uncommon for the under-slab vapor barrier to be compromised during construction. When this occurs, moisture from the soil beneath the floor slab can enter the concrete and move osmotically upward, creating a phenomenon known as Moisture Vapor Transmission (MVT). The resulting moisture and moisture vapor tends to become ever more alkaline as it rises upward through the concrete slab. MVT can result in blistering, bubbles and other damage to floor coverings.
  • The warm temperatures, regular watering of plants and high relative humidity maintained within many grow rooms can contribute to a weakening of the structural integrity of unprotected grow room slabs.
  • Within the confined space of a grow room, the warm, moist air invites microbe proliferation. Food and pharmaceutical plants are high on the priority list when it comes to facility hygiene levels, as demanded by code.

Public health guidelines for cannabis cultivation facilities in various parts of the country are increasingly mirroring those of food processing. Typical requirements include having smooth, durable, non-absorbent floor surfaces that are easily cleaned and in good repair, possessing proper floor slope towards a sanitary floor drain, with no puddling, as well as an integral floor-to-wall cove base. These directives cannot be met with bare concrete alone.

Optimal Grow Room Flooring Performance

In some locations, cannabis growing facilities are already subject to strict building codes and regulations. This will no doubt be spreading to other regions in the near future. For example, the Public Health Agency of Los Angeles County publishes construction guidelines to ensure cannabis facility floors meet standards mirroring the food processing and pharmaceutical manufacturing industries, where sanitation, facility hygiene and safety are paramount. In these types of facilities, bare, unprotected concrete floor slabs are not allowed as a general rule, due to the material’s innate porosity and absorbency.

Flooring in grow rooms, like in their food and pharma industry counterparts, should optimally:

  1. Provide a monolithic and virtually seamless surface to help eliminate crevices, grout lines and other dark, damp locations where soil and pathogens tend to hide
  2. Be impervious and non-porous, providing a surface that can isolate toxic materials on the surface for proper clean-up where needed
  3. Enable correction or improvement of the floor slope for proper drainage, with no low spots to help avoid puddling
  4. Be installed with integral floor-to-wall cove options for easier wash-down and sanitizing
  5. Have the strength and thermal shock resistance, plus the tenacious bond, to undergo steam-cleaning and/or hot power washing, where needed
  6. Enable seamless, continuous surface installation over concrete curbs and containment areas
  7. Offer antimicrobial options for highly sensitive locations
  8. Demonstrate high compressive strength and impact resistance for durability under heavy loads
  1. Display excellent abrasion resistance, allowing the system to perform under grueling daily wear-and-tear
  2. Present customizable slip-resistance options that can be balanced with easy clean-ability
  3. Facilitate the use of floor safety markings, such as color-coded traffic and work area designations
  1. Be formulated with low odor, low-VOC chemistries that meet all EPA and similar regulations
  2. Be able to contribute LEED Green Building Credits, where desired
  3. Include options for refurbishing old or damaged concrete surfaces to allow reuse of existing facility resources, as opposed to having to be demolished, thus unnecessarily contributing to landfill waste
  4. Withstand and perform in continually damp grow room conditions, without degrading
  5. Be compliant with FDA, USDA, EPA, ADA, OSHA, as well as local regulations and/or guidelines
  6. Include MVT mitigating solutions where Moisture Vapor Transmission site issues are present
  7. Provide waterproofing underlayment options for multi-story facilities
  8. Demonstrate excellent resistance to a broad range of chemicals, fertilizers and extreme pH substances

Finding an affordable floor system with all the above features may seem like a tall order. Luckily, innovative manufacturers now offer cannabis facility flooring that meets sanitation, regulatory compliancy, durability and budgetary needs of growers.

Resinous Flooring Value for Cannabis Facilities

Choosing the right floor solutions for a given cultivation facility may be one of the most important decisions an owner or manager makes. Since floors are present throughout the structure, poor selection and compromised protection of concrete slabs can end up wreaking havoc with profits and yields over time.

Few facilities can afford the inconvenience and expense of an otherwise unnecessary floor repair or replacement. Having to suddenly move cumbersome plant beds and heavy pots in order to give workers access to the floor area can be headache. In addition, the unscheduled downtime and overall juggling of resources that invariably must take place make a strong case for investing in optimal grow room flooring from the start.

An excellent long-term value, professional-grade resinous floor systems present cannabis growers with a unique set of solutions for cultivation rooms. Not only does this type of flooring offer all the desirable features listed above, but also furnish a host of added benefits to grow room operations, including:

Very High Gloss Finish

  • Highly reflective floor surfaces enable light entering the space from overhead to bounce back upward, exposing the underside of leaves to the light and potentially increasing yields
  • Exceptionally high gloss floor finishes in light colors help make the most of your existing lighting sources, significantly increasing room illumination
  • Achieving greater illumination without adding fixtures helps reduce energy consumption and associated costs

Virtually Seamless Surface

  • Fluid-applied resin-based flooring provides an impermeable, monolithic surface that is exceptionally easy to clean and maintain
  • The virtually seamless finish of resinous coated floors greatly reduces the number of locations for soil, pathogens and microbes to gather
  • Resinous floors, by incorporating integral cove bases to eliminate ninety degree angles, correcting floor slope to eliminate puddling, and allowing for a virtually seamless surface, provide an optimally sanitary flooring solution

Outstanding Moisture Tolerance

  • Designed specifically for use in wet industrial environments, cementitious urethane flooring is a top choice for humid grow rooms
  • Also called “urethane mortar”, this type of floor can help mitigate certain undesirable site conditions, such as Moisture Vapor Transmission (MVT)

Chemical, Acid and Alkali Resistance

  • Whether organic or synthetic, many soil enhancers and substances used to eradicate undesirable fungi and pests can damage concrete and shorten the usable life of foundational slabs
  • Protecting concrete slabs with monolithic, non-absorbent and appropriately chemical resistant coating systems allows concrete to perform as designed, for as long as intended
  • A proper barrier coating on the floor allows spilled or sprayed substances to be properly cleaned up and disposed of, rather than allowing the liquids to seep through the porous slab, and into the surrounding natural environment

Added Safety

  • Resinous coating systems’ slip-resistance is completely customizable at the time of installation, enabling growers to request more traction in pedestrian walkways and less slip-resistance under raised beds.
  • Epoxy, urethane and polyaspartic resinous flooring systems accommodate the installation of safety and line markings, as well as varying colors to delineate specific work areas
  • The antimicrobial flooring options available from some manufacturers offer further hygiene support in highly sensitive facilities
  • Today’s industrial resinous floor coatings from reputable suppliers are very low to zero V.O.C. and compliant with EPA and other environmental regulations

Resinous coating systems provide ideal value to informed growers who require durable, reliable and long-lasting high performance flooring for their facilities.

Support from the Ground Up

From incredible medical advances to high tensile fiber in construction materials, the expanding cannabis industry is bringing exciting opportunities to many areas of the economy. As more and more growers enter the market, so increases the pressure to compete.

By choosing light reflective, seamless and moisture tolerant resinous flooring that meets regulatory guidelines for grow rooms, managers can help reduce their overhead costs on multiple fronts — and get a jump on the competition.

Tips for Finding the Perfect Cannabis Packaging Partner for Your Business

By Danielle Antos
3 Comments

Whether your cannabis business is a start-up in its infancy, or established with a loyal customer following, the product packaging you use is essential to building and maintaining your brand. The packaging is the first thing a potential customer sees, and it creates that critical first impression. While the primary function is to contain, protect, and market your products, your packaging is a reflection of your company to the customer. In many ways, the package is the product. Partnering with a quality plastic packaging manufacturer for your cannabis products will increase your success.

Bottles made of high-density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polyethylene terephthalate (PET) have become widely-accepted packaging options within the cannabis industry. There are many plastic bottle manufacturers, but how do you find the right one? In short, seek a manufacturer who makes quality products that are unlikely to present downstream problems for your company, provides services and options that align with things you feel are important, and wants to build a long-term relationship with you so both of your businesses grow faster through strategic partnership.

What to Look for in a Plastic Bottle Manufacturer

Excess Bottom Flash creates a poor printing surface.

As you search for a packaging partner for your cannabis business, here are a few key things to look for:

Bottles That Visually Support Your Brand

It’s essential to partner with a manufacturer who understands the importance of defect-free plastic bottles. Does everything about your packaging convey a sense of trust for your customers? Defects in plastic bottles typically occur during the manufacturing process.

Excessive Side Taper results in uneven, wrinkled labels.

For instance, excessive side taper on the bottles can result in uneven, wrinkled labels that are hard to read and make your product look unprofessional. If flashing on the bottle bottom is not removed, it creates a poor printing surface and results in a poor brand impression.

Partnering with a manufacturer who understands that plastic bottle defects diminish brand presence and who continually strives to remove defect-producing problems out of their manufacturing process is of utmost importance. This avoids many downstream quality problems and helps to keep the focus on growth and off of damage control.

Bottles That Minimize Risk and Waste

Product recalls or safety concerns can be a result of cloudy bottles or material trapped in the resin that makes the plastic packaging look dirty or contaminated. These situations can erode consumer confidence in your brand or expose the customer to risk.

Foreign material trapped in the resin results in reduced customer confidence.

Sub-par plastic bottles can lead to inefficiencies on your filling lines, lost production time, and product that cannot be sold. These situations lead to reduced profitability and negatively impact your bottom line. It’s never good when filled packaging or product has to be thrown away because problems are identified on the filling line.

Uneven Sealing Surface results in poor closure seal and increased risk of product spoilage or contamination.

Worse yet is when your product reaches the point of sale and the problems are identified at the dispensary or by a consumer. For example, over time, an improper seal between the plastic bottle and cap can cause flower to be excessively dry. In turn, when this flower is dispensed to the consumer it can lead to overfilling to make up for weight loss. And some consumers just don’t like their flower to be too dry, resulting in lost sales. Does the defective product get shipped back or trashed at the point of sale location? In either case, this results in the dilemma of wasted product that can’t be used and extra costs that eat into your profitability. 

Closures That Work With The Bottle

The closures for the bottles are also an important part of your cannabis packaging. Can your packaging partner manufacture and supply plastic closures that assure complete functionality to protect your product? Closures produced by the same manufacturer as the bottles ensures that the closure and bottle function correctly together. A one-stop-shop approach will save you time and money.

The cannabis industry is growing quickly and faces many complex regulatory challenges, including regulations for child-resistant packaging. Many states have their own unique cannabis packaging requirements which must be strictly adhered to. Are their bottle and closure pairings compliant with current regulations and those that are under legislation for the future? 

Customization for Your Brand

Can the cannabis packaging manufacturer customize their products to your exact design and specifications? Your product is unique, and your packaging should reflect that. Make sure your brand stands out with the exact image you want to project. There should be “depth” in your supplier: can they do more than just sell you packaging that already exists?

A Safe Resin Source

Another important aspect of safety is country of origin. Plastic bottles and closures manufactured overseas may have impurities in the resin or colorant that could leach or bleed into your products. They may not have documentation of origin or comply with FDA regulations. Your plastic packaging partner should be able to provide this documentation so you can rest assured that your bottles are manufactured under strict guidelines for the safety of your consumers and that your product won’t be affected.

Commitment to Sustainability

To many consumers, packaging made from recycled materials is important. Does your packaging supplier have a strong commitment to environmental sustainability? There is strong market support for carbon-friendly alternatives. Progressive plastic packaging manufacturers are actively working to provide alternatives to plastics made from fossil fuels and instead, using resins produced from renewable resources (i.e. sugarcane). By partnering with a supplier that provides alternative and recycled materials, you enhance your brand by appealing to a growing segment of environmentally concerned consumers.the best cannabis packaging suppliers understand that consistency in the manufacturing process is essential.

Scalable Growth

As your business grows, can your packaging partner grow with you? It’s important that they are able to keep up with the demand for your product and that their supply chain can match your manufacturing needs. As you add to your product line, are they capable of continuing to offer new and innovative packaging? A manufacturer that has a strong business model for growth will benefit you now and for the future.

A Real Cannabis Packaging Partner

Your cannabis business should develop a true partnership with your packaging supplier. They should invest in your success and care about your business. Businesses depend on one another for continued growth – look for a knowledgeable partner that is responsive, courteous and dependable now and for years to come. The best suppliers realize that there is more to a relationship than just the financial transaction of buying packaging.

Additionally, the best cannabis packaging suppliers understand that consistency in the manufacturing process is essential. Using virtually perfect bottles time after time not only reduces waste but helps build consumers’ trust in your brand. Consistency saves you three precious commodities – time, hassle and money.

Remember, a brand consists of more than just a logo and company name. It identifies who you are, what your company stands for and the integrity of your product. Quality cannabis packaging will reinforce your company standards and attract consumers to your product – consistently defining you as a quality provider with integrity in the marketplace. Improving your bottom line and meeting your company’s financial goals is at stake. Is your cannabis packaging partner going to help you grow?

World Health Organization November Meeting To Review Cannabis

By Marguerite Arnold
No Comments

In a sign that cannabis reform is now on the march at the highest level of international discussion, the World Health Organization (WHO) will be meeting in November to formally review its policies on cannabis. This will be the second time in a year that the organization has met to review its policies on the plant, with a direct knock-on effect at the UN level.

According to documents obtained by Cannabis Industry Journal, including a personal cover letter over the committee’s findings submitted to the Secretary-General Antonio Guterres by Dr. Tedros Adhanom Ghebreyesus, Director-General of the WHO, the November review will “undertake a critical review of the…cannabis plant and resin; extracts and tinctures of cannabis.”

What Exactly Will The WHO Review?

The November meeting will follow up on the work done this summer in June – namely to review CBD. According to these recommendations, the fortieth meeting of the Expert Committee on Drug Dependence (ECDD) in Geneva will include the following:

  1. Pure CBD should not be scheduled within International Drug Control Conventions.
  2. Cannabis plant and resin, extracts and tinctures of cannabis, Delta-9-THC and isomers of THC will all be reviewed in November.
  3. Finally, and most cheeringly, the committee concluded that “there is sufficient information to progress Delta-9-THC to a critical review…to address the appropriateness of its placement within the Conventions.” In other words, rescheduling.

Industry and Patient Impact

Translation beyond the diplomatic niceties?

The drug war may, finally, and at a level not seen for more than a century, come to a close internationally, on cannabis.

Here is why: The WHO is effectively examining both the addictive impact and “harm” of the entire plant, by cannabinoid, while admitting, already that current scheduling is inappropriate. And further should not apply to CBD.

This also means that come November, the committee, which has vast sway on the actions of the UN when it comes to drug policy, is already in the CBD camp. And will finally, it is suspected, place other cannabinoids within a global rescheduling scheme. AKA removing any justification for sovereign laws, as in the U.S., claiming that any part of cannabis is a “Schedule I” drug.

What this means, in other words, in effect, is that as of November, the UN will have evidence that its current drug scheduling of cannabis, at the international level, is not only outdated, but needs a 21stcentury reboot.

International Implications

From a calendar perspective, in what will be Canada’s first recreational month, Britain’s first medical one and presumably the one in that the German government will finally accept its second round of cultivation bids, the world’s top regulatory body will agree with them.

This also means that as of November, globally, the current American federal justifications and laws for keeping cannabis a Schedule I drug, and based on the same, will have no international legal or scientific legitimacy or grounding.

Not that this has stopped destructive U.S. policies before. See global climate change. However, and this is the good news, it is far easier to lobby on cannabis reform locally than CO2 emissions far from home. See the other potentially earth-shaking event in November – namely the U.S. midterm elections.

The global industry, in other words, is about to get a shot in the arm, and in a way that has never happened before in the history of the plant.

And that is only good news for not only the industry, but consumers and patients alike.