Tag Archives: spectrum

Product Release: Illumitex Launches HarvestEdge XO Light Fixtures

By Aaron G. Biros
No Comments

According to a press release yesterday, Illumitex, an industry-leading LED lighting manufacturer and digital horticulture company, announced the release of their newest lighting technology, the Illumitex HarvestEdge Extra Output (XO) LED Horticultural Fixture. This light fixture is the latest advancement of their LED technology, which they claim can help growers maximize their yield considerably.

The HarvestEdge Extra Output (XO) LED Horticultural Fixture

The fixture comes with a 0-10 dimming capability and proven Wet Rating, meaning it is designed and proven to operate normally in a high-humidity environment. Debuted during the NCIA Seed to Sale Show in Boston, MA on February 12th, the company says the XO LED is the first true 1:1 replacement for high pressure sodium (HPS) lights, consuming about 36% less energy.

We caught up with a few members of the Illumitex team at the conference to find out more about the technology and its applications. According to John Spencer, CCO/EVP of Sales & Marketing at Illumitex, their technology has been used by hundreds of grow operations over the past 8 years. “This light was designed with a higher light output for greenhouses, particularly in Canada where the mounting heights are upwards of 7 meters,” says Spencer. “We are minimizing shadowing in the greenhouse, giving growers the opportunity to supplement their sunlight appropriately.” He says they are specifically designed with commercial scale use in mind.

According to Yan Ren-Butcher, Ph.D., Director of Horticulture Science at Illumitex, the light has the highest efficacy on the market right now. “We designed the specific wavelengths and best red, blue and green ratios optimal for photosynthesis,” says Ren-Butcher. “This product launch is based on years and years of experience in horticultural applications, our knowledge in the field of cannabis cultivation and the latest in LED technology, with the highest efficacy in the industry to date.”

Canadian Companies Continue European Cannabis Moves

By Marguerite Arnold
No Comments

There is a lot of European news afoot from the big public Canadian companies between all the headlines about Israel. Namely, established cannabis companies in the market already continue to shore up their presence across multiple member EU states.

What is at stake? Establishing some kind of European foothold in an environment where licensing and production costs will not bust the bank- and what will be the first government-set, pre-negotiated bulk price for medical cannabis flower. For all the high-flying news of even hundred million-dollar (or euro) investments, right now the biggest hunt is on for ways to trigger sales figures that continue to grow steadily in the customer column.

There is also a dawning realization that prices are going to start stabilizing if not falling after the German government finalizes its selection of bid winners.european union states

As a result of all of this, to compete against each other and streamline distribution and supply chain costs, the larger Canadian companies in the market are clearly angling to set up efficient distribution networks- even if that means buying pieces of them one country and property at a time.

How well that will work in the longer run remains to be seen- but it is a play that is starting to show up in other European developments (from the Israeli side). That said, the latest news of the big guys in the field make sense within this context, if none other.

Canopy Growth Announces UK and Polish Moves

Spectrum Cannabis, the European-based medical brand of Canopy Growth chalked two more achievements off its Euro “to do list” in January. At the beginning of the month, Spectrum announced it was preparing to enter the UK market via the creation of a joint venture with Beckley Canopy Foundation, Spectrum Biomedical.

In Poland, the company also announced the successful shipment of its high-THC whole flower “Red No.2.” The Polish government began allowing sales late last year.

Neither development however should be a surprise to those watching the strategy of either Canopy or for that matter several other public Canadian cannabis companies. Aurora, for example, announced its first successful shipment into the country on the same day that the Polish government changed the law. On the British side, the combined forces of changing the regulatory scheduling of cannabis and allowing the drug to be dispensed by prescription have certainly changed the game on some levels. Brexit is about to play havoc with most imported products, and cannabis is no exception to this.Canopy_Growth_Corporation_logo

In this sense, the challenges facing both British and Polish patients right now are also fairly analogous. Importing is the only way to get the drug to patients, and the cost of import is also prohibitively high for most. Then of course, there is actual approval beyond that, which is also a problem everywhere cannabis has become legal.

While both developments of course, are good news for the company, this does not mean that the initial going will be easy or smooth for any company, including one as skilled at strategic market entry in core countries across the continent for the last several years as Spectrum has reliably proven to be.

Green Organic Dutchman Gets Cultivation License In Denmark

TGOD has now gone where other Canadian Euro cannabis players have gone before– namely it has joined the national trial program and several other Canadian cannabis companies before it (see Spectrum Cannabis for one) in Denmark.

Why are so many public cannabis companies attracted to the tiny country? The first is that the country, like Switzerland, in fact, is not as bound by EU rules as say, Germany and France. It can “experiment” in ways that are notably different from its neighbors.

As a result of this and a change in the law that began a multiyear trial to experiment with regulation and medical efficacy, cultivation licenses are also easier to obtain than in other places. There are also other plusses to establishing a presence in the country if not the continent including a strong social care system, and a research environment that promises to produce great results on the medical efficacy discussion continent wide.

IR Spectrum of 2,4-Dichlorophenol in different physical states
From The Lab

Gas Chromatography/Infrared Spectroscopy: A Tool For the Analysis of Organic Compounds in Cannabis

By John F. Schneider
2 Comments
IR Spectrum of 2,4-Dichlorophenol in different physical states

Editor’s Note: The author will be teaching a 1/2 day short course on this topic at PITTCON in Philadelphia in March 2019.


The combination of gas chromatography and infrared spectroscopy (GC/IR) is a powerful tool for the characterization of compounds in complex mixtures. (1-5) Gas chromatography with mass spectroscopy detection (GC/MS) is a similar technique, but GC/MS is a destructive technique that tears apart the sample molecules during the ionization process and then these fragments are used to characterize the molecule. In GC/IR the molecules are not destroyed but the IR light produced by molecular vibrations are used to characterize the molecule. IR spectrum yields information about the whole molecule which allows the characterization of specific isomers and functional groups. GC/IR is complementary to GC/MS and the combination results in a powerful tool for the analytical chemist.

A good example of the utility of GC/IR vs GC/MS is the characterization of stereo isomers. Stereo isomers are mirror images such as a left hand and a right hand. In nature, stereo isomers are very important as one isomers will be more active then its mirror image. Stereo isomers are critical to medicinal application of cannabis and also a factor in the flavor components of cannabis.

GC/MS is good at identifying basic structure, where GC/IR can identify subtle differences in structure. GC/MS could identify a hand, GC/IR could tell you if it is a left hand or right hand. GC/MS can identify a general class of compounds, GC/IR can identify the specific isomer present.

Why GC/IR?

Gas chromatography interfaced with infrared detection (GC/IR), combines the separation ability of GC and the structural information from IR spectroscopy. GC/IR gives the analyst the ability to obtain information complementary to GC/MS. GC/IR gives the analyst the power to perform functional group detection and differentiate between similar molecular isomers that is difficult with GC/MS. Isomer specificity can be very important in flavor and medical applications.

 IR Spectrum of 2,4-Dichlorophenol in different physical states

IR Spectrum of 2,4-Dichlorophenol in different physical states

Gas chromatography with mass spectrometry detection (GC/MS) is the state-of-the-art method for the identification of unknown compounds. GC/MS, however, is not infallible and many compounds are difficult to identify with 100 % certainty. The problem with GC/MS is that it is a destructive method that tears apart a molecule. In infrared spectrometry (IR), molecular identification is based upon the IR absorptions of the whole molecule. This technique allows differentiation among isomers and yields information about functional groups and the position of such groups in a molecule. GC/IR complements the information obtained by GC/MS.

Interfaces

Initial attempts to couple GC with IR were made using high capacity GC columns and stopped flow techniques. As GC columns and IR technology advanced, the GC/IR method became more applicable. The advent of fused silica capillary GC columns and the availability of Fourier transform infrared spectrometry made GC/IR available commercially in several forms. GC/IR using a flow cell to capture the IR spectrum in real time is known as the “Light Pipe”. This is the most common form of GC/IR and the easiest to use. GC/IR can also be done by capturing or “trapping” the analytes of interest eluting from a GC and then measuring the IR spectrum. This can be done by cryogenically trapping the analyte in the solid phase. A third possibility is to trap the analyte in a matrix of inert material causing “Matrix Isolation” of the analyte followed by measuring the IR spectrum.

Infrared Spectroscopy

The physical state of the sample has a large effect upon the IR spectrum produced. Molecular interactions (especially hydrogen bonding) broadens absorption peaks. Solid and liquid samples produce IR spectra with broadened peaks that loses much of the potential information obtained in the spectra. Surrounding the sample molecule with gas molecules or in an inert matrix greatly sharpens the peaks in the spectrum, revealing more of the information and producing a “cleaner” spectrum. These spectra lend themselves better to computer searches of spectral libraries similar to the computer searching done in mass spectroscopy. IR spectral computer searching requires the standard spectra in the library be of the same physical state as the sample. So, a spectrum taken in a gaseous state should be searched against a library of spectra of standards in the gaseous state.

IR of various phases:

  • Liquid Phase – Molecular interactions broaden absorption peaks.
  • Solid Phase – Molecular interactions broaden absorption peaks.
  • Gas Phase – Lack of molecular interactions sharpen absorption peaks.
  • Matrix Isolation – Lack of molecular interactions sharpen absorption peaks.

IR Chromatograms

GC/IR yields chromatograms of infrared absorbance over time. These can be total infrared absorbance which is similar to the total ion chromatogram (TIC) in GC/MS or the infrared absorbance over a narrow band or bands analogous to selected ion chromatogram. This is a very powerful ability, because it gives the user the ability to focus on selected functional groups in a mixture of compounds.

Conclusion

Gas chromatography with infrared detection is a powerful tool for the elucidation of the structure of organic compounds in a mixture. It is complementary to GC/MS and is used to identify specific isomers and congeners of organic compounds. This method is greatly needed in the Cannabis industry to monitor the compounds that determine the flavor and the medicinal value of its products.


References

  1. GC–MS and GC–IR Analyses of the Methoxy-1-n-pentyl-3-(1-naphthoyl)-Indoles: Regioisomeric Designer Cannabinoids, Amber Thaxton-Weissenfluh, Tarek S. Belal, Jack DeRuiter, Forrest Smith, Younis Abiedalla, Logan Neel, Karim M. Abdel-Hay, and C. Randall Clark, Journal of Chromatographic Science, 56: 779-788, 2018
  2. Simultaneous Orthogonal Drug Detection Using Fully Integrated Gas Chromatography with Fourier Transform Infrared Detection and Mass Spectrometric Detection , Adam Lanzarotta, Travis Falconer, Heather McCauley, Lisa Lorenz, Douglas Albright, John Crowe, and JaCinta Batson, Applied Spectroscopy Vol. 71, 5, pp. 1050-1059, 2017
  3. High Resolution Gas Chromatography/Matrix Isolation Infrared Spectrometry, Gerald T. Reedy, Deon G. Ettinger, John F. Schneider, and Sid Bourne, Analytical Chemistry, 57: 1602-1609, 1985
  4. GC/Matrix Isolation/FTIR Applications: Analysis of PCBs, John F. Schneider, Gerald T. Reedy, and Deon G. Ettinger, Journal of Chromatographic Science, 23: 49-53, 1985
  5. A Comparison of GC/IR Interfaces: The Light Pipe Vs. Matrix Isolation, John F. Schneider, Jack C. Demirgian, and Joseph C. Stickler, Journal of Chromatographic Science, 24: 330- 335, 1986
  6. Gas Chromatography/Infrared Spectroscopy, Jean ‐ Luc Le Qu é r é , Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2006

Danish Cannabis Pilot Program Reaching End Of First Year

By Marguerite Arnold
No Comments

While it has gotten decidedly less English-speaking press than other countries in Europe on the front edge of cannabis reform, Denmark’s pilot four-year cannabis program is moving along nicely. It is also, without all the fanfare and hullabaloo seen in other EU countries struggling with how to approach cannabis normalization, about to reach the end of its first year.

The four year program was authorized to begin on January 1, 2018.

Major Canadian cannabis companies have been establishing operations in the country since late last year. Spectrum (a division of Canopy Cannabis), jumped the shark early, as it did in Germany. On December 5, 2017, three weeks before the executive order went into effect, Spectrum announced a first of its kind Danish joint venture with a forty thousand square-meter grow facility. Others have followed since then.

Licenses are required for every step of the process. In other words, producers must receive a license to legally cultivate cannabis for medical purposes. Those wishing to distribute must also have such products admitted to the formal list of medicines that can be distributed domestically. Manufacturers are also not allowed to distribute their product to any entity except pharmacies, hospitals and other manufacturers with a license to distribute.

Exports are also tightly controlled. Any medication on the approved pilot list cannot be exported. Further, it is only legal to export to two countries from Denmark – namely Canada and Holland.

A Direct Comparison To Other European Medical Cannabis Programs

Denmark is the first member of the EU to set up a trial program specifically for cannabis, although the Danish “experiment” looks in many ways like what will emerge in Germany. Unlike in Germany, however, the process is getting off to a smooth start.

Germany, which was primed to do the same as of March last year, has struggled since then with establishing a domestic cultivation process. That said, distribution (particularly from outside the country) is already off to a flying start. The difference, however, is that distributors in Germany who have a license to distribute a restricted narcotic product, can distribute cannabis too, without additional licensing. See Aphria’s recent purchase of CC Pharma with distribution to 13,000 pharmacies in Germany. Imports will actually be the name of the game here for some time to come as the cultivation bid is widely accepted as being too small to even meet existing demand. This will be the reality going forward as the government is required to purchase all cannabis bought by tender bid.

The other place to watch right now is Greece. The country has also moved quickly to establish a cultivation program in the last year. The difference between Denmark and Greece however, is that the export game (along with medical tourism) are clearly on the agenda.

Regardless, the success of the Danish “experiment” is one that other European countries could well look to as other countries proceed down the road to cannabis normalization and legalization, even if at first, and for probably the next four to five years, as a medical product.

Soapbox

Are LED Grow Lights Worth It?

By Dr. Zacariah Hildenbrand, Robert Manes
5 Comments

There really is no question that Light Emitting Diodes (LEDs) work, but just how well do they work?

For the last 50+ years, indoor cannabis cultivators have used High Pressure Sodium (HPS) lights to illuminate their flowering crops. This technology was developed for, and is still used, as street lighting and there really hasn’t been a fundamental change to the output in the last half century.LED technology showed great promise to solve some of the primary drawbacks to the use of HPS technology for indoor cannabis cultivation. 

We are often asked why this technology was used to grow cannabis, and the answers are simple: 1) due to strict legislation and even stricter penalties for growing cannabis, growers wished to move their crops indoors, and, 2) there really hasn’t been another technology that would allow us to cheaply place 400, 600, or even 1000W of light on a crop. In addition, HPS technology is rich in certain frequencies of red light, which is so important to flowering crops. Unfortunately, HPS lamps have their drawbacks, such as high heat output and lack of other “colors,” along the lighting spectrum. In fact, up to 95% of light produced by an HPS lamp is emitted in the infrared range, which we perceive as heat.

Enter the Light Emitting Diode. LED technology showed great promise to solve some of the primary drawbacks to the use of HPS technology for indoor cannabis cultivation. The ability to manipulate spectrum, precision delivery of light, elimination of dangerous heat, and lack of substantive toxic chemical makeup are a few reasons to deploy LEDs. However, as with any new technology, there were some significant hurdles to overcome.

Early experimentation using Light Emitting Diodes (LEDs) to grow cannabis, suffice to say, did not go well.  Poor performance, misleading advertising and equipment failures plagued the first mass-produced LED grow lights. The aspect of poor performance can be blamed on several factors, but the most prominent are very low efficacy, in terms of light produced per Watt consumed, and incorrect application of spectrum (color) for horticultural purposes. Causes of “misleading advertising” was a mixed bag of dubious sales pitches and lack of understanding the technology and of horticultural lighting requirements. Additionally, there certainly were some quality control issues with LEDs and electronics equipment in general, especially from offshore manufacturers in China and Korea.

A plant in flowering under an LED fixture

That legacy of poor performance still has a partial hold on the current indoor cannabis cultivation industry. Many of the current “Master Growers” have tried LEDs at some point and for the various reasons mentioned above, reverted to HPS lighting. Some of this reluctance to embrace LEDs comes from unfamiliarity with application of the technology to grow better cannabis, while some can be attributed to stubbornness to deviate from a decades-long, tried-and-true application of HPS lighting.

Certainly, growing with LEDs require some changes in methodology. For instance, when using true “full spectrum” grow lights, more nutrients are consumed. This is caused by stimulation of more photoreceptors in plants. To further explain, photoreceptors are the trigger mechanisms in plants that start the process of photosynthesis, and each photoreceptor is color/frequency-dependent. True full spectrum LED systems fulfill spectrum shortages experienced with HPS technology. Anyone that grows with LEDs will at some time experience “cotton top,” or bleaching at the upper regions of their plants.  Increased nutrient delivery solves this issue.

As we continue to uncover the vast medical potential of cannabis, precise phytochemical composition and consistent quality will become all-important.While the industry is still saturated with confusing rhetoric and some poorly performing equipment, LEDs are gaining momentum in the cannabis market. LED efficacies have increased to levels far greater than any other lighting technology. Broad spectrum white and narrow-frequency LEDs in all visible (and some invisible to the human eye) colors are being produced with great precision and consistency. Quality control in manufacturing is at an all-time high and longevity of LEDs has been proven by the passage of time since their introduction as illumination sources.

As the world embraces LED horticultural lighting, probably the most encouraging news is that current and upcoming generations of cannabis growers are more receptive to new ideas and are much more tech-savvy than their predecessors. Better understanding of cannabis-related photobiology is helping LED grow light manufacturers produce lighting that increases crop yields and perhaps more importantly, cannabis quality. As we continue to uncover the vast medical potential of cannabis, precise phytochemical composition and consistent quality will become all-important.

Obviously, the indoor cannabis industry is expanding rapidly and this expansion raises deep environmental concerns. More power is being used for indoor lighting, and for the cooling required by this lighting. Power systems are being taxed beyond forecasts and in some cases, beyond the capabilities of the infrastructure and power companies’ ability to produce and deliver electricity.  Some states have proposed cannabis-related legislature to limit power consumed per square foot, and some are specifically requiring that LEDs be used to grow cannabis. While some business leaders and cultivation operators may groan at the acquisition cost and change in operating procedures when deploying LEDs, common sense states that it is imperative we produce cannabis applying the most environmentally friendly practices available.

Dr. Zacariah Hildenbrand
Soapbox

Sustainability & Quality Go Hand-In-Hand In The Cannabis Industry

By Dr. Zacariah Hildenbrand
No Comments
Dr. Zacariah Hildenbrand

I recently attended the CannaGrow Expo held in Denver, Colorado. It was a fantastic event, per usual, and I was pleasantly surprised to see a number of presentations by industry experts where the central themes were sustainability and environmental stewardship. I was particularly struck by Adam Maher’s presentation, where he discussed the merits of micro grid technologies and the ease in which they can be coupled with renewable energy modalities, such as solar. His sentiments really resonated with me, particularly with respect to the long-term implications of cannabis cultivation sweeping across North America.

Considering that cannabis represents the new frontier of modern medicine and its societal acceptance is rapidly spreading, there is a growing impetus for cannabis professionals to implement technologies that will enhance the sustainability of their operations. These pertain to, but are not limited to, power generation and lighting, both of which are integral components to any indoor cannabis cultivation facility. Not only can the utilization of energy efficient technologies (i.e., solar panels and LED lights) help our planet that is struggling mightily to neutralize the influences of anthropogenic climate change, but it can also add value to the bottom line. That’s right: environmental stewardship, product quality and financial success are not mutually exclusive in the cannabis industry. For example, the utilization of solar panels and/or a micro grid can have a relatively rapid payback (<6 years), while the hardware itself adds inherent value to any cannabis property/operation. This is particularly relevant in an emerging market where acquisitions are common and the management of asset value is a harbinger of success. Secondarily, the use of LED lighting technologies to produce ultra-premium cannabis is another piece of low-hanging fruit that can be picked to add value. For example, 1st and 2nd place in Arizona’s 2017 ERRL Cup were awarded to flower that was grown under LED lights designed by the Tall Trees LED Company, where the total cannabinoid levels exceeded 32% and a wide variety of terpenes were detected. These results, coupled with the fact that LED lights can provide full spectrum light that requires less energy and produces less heat than HPS lights, make the adoption of LED lights a simple choice for the environmentally conscious and financially savvy operator.

As we continue to move towards more states becoming cannabis powerhouses, and a potential federal rescheduling, the industry must continue pushing the operational equilibrium towards more resourceful technologies. Of course there is always going to be a perceived activation energy or threshold that must be transcended before the adoption of new technologies can be successfully accomplished with confidence. This is completely normal and is usually associated with the initial capital that is required to acquire such technologies, and/or fears that such an investment won’t bear fruit. However, there is currently enough data to indicate that technologies like solar panels and LED lights are a smart financial choice for any cultivation facility where there is sunlight and electrical outlets.

In summary, I would strongly encourage any operator to evaluate the sustainability and environmental stewardship of their business, especially if they anticipate spreading the holistic gospel of cannabis medicine for many years to come. You are already doing a tremendous service for those who depend on cannabis medicine and now is the time to continue your noble pursuit while taking care of Mother Earth and paying it forward to our subsequent generations.