Tag Archives: standard

The Power of Prevention: Pathogen Monitoring in Cannabis Cultivation and Processing Facilities

By Nathan Libbey
2 Comments

As the cannabis market matures and the value chain becomes modernized, it’s important to address product safety in a comprehensive way. In other areas of manufacturing, Hazard Analysis & Critical Control Points (HACCP) has been the standard for reducing hazards both for employees and for the products themselves. A Critical Control Point (CCP) is any spot from conception to consumption where a loss of control can potentially result in risk (Unnevehr, 1996). In the food realm, HACCP has been used to drive quality enhancements since the 1980s (Cichy, 1982).

In a nutshell, HACCP seeks to help identify where a problem may enter a product or environment and how that problem may be addressed before it escalates. In cannabis, these hazards include many of the same problems that food products have: specifically molds, yeasts, and pathogenic bacteria (Listeria, E. coli, etc.). While the current industry standard is to test products at the end stage for these contaminants, this late-stage pass/fail regimen leads to huge lots of destroyed product and a risk for consumer distrust (Yamashiro, 2019). HACCP, therefore, should be applied at every stage of the production process.

Pathogen Environmental Monitoring (PEM) is a tool that can be used to identify CCPs in a cannabis cultivation or processing facility. The main goal of a PEM program is to find a contaminant before it reaches a surface that touches the product or the product itself. PEM is conducted using a pre-moistened swab or a sponge to collect a sample from the cannabis environment. The swab can then be sent to a lab for microbial testing. Keys to an effective PEM are:

1. Start with a broad stroke – When the FDA comes to a facility suspected of producing pathogen-laced food products, they conduct what is known as a Swab-a-thon. A Swab-a-thon is a top to bottom collection of samples, usually totaling 100 or more. Similarly, preemptively swabbing should be the first step in any PEM—swab everything to see what exists as a baseline.

2. Map your scene – identify on a map of your facility the following:

  • Cannabis contact surfaces (CCS) (belts, clippers, tables, etc)
  • Non-cannabis contact surfaces (Non-CCS) (floors, lighting, drains, etc)
  • Flow of air and people (where do air and people enter and where do they go?

Identifying the above zones will help deepen your understanding of where contaminants may come into contact with cannabis and how they may migrate from a Non-CCS to a CCS. 

3. Plan and execute:

  • Based on the results of mapping, and Swab-a-thon, identify where and when you will be collecting samples on a consistent and repeatable basis. Emphasis should be placed on areas that are deemed a risk based on 1) and 2). Samples should be collected at random in all zones to ensure comprehensive screening.

4. Remediate and modify:

  • If you get a positive result during PEM, don’t panic—pathogens are ubiquitous.
  • Remediate any trouble spots with deep cleaning, remediation devices or other protocols.
  • Re-test areas that were positive for pathogens to ensure remediation is successful.
  • Revisit and modify the plan at least once a year and each time a new piece of equipment is added or production flow is otherwise changed.

The steps above are a good starting point for a grower or processor to begin a PEM. Remember that this is not a one-size-fits-all approach to safety; each facility has its own unique set of hazards and control points.

Comprehensive guides for PEM can be found at the links below, many of the concepts can be applied to cannabis production.


https://affifoodsafety.org/lcp/advanced-search/

http://www.centerforproducesafety.org/amass/documents/document/263/Listeria%20Guidance%20UFPA%202013.pdf

Cichy, R. (1982). HACCP as a quality assurance tool in a commissary food-service system. International Journal of Hospitality Management, 1(2), 103-106.

Unnevehr, L., & Jensen, H. (1996). HACCP as a Regulatory Innovation to Improve Food Safety in the Meat Industry. American Journal of Agricultural Economics, 78(3), 764-769.

Yamashiro, C, & Baca, Y. (2019).  Prevent high-value cannabis crop loss with innovative environmental monitoring tool.

The CalCannabis Appellations Project Is About to Spark a New Chapter in Place-Based Branding

By Amy Steinfeld, Jack Ucciferri
1 Comment

Connoisseurs know that pairing a fine cut of steak with a Napa Valley cabernet sauvignon is a sure winner. But how many are aware that pairing strawberry cheesecake with a certified Santa Cruz Blue Dream cannabis strain creates an equally delicate palatal synergy? Thanks to the California Department of Food and Agriculture’s CalCannabis Appellations Project (“CAP”), premium cannabis regions will soon have the potential to capitalize on such newfound awareness among discerning consumers.

For decades, cannabis connoisseurs have been willing to pay a premium for flower said to have been grown in certain regions or with certain techniques, but because of cannabis’ legal status, supply chains have been opaque. As a result, cultivators of distinct cannabis strains struggled to capture the full market potential of their products. That has begun to shift with implementation of California’s Cannabis Track-and-Trace System. The costs associated with implementation of the METRC1 system have been bemoaned by many in the industry, but there is also tremendous potential value in having the most transparent supply chain in the world. The CalCannabis Appellations Project is the vehicle through which brands will be able to harness that value.

The underlying premise behind the CalCannabis Appellations Project is that the distinctive qualities of a cannabis product are often attributable to where and how the plant is grown. Through this project, CalCannabis is developing a statewide appellations system2 that will allow qualifying licensed cultivators to effectively communicate information about their cannabis crops (i.e., the standards, practices and/or varietals used) through labels, advertisements and other marketing techniques. It will also prevent disingenuous cannabis cultivators from making inaccurate claims about where and how a product is grown, which protects the integrity and value of the appellation.

What is an appellation?

In general terms, an appellation is an identifying name, title or label that can be legally defined and protected. Appellations are most commonly used in the wine industry to geographically identify the origin of grapes in a particular bottle. This place-based identification system comes from an understanding that certain regions have unique environmental and growing characteristics, which result in a product that cannot be produced from other regions even when the same varietals are used. Famous wine appellations or American Viticultural Areas (AVAs) in California include the Napa Valley and Santa Ynez AVAs, and sub-AVAs such as the Russian River Valley AVA, located within the larger Sonoma County AVA.

Recognizing there are also growing regions that produce uniquely distinctive cannabis, CalCannabis is developing a process for:

  1. Establishing an appellation (i.e., identifying regions that produce distinctive cannabis and defining standards, practices and/or varietals that must be used in those regions to qualify for an appellation); and
  2. Qualifying to use a particular appellation once they are established (i.e., determining the cannabis cultivators that can legally label or market themselves as belonging to a particular appellation).

While the state has not released program details, it’s likely that cultivators will have to demonstrate their outdoor-grown cannabis is distinctly unique.3 CalCannabis has until Jan. 21, 2021,4 to establish these processes, but a draft is expected to be released by early January 2020.5 This is an opportunity for cultivators to organize and participate in the process to define and create unique local appellations.

What are the benefits of an appellations system?

Napa wine country
Image: James Faulkner, Flickr

Appellations benefit both cannabis cultivators and consumers. It allows small farmers to capture the value that consumers place on unique and local cannabis products. Allowing for product differentiation through an appellations system will prevent cannabis from becoming a commodity—a situation that could result in indistinguishable products and a single market price for cannabis regardless of how or where it is grown. Thus, an appellations system protects not only local economies and farming communities, but also consumers that care about the origin and growing practices of their cannabis.

A criticism of appellations, particularly in the wine industry, is that they can disincentivize innovation and industry growth when strict growing practices and standards are required to be a part of an appellation. This will be an important consideration as CalCannabis establishes its appellations system.

County of Origin

In addition to setting up an appellations system, the CalCannabis Appellations Project will expand upon current county of origin regulations. Unlike an appellation designation, the county of origin designation is designed to be much more inclusive—it can currently be used on any cannabis product as long as 100% of the cannabis is grown within the designated county.6 Whereas an appellation will communicate information about the quality of a cannabis product and how it was produced, a county of origin designation is more like a “Made In” label. For example, a county of origin designation can be applied to indoor cannabis whereas an appellation will likely only include sun-grown cannabis.

There is also a desire to allow city of origin designations in addition to county of origin designations, which would enable products grown wholly within the political boundaries of a city to further differentiate themselves.7 As the legal cannabis landscape changes nationwide, it may also be important to have a statewide appellation allowing products to be marketed as “Grown in California.

What should cannabis cultivation regions be doing now?

After CalCannabis releases a draft process for establishing an appellation, the next steps will be clarified. However, not everyone is waiting. For instance, growers in Mendocino County have already started to organize.8 The Mendocino Appellations Project divided the county into 11 unique subregions based on regional growing conditions and practices that could potentially be turned into appellations in the future. The goal of the appellations outlined by the Mendocino Appellations Project is to protect cannabis products coming out of Mendocino County and preserve the region’s growing heritage.

A group in Sonoma County is also discussing the establishment of appellations with the hope that it will help differentiate their cannabis and draw attention to the unique microclimate and soil structure in parts of Sonoma County.9 The groups involved in these discussions also believe it will allow cultivators to develop strict growing standards and to protect certain strains, while creating new jobs and encouraging agritourism. Appellations will become increasingly important as sophisticated consumers begin to select quality cannabis that aligns with their preferences.


References

  1. METRC is the third-party-owned software contracted by California authorities to implement the commercial cannabis track-and-trace system “from seed-to-sale.”
  2. Passage of Senate Bill 185 calls for the use of the term “appellations of origin” instead of “appellations.”
  3. Based on comments made during the October 23 Cannabis Advisory Committee Meeting.
  4. Business and Professions Code Section 26063.
  5. Based on comments made during the October 23 Cannabis Advisory Committee Meeting.
  6. Business and Professions Code Section 26063(a).
  7. Based on comments made during the October 23 Cannabis Advisory Committee Meeting.
  8. https://swamiselect.com/mendocino-appellation-project/
  9. https://www.sonomacountygazette.com/sonoma-county-news/cannabis-appellations-the-small-cannabis-farmers-elyon-cannabis.
Soapbox

Taking the Guesswork out of Horticultural Lighting

By Leora Radetsky
1 Comment

With 33 states and the District of Columbia having passed laws legalizing marijuana in some form, cannabis cultivation is quickly becoming a booming new business across much of the US. From an energy standpoint, unfortunately, it’s not easy being “green”.

New Frontier Data’s 2018 Cannabis Energy Report found that legal cannabis cultivation in the US consumes approximately 1.1 million megawatt hours of electricity annually – enough to power 92,500 homes or a community the size of Newark, NJ, and accounts for carbon emissions equivalent to that of 92,600 cars. And that consumption is forecasted to increase 162 percent from 2017 to 2022. The report recommended that the industry “evaluate energy-efficient and renewable energy technologies” to nip this challenge in the bud.

Growers seeking to reduce their electricity usage through more efficient lighting face a confusing landscape of options, however. It can be difficult to know what will save electricity and work well for their operations. Technology is advancing quickly and questions abound, from how long a fixture will last and whether a manufacturer’s claims about efficacy are accurate to the effectiveness of various wavelengths for growing a particular plant.

Here’s the good news: there are reliable, third-party lighting and safety standards to help indoor growers make the leap from old-school lighting to state-of-the-art light-emitting diodes (LEDs) that use a fraction of the electricity and are increasingly effective for growing crops from cannabis to tomatoes. Here’s a closer look:

Most lighting fixtures in the North American market go through rigorous inspection by certified third-party testing labs. The first part of the check is for safety – an official UL safety standard tailored for the unique challenges of the greenhouse environment was recently released (UL 8800, the Standard for Horticultural Lighting Equipment and Systems). This standard and similar safety certifications at other major labs address wiring, environmental conditions, ingress protection and worker safety related to prolonged photobiological exposure to the eyes and skin. Growers should always ask a fixture manufacturer about safety certification specifically targeted for horticultural environments.

Next on the standards checklist for horticultural fixtures is performance testing. This often happens at the same labs that do safety testing, but is designed to verify efficacy, output, spectrum and other important performance variables. Commercial labs are certified for specific standards, so that a test on a fixture is repeatable at any other lab certified to the same standard. This performance testing results in a report summarizing items like photosynthetic photon flux (PPF), input power (watts), photosynthetic flux efficacy (PPE, measured in μmol/J or micromoles of photosynthetic photons per joule of electrical input power), and spectral content (flux per nanometer (nm) between 400 and 700 nm).

Then, there are flux maintenance standards (such as IES LM-80 and IES TM-21) that help make sure the photosynthetic light output of LED products degrades at an acceptable rate to make a grower’s investment worthwhile. The testing and calculation methods that go into these standards were painstakingly developed through a consensus of knowledgeable lighting stakeholders. A key difference between general lighting and plant lighting, however, is how flux maintenance is measured and benchmarked – the bar is significantly higher for plants compared to people since their metabolism and growth are dependent on the light spectrum and amount.

A plant in flowering under an LED fixture

What’s described above just scratches the surface of the detailed testing used to determine and communicate performance features for commercial horticultural lighting fixtures. There’s a lot of important information to know, but it takes an informed reader to analyze this information and use it to select appropriate horticultural lighting. Our organization, the DesignLights Consortium (DLC), strives to make the vetting process easier for everyone, freeing up growers to focus on their core business.

In the early days of LED lighting, electric utilities had to compare these different lighting factors and reports to inform their energy efficiency rebate/incentive programs. The DLC was founded to fill this need, serving as a central clearinghouse for setting energy efficiency and other product performance minimum standards, and to evaluate products against those standards. Then and now, lighting products that pass review qualify for an online qualified products list (QPL) that utilities use to quickly and accurately incentivize high-performing products.

Credit: ProGrowTech

With its new minimum performance standards for horticultural light fixtures, the DLC seeks to accelerate the adoption of new energy-saving LED fixtures in controlled agriculture environments. To be on the new DLC Horticultural QPL, an LED fixture must be at least 10 percent more efficacious than the best non-LED alternative – a 1,000-watt double-ended high-pressure sodium (HPS) fixture. It also must have a Q90 of 36,000 hours (the number of hours before the photon flux output depreciates to 90 percent), and its driver and fan (if included) must have a rated life of at least 50,000 hours.

Most importantly, every product is listed online in a searchable, filterable database to help growers and facility designers quickly narrow their options. For example, in a retrofit, a grower might know what PPF is needed from each fixture but might also need to stay within a power budget to avoid rewiring circuits. The DLC’s Horticultural QPL can be filtered to quickly find and compare conforming products.

When a new technology is introduced, there is always uncertainty about how to optimally apply it. The horticultural world is no different. We look forward to research supporting additional predictive metrics that allow us to take advantage of the full benefits of high-performance LED and controls technologies. In the meantime, the established standards described here allow for energy efficient and safe cultivation facilities where growers can confidently produce more with less.

Steven Burton

Standardization: A Guide Through the Minefield

By Steven Burton
No Comments
Steven Burton

Now that cannabis edibles have been legalized nationally in Canada, many existing and aspiring license holders have been surprised to discover that they must comply with food safety regulations. This became crystal clear when Health Canada published their Good Production Practices Guide For Cannabis in August 2019.

With this development, it should be obvious to everyone that Good Manufacturing Practices (GMP) certifications are simply not enough.

Hazard Analysis and Critical Control Point (HACCP) based preventative control programs are now the absolute minimum and higher levels of certification (GFSI) should be on everyone’s wish list.

HACCP is a methodology that is all about identifying biological, chemical and physical hazards and determining how they will be controlled to mitigate the risk of injury to humans. Recently, bio-terrorism and food fraud hazards have been added to the list and it is a good idea to address quality hazards as well.

The process of developing a HACCP program involves identifying these hazards with respect to ingredients, materials, packaging, processes and cross-contamination points (explicitly required in Canada only). However, it is a specific ingredient hazard that I’d like to talk about here.

HACCPAs this market has emerged, I’ve met with many cannabis companies as the onerous levels of knowledge and effort required to build and maintain an effective HACCP program manually has dawned upon the industry. Many are looking for technological solutions to quickly solve this problem. During these discussions, a curious fact has emerged that set off the food safety alarm klaxons around here.

Most people alive today are too young to remember this but, with few exceptions, the standardization of ingredients is a relatively modern phenomenon. It used to be that the fat content of your milk varied from season to season and cow to cow. Over time, the food industry standardized so that, amazingly, you can now choose between milks with either 1% or 2% fat, a level of precision that would border on miraculous to someone born in the early 20th century.

The standardization of ingredients is important in terms of both quality and safety. Take alcohol for example. We know that a shot of spirits generally contains 40% alcohol. Different products may vary from this standard but, if I pour a shot of my favourite Bowmore No.1 single malt in Canada or Tasmania, this year or 10 years from now, I can expect a consistent effect from the 40% alcohol content of the quantity I’ve imbibed.

Imagine a world in which this was not the case, where one shot would be 40% but the next might be 80%. Things could get out of control quite easily at the 80% level so, to avoid this, distillers monitor and blend their product to ensure they achieve the 40% target, which is called the “standardization marker”.

With respect to cannabis, the obvious standardization marker is THC. During the manufacturing process, edibles manufacturers do not normally add cannabis flower directly into their products but instead add a THC concentrate produced during previous production steps. However, we’ve found that the wisdom of standardizing these concentrates has not yet dawned upon many in the industry, which is alarming at best and dangerous at worst.

The reason for this is that, since cannabis is inherently a heterogeneous plant, one cannot precisely achieve a particular marker value so the outcome of the concentration process is variable. The food industry long ago overcame this problem by blending or diluting to achieve a consistent marker concentration, but the cannabis industry has not yet adopted this advance.

The cannabis edibles industry is still immature and it will take time to bring all the necessary risk mitigation processes into place but one excellent place to start is to seriously consider standardizing concentrates to a THC marker.Instead, manufacturers simply keep track of the strength of each batch of concentrate and then adjust the quantity added to their recipes to achieve the desired THC content. This seems logical on the surface but presents a serious risk from the HACCP perspective, namely a chemical hazard, “Excessive psychoactive compound concentrations due to human error at levels that may be injurious to human health”.

The reality is that workers make mistakes, which is why it is imperative to mitigate the risk of human error insomuch as possible. One of the best ways to do this is to standardize to avoid the scenario where a worker, faced with a row of identical containers that are differentiated only by a tiny bit of text, accidentally grabs the wrong bottle. The error isn’t caught until the product has been shipped, consumed, and reports of hospital visits start coming in after the authorities trace the problem back to you. You must bear the costs of the recall, your reputation has been decimated and your company is floundering on the financial rocks.

US-based Drip More, LP recently found this out the hard way after consumers complained that their product tasted bad, bitter and/or harsh. An investigation determined that excessive nicotine content was the source of the problem and a voluntary recall was initiated. Affected product that had already been sold in 26 states. The costs of this recall have not been tallied but they will be staggering.

The cannabis edibles industry is still immature and it will take time to bring all the necessary risk mitigation processes into place but one excellent place to start is to seriously consider standardizing concentrates to a THC marker. This strategy is cheap, easy and you’ll never be sorry.

Risks of Bare Concrete Flooring in Cannabis Grow Rooms & Greenhouses

By Kendall Youngworth
1 Comment

With legalization rapidly increasing across states, the cannabis market is exploding. And with estimates of sales in the billions, it’s no surprise that greenhouses and grow rooms are emerging everywhere. As growers and extracting facilities continue to expand one important consideration that most tend to underestimate, is how flooring can impact both their production and product. Bare concrete is often a popular choice in cannabis facilities, as there are typically very minimal costs−if any at all−associated with preparing it for use. However, concrete floors can pose unique challenges when left untreated, which could inadvertently create unforeseen problems and unexpected costs.

Understanding the Risks of Bare Concrete Flooring

Whether a facility is growing or extracting, the proper flooring can play a critical role in helping maintain optimal safety and sanitation standards, while simultaneously contributing to production. That’s why its important for growers and extractors to know and understand the potential risks associated with bare concrete.

Concrete is porous: While concrete is a solid material, people may forget that it is porous. Unfortunately, these pores can absorb liquids and harbor small particles that spill on the floor. They create perfect hiding places for bacteria and other pathogens to proliferate. Pathogens can then contaminate product within the facility, causing a halt on production, and/or a potential product recall. This can incur unexpected costs associated with shutdown time and loss of product.

Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Concrete can be damp: When in a facility with an untreated concrete floor, at times the slab can feel slightly wet or damp to touch. This is due to moisture within the concrete that can eventually work its way up to the surface of the slab. When this happens, items that are placed on top of the floor can be damaged by trapped moisture above the slab and below the object. When this happens, if a product is not protected properly, it can be damaged.

Concrete is dark and unreflective: An untreated concrete slab can often make a room feel dark and it does not reflect lighting within the room. This can result in the need for extra lights and electricity to properly grow cannabis.

Concrete lacks texture: When working in areas where water and other liquids can fall to the ground and accumulate, flooring with traction can play a key role in helping aid against slip and fall incidents. Untreated concrete typically does not provide sufficient texture and can become very slippery when wet.

The Benefits of Bare Concrete Flooring

While the previously mentioned risks can be associated with bare concrete flooring, there is an upside to the situation! Concrete is the perfect substrate for adding a coating that is built to withstand the industry’s demands.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

With the application of a fluid-applied or resinous floor coating, the risks of bare concrete flooring can be mitigated. There are a variety of resin and fluid-based coating systems that can be applied, such as:

  • Epoxy and Urethane Systems
  • Urethane Mortar Systems
  • Decorative Quartz Systems
  • Decorative Flake Systems

These durable coatings have numerous benefits and can offer:

  • Protection against the proliferation bacteria and other pathogens: Unlike porous concrete, a smooth and virtually seamless floor coating eliminates the little crevices where pathogens can grow. This in turn helps aid against the growth of bacteria, keeping hygiene standards at the forefront and grow rooms in full operations.
  • Protection against moisture damage: As moisture within the concrete can move upward to the surface of the slab, there are moisture mitigation coating systems, that keep it trapped below the surface, thus helping toprotect items placed on the floor.
  • Brighter spaces and light reflection: Installing a floor coating that is light in color, such as white or light gray, can help brighten any space. The benefits of this are twofold: First, it can help with visibility, helping employees navigate the space safely. Secondly, light reflectivity of the flooring improves lighting efficiency, resulting in fewer light fixtures and smaller electric costs.
  • Texture options to help aid against slip and fall incidents: Floor coating systems can offer a variety of texture options−from light grit to heavy grit−depending on how much accumulated water and foot traffic the area receives. Without additional texture in wet areas, slip and fall incidents and injuries are inevitable.
  • A wide range of colors and decorative systems: These coating systems can be designed to match the aesthetics of the building or corporate colors. Some manufacturers even offer color matching upon request. When it comes to colors, the options are virtually endless.

Choosing the Right Flooring: Considering Bare Concrete

Choosing the right flooring for a cannabis greenhouse or processing facility requires important consideration as every grow room and greenhouse is different. Bare concrete is a popular flooring option for manufacturing and processing facilities across industries, however, as discussed, it can pose unique challenges due to its innate nature. That said, by taking the right steps to ensure that the concrete substrate is properly sealed, it can then be an effective and hygienic flooring option, offering high durability and a longer life cycle.

Multi-Element Analysis Using ICP-MS: A Look at Heavy Metals Testing

By Cannabis Industry Journal Staff
No Comments

Across the country and across the world, governments that legalize cannabis implement increasingly rigorous requirements for laboratory testing. Helping to protect patients and consumers from contaminants, these requirements involve a slew of lab tests, including quantifying the levels of microbial contaminants, pathogens, mold and heavy metals.

Cannabis and hemp have a unique ability to accumulate elements found in soil, which is why these plants can be used as effective tools for bioremediation. Because cannabis plants have the ability to absorb potentially toxic and dangerous elements found in the soil they grow in, lab testing regulations often include the requirement for heavy metals testing, such as Cadmium, Lead, Mercury, Arsenic and others.

In addition to legal cannabis markets across the country, the USDA announced the establishment of the U.S. Domestic Hemp Production Program, following the enactment of the 2018 Farm Bill, essentially legalizing hemp. This announcement comes with information for hemp testing labs, including testing and sampling guidelines. While the information available on the USDA’s website only touches on testing for THC, required to be no greater than 0.3% dry weight concentration, more testing guidelines in the future are sure to include a discussion of heavy metals testing.

Table 1. ICP-MS operating conditions (shaded parameters were automatically optimized during start up for the HMI conditions).

In an application note produced by Agilent Technologies, Inc., the Agilent 7800 ICP-MS was used to analyze 25 elements in a variety of cannabis and hemp-derived products. The study was conducted using that Agilent 7800 ICP-MS, which includes Agilent’s proprietary High Matrix Introduction (HMI) system. The analysis was automated  by using the Agilent SPS 4 autosampler.

Instrumentation

The instrument operating conditions can be found in Table 1. In this study, the HMI dilution factor was 4x and the analytes were all acquired in the Helium collision mode. Using this methodology, the Helium collision mode consistently reduces or completely eliminates all common polyatomic interferences using kinetic energy discrimination (KED).

Table 2. Parameters for microwave digestion.

As a comparison, Arsenic and Selenium were also acquired via the MassHunter Software using half-mass correction, which corrects for overlaps due to doubly charged rare earth elements. This software also collects semiquantitative or screening data across the entire mass region, called Quick Scan, showing data for elements that may not be present in the original calibration standards.

SRMs and Samples

Standard reference materials (SRMs) analyzed from the National Institute of Standards and Technology (NIST) were used to verify the sample prep digestion process. Those included NIST 1547 Peach Leaves, NIST 1573a Tomato Leaves and NIST 1575 Pine Needles. NIST 1640a Natural Water was also used to verify the calibration.

Figure 1. Calibration curves for As, Cd, Pb, and Hg.

Samples used in the study include cannabis flower, cannabis tablets, a cannabidiol (CBD) tincture, chewable candies and hemp-derived cream.

Sample Preparation

Calibration standards were prepared using a mix of 1% HNO3 and 0.5% HCl. Sodium, Magnesium, Potassium, Calcium and Iron were calibrated from 0.5 to 10 ppm. Mercury was calibrated from 0.05 to 2 ppb. All the other elements were calibrated from 0.5 to 100 ppb.

Table 3. Calibration summary data acquired in He mode. Data for As and Se in shaded cells was obtained using half mass correction tuning.

After weighing the samples (roughly 0.15 g of cannabis plant and between 0.3 to 0.5 g of cannabis product) into quartz vessels, 4 mL HNO3 and 1 mL HCl were added and the samples were microwave digested using the program found in Table 2.

HCI was included to ensure the stability of Mercury and Silver in solution. They diluted the digested samples in the same acid mix as the standards. SRMs were prepared using the same method to verify sample digestion and to confirm the recovery of analytes.

Four samples were prepared in triplicate and fortified with the Agilent Environmental Mix Spike solution prior to the analysis. All samples, spikes and SRMs were diluted 5x before testing to reduce the acid concentration.

Calibration

Table 4. ICV and CCV recovery tests. Data for As and Se in shaded cells was obtained using half mass correction tuning.

The calibration curves for Arsenic, Cadmium, Lead and Mercury can be found in Figure 1 and a summary of the calibration data is in Table 3. For quality control, the SRM NIST 1645a Natural Water was used for the initial calibration verification standard.  Recoveries found in Table 4 are for all the certified elements present in SRM NIST 1640a. The mean recoveries and concentration range can also be found in Table 4. All the continuing calibration solution recoveries were within 10% of the expected value.

Internal Standard Stability

Figure 2 highlights the ISTD signal stability for the sequence of 58 samples analyzed over roughly four hours. The recoveries for all samples were well within 20 % of the value in the initial calibration standard.

Figure 2. Internal standard signal stability for the sequence of 58 samples analyzed over ~four hours.

Results

In Table 5, you’ll find that three SRMs were tested to verify the digestion process. The mean results for most elements agreed with the certified concentrations, however the results for Arsenic in NIST 1547 and Selenium in both NIST 1547 and 1573a did not show good agreement due to interreferences formed from the presence of doubly-charged ions

Table 5. Mean concentrations (ppm) of three repeat measurements of three SRMs, including certified element concentrations, where appropriate, and % recovery.

Some plant materials can contain high levels of rare earth elements, which have low second ionization potentials, so they tend to form doubly-charged ions. As the quadrupole Mass Spec separates ions based on their mass-to-charge ratio, the doubly-charged ions appear at half of their true mass. Because of that, a handful of those doubly-charged ions caused overlaps leading to bias in the results for Arsenic and Selenium in samples that have high levels of rare earth elements. Using half mass correction, the ICP-MS corrects for these interferences, which can be automatically set up in the MassHunter software. The shaded cells in Table 5 highlight the half mass corrected results for Arsenic and Selenium, demonstrating recoveries in agreement with the certified concentrations.

In Table 6, you’ll find the quantitative results for cannabis tablets and the CBD tincture. Although the concentrations of Arsenic, Cadmium, Lead and Cobalt are well below current regulations’ maximum levels, they do show up relatively high in the cannabis tablets sample. Both Lead and Cadmium also had notably higher levels in the CBD tincture as well.

Table 6. Quantitative data for two cannabis-related products and two cannabis samples plus mean spike recovery results. All units ppb apart from major elements, which are reported as ppm.

A spike recovery test was utilized to check the accuracy of the method for sample analysis. The spike results are in Table 6.

Using the 7800 ICP-MS instrument and the High Matrix Introduction system, labs can routinely analyze samples that contain high and very variable matrix levels. Using the automated HMI system, labs can reduce the need to manually handle samples, which can reduce the potential for contamination during sample prep. The MassHunter Quick Scan function shows a complete analysis of the heavy metals in the sample, including data reported for elements not included in the calibration standards.

The half mass correction for Arsenic and Selenium allows a lab to accurately determine the correct concentrations. The study showed the validity of the microwave sample prep method with good recovery results for the SRMs. Using the Agilent 7800 ICP-MS in a cannabis or hemp testing lab can be an effective and efficient way to test cannabis products for heavy metals. This test can be used in various stages of the supply chain as a tool for quality controls in the cannabis and hemp markets.


Disclaimer: Agilent products and solutions are intended to be used for cannabis quality control and safety testing in laboratories where such use is permitted under state/country law.

european union states

Safeguarding Your International Supply Chain: The Brave New World Of Cannabis Compliance

By Marguerite Arnold
No Comments
european union states

The CannTrust story may have shocked the uninitiated, but it hit almost every bogeyman the legitimizing industry has both feared and suffered from, particularly of late.

Here, generally, is the issue. Especially in Europe (even more especially in places like Germany, the UK and other emerging markets), budding cannapreneurs need each other. A distributor in Germany, for example, cannot get their final (federal) licenses allowing them to do business without establishing a relationship with an existing producer. That producer also needs relationships with established distributors to get their licenses.

In a fraught world, where all parties are evolving rapidly (and this also includes the “Big Boys” from Canada and several U.S. states including California), supply chain logistics, and even contract agreements if not licensing beyond that requires a level of honesty, integrity and transparency the industry, largely has not achieved yet.

That said, there are also parties, if not individuals and companies determined to set themselves on the straight and narrow – and play by the emerging “rules” – and then there are also clearly companies which, well, do not.

Being out of compliance, at any step of the chain, including when your product is sold via government agencies, is already a recipe for disaster.What this brave new world of cannabis requires, however, and from everyone – from grower, to manufacturer, packager, distributor and service delivery – is that all ecosystem partners must be in compliance.

Ensuring that can be a full time job. But what it also means is that to have a fully compliant product, every party in the chain bears responsibility for upholding standards that so far have proved hard to reach for many.

The time has come, in other words, where that is no longer an option.

The First Step Is Certification…

GMPIn a world where every member of the diverse cannabis ecosystem requires certification, determining what, and from whom is the first hurdle – both for buyer and seller. If one has GMP-certified product, that is awesome. But there are also treaties in the room that only allow some GMP certifications to be considered equal to others. If you are in Lesotho right now, for example, far from Europe, your biggest concern is not just looking to the EU but figuring out a way to export your crop into your neighbouring (and surrounding) country – namely South Africa.

This example, while seemingly far away, in fact, is the biggest bugbear in determining who can sell to whom even within Europe (let alone countries just outside and far beyond the region).

Determining cert presence, if not validity, however, is only the tip of the iceberg. And depending on who you are, that path alone is not a one time dalliance with authorities, but multiple certifications that must all also be kept current.

But It is Not The Only One…

The second hurdle, of course, is also checking the verity of everyone you do business with. For a producer, this includes making sure that processing, packaging, and even transportation are in compliance. In Canada, of course, this has been short circuited by the ability of producers to ship directly to patients.

In Europe, however, this is far from the case. And that is also why the entire conversation is also getting not only much more granular, but expensive. Pharmaceutical regulations are actually what guide the rules of the road here.

european union statesWalking floors, and checking, in person, may or not be mandated by international treaties at this point. However, most of the young producers on the ground here are implementing policies of personal visits to their vendors. In Massachusetts of late, this is also on the drawing board. Albeit on a “state” level, the reality is that both federal, state and more local training is a watchword, if not a must, now on the roadmap.

Being out of compliance, at any step of the chain, including when your product is sold via government agencies, is already a recipe for disaster.

And while that obviously is a challenge, companies must step up to the plate internally to commit to the same. It is too dangerous to ignore such steps. Including the easy to reach ones, like staff background checks and decent cybersecurity safeguards. The former has blown several enterprising cannadudes out of the driver’s seat already in Europe over the last few years. The latter is an emerging threat in a region that is also home to GDPR regulation (and growing fines).

For that very reason, certainly on the ground in Germany if not across Europe and in those countries and companies that wish to supply the same, supply chain verification, that is constant, consistent and verifiable, is the path for the industry both as of now and in the immediate future.

Arizona Still Doesn’t Require Lab Testing, But That Could Change Soon

By Aaron G. Biros
2 Comments

As of today, Arizona is the only state in the country that has legalized medical cannabis but does not require producers to test their medical cannabis. States throughout the country that legalize medical cannabis routinely implement regulations that require third-party, independent lab testing to protect patient and consumer safety. Arizona legalized medical cannabis for a number of qualifying conditions back in 2011, but still has no measure like other states to protect patient safety.

Lawmakers in Arizona now have the opportunity to change that with SB1494, which passed unanimously through the state’s Senate back in March of 2019. According to the Arizona Cannabis Laboratory Association (ACLA), the bill awaits action in the House of Representatives. The ACLA says in a press release that “supporters of the bill are calling on lawmakers to move on a bill that unanimously passed in the Senate earlier this year.” The bill would require producers to use independent, third-party labs to test cannabis for things like harmful toxins and molds.

Ryan Tracy, co-founder of the ACLA and founder/CEO at C4 Labs.

According to Ryan Treacy, co-founder of the ACLA and CEO/Founder of C4 Laboratories, the ACLA was formed for a few important reasons: “We feel it is very important that we encourage and cultivate a professional and collaborative rapport among the reputable Arizona cannabis labs,” says Treacy. “So that we can call upon the collective groups’ years of experience to help provide insight and suggestions on how we as a group can insure the most accurate and consistent results for our clients throughout the state and ultimately their patients.” Treacy went on to add that it is particularly important their collective voice be heard at the State Capitol as lawmakers work towards passing SB 1494.

“There isn’t any reason to wait for someone to get sick before the legislature passes this bipartisan bill. Let’s get it done!”George Griffeth, President of the ACLA, says there is a sense of urgency in passing this bill before the voters decide on legalizing recreational adult-use cannabis next year. “Everyone agrees that now is the time to be proactive to protect patients from unsafe contaminants,” says Griffeth. “Currently 61 tons of medical marijuana is consumed by patients and many believe that the number of people using the medicine will continue to grow. With a ballot initiative related to the recreational use of marijuana facing voters next year, Arizona must act now to make sure standards are in place.”

They say the bill has bipartisan support and many stakeholders in Arizona’s cannabis industry express support for it as well. For Ryan Treacy, he is worried about patients consuming harmful chemicals and toxins. “My colleagues and I are deeply concerned that more than two-hundred thousand people who use medical marijuana could be inadvertently exposing themselves to toxic chemicals, E. Coli, Salmonella or mold,” says Treacy. “There isn’t any reason to wait for someone to get sick before the legislature passes this bipartisan bill. Let’s get it done!”

Treacy says this bill is particularly difficult to pass because the original measure to legalize medical cannabis was a ballot initiative. That means the bill needs 75% support in both the House and the Senate in order to amend the original measure. “The passing of this bill would be a huge win for the patients and will help to ensure honesty and transparency for those that operate in the current medical cannabis program here in AZ,” says Treacy. “This testing bill is also written with legislative intent to cover any and all future adult use or recreational use legislative laws or ballot initiatives. We hope to have a final verdict on this bill by end of this week or early next.”

german flag

German Cultivation Bid Appears To Have Three Finalists

By Marguerite Arnold
No Comments
german flag

The Frankfurt-based newspaper Handelsblatt Zeitung is reporting that three Canadian firms (actually two Canadians and a German start-up cofounded by another Canadian company) have now been selected as the first cannabis cultivation bid finalists, however insiders on the ground say that this is not necessarily a final decision.

A Berlin-based subsidiary of Wayland in Germany called Demecan, along with Aphria and Aurora have all been named as bid finalists pending a normal review period.

However, there are other complications still looming. This is far from over.

The first issuance of the bid in 2017 went down in court over a technical fault on the part of the issuing agency. The current iteration was posted last summer and saw its application moved several times because of further legal challenges.

As Peter Homburg, partner and head of the European Cannabis Group at Dentons said when contacted by Cannabis Industry Journal, “This is of course not an official announcement. I have a tendency to believe that others involved in the tender process historically may well challenge this decision.”

BfArM, the federal German agency in charge of the cannabis cultivation tender process, did not respond to a request for a comment as of press time.

The Decision Is Far From Over

Here are the basic challenges still ahead:

There is a lawsuit pending against the bid itself from applicants that has yet to be decided. The Klage (formal hearing in court) is due next week. If that does not derail the process, here are the next considerations.

While all three firms named in the bid have international reputations, there are some pending questions.

Wayland is far ahead of the other two firms in terms of production capability in the country. Their facility in eastern Germany has just been certified GMP standard – which means they are qualified to produce the quality of flower required for medical consumption. This news is also far from a surprise.

As Ben Ward, CEO of Wayland Group, commented when contacted by CIJ for a response via email: “At Wayland, we believe in meaningful partnerships, investing in Germany from day one, demonstrating a long-term commitment to the market,” says Ward. “Wayland GmbH is a German company, operated by Germans, existing in Dresden and Munich and is committed to this market. The companies awarded lots received the allocation based on a rigorous application process, not media sensation.”

Of all the Canadian firms, in fact, despite its lack of high-flying stock price, Wayland has made the most concerted effort to show its commitment to producing in Germany by a large investment of capital and expertise. Further, the firm has shown itself to be the most culturally sensitive to German culture, including hiring a female member to the board (a hot topic far from the cannabis industry). However, there are other issues looming. On the same day that Wayland issued a press release announcing its position in the bid, it also issued one announcing the merger talks with ICC had failed.

The second is that Aphria’s main cultivation center in Canada is not EU-GMP certified although they have applied for the same and now also own one of Germany’s largest distributors (with approximately a 6% market share).

Other firms not only kicked off the entire cannabis discussion in Germany, but have established GMP-compliant facilities both in Canada and across Europe, namely Canopy Growth, which was widely believed to have also applied to the second tender. However prevailing rumours about a Canadian “crop failure” in British Columbia (described by the company as a deliberate destruction of plants created by delays in the licensing process) last fall may have also played a role in the German decision.

Canopy_Growth_Corporation_logoAurora is also in interesting waters. Having distinguished itself as Canopy’s closest rival across Europe, winning significant kudos in Denmark, Italy, Poland and Luxembourg last year, the company is also clearly not “just” a medical cannabis company and apparently was refused an opportunity to go public on the Deutsche Börse last fall. The selection of the firm by BfArm for the bid in a situation where the company is on a watch list created by the stock market regulatory agency in Frankfurt is also an intriguing one. Especially given the company’s announcement of its Polish success on the same day as the decision to import was announced, and the fact that so far it is the only Canadian cannabis company to successfully import to Luxembourg.

And The Import Game Is Just Getting Hot…

The unsurprising news that the bid appears to be moving forward is actually not the hottest news in Europe right now. The reality on the ground is already shifting. Several weeks ago, a Frankfurt-based distribution start-up announced that they had successfully imported cannabis into the country from Macedonian-based Nysk Holdings via Poland.

At the International Cannabis Business Conference (ICBC) in Berlin last weekend, Australian producers (for one) were also reporting a German demand for their product that was greater than they could fill. And there were many Israelis present for what is expected to be an official opening of their import ability by the third quarter of this year.

Price Wars Are Looming

The bid itself is going to have a powerful impact on pricing in both the German and European market beyond that. It represents the first time in any country that a government has attempted to pre-negotiate prices for the drug as a narcotic beyond Israel and in this case, it will have at least regional implications.

aurora logoAt the same time, it is also clear that producers like Nysk and beyond them, Israeli and Australian firms (in particular) are actively finding ways to have their product enter the country- and further at prices that are catching the Canadians on the hop. Indeed Aurora is reporting that it actually lowered its “usual” prices to win European contracts which have been reported as being 3.2 euros a gram in Italy and 2.5 euros a gram in Luxembourg.

To put this in perspective, this is a range of about CA$3-5 a gram of flower which is also well below what Canopy (for one) has reported selling its product even to recreational users in Canada and significantly below medical export prices as reported by recent company corporate reports.

Wayland in contrast, is reporting that its production price in Germany will be at least a euro-per-gram cheaper than this. Or in other words, more in line with prices expected to be generated from both the bid itself and the cannabis now entering the country from other sources.

And of course, this is only the first of what is expected to be a series of new tenders. The original amount, itself increased in the two years the issue has been pending, is clearly not enough to even begin to meet demand as proved by the levels of competitively priced imports now entering the country.

Beyond questions about whether this time the tender will actually stand, are those now pending about new ones potentially in the offing – and not just in Germany but across Europe as cannabis continues to see a very green spring.