Tag Archives: surface

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 2

By Phil Gibson
No Comments

This is Part 2 in The 3-Legged Stool of Successful Grow Operations series. Click here to read Part 1 and stay tuned for Part 3 coming next week.

Aeroponic and hydroponic systems use zero-soil, so water is effectively our media and our transport mechanism for nutrition. Ideally, you start with clean, fresh water with “nothing” in it. Nothing in this case means no heavy metals, pesticides, bacteria or pathogens. There are some scary words in there so let’s talk through the best ways to get to “nothing.”

The first place to start is by testing your source water, whether it is surface, well or municipal water. This will give you an initial idea of how “empty” your water is. Water supplies shift over time, so it is also a very important input to monitor over time with annual or bi-annual testing. Clean water is the essence of success for aeroponics and a great way to lower your cost of production. With proper design and management, you can recycle and reuse 95%+ of the water you draw into your facility.

Reverse Osmosis (RO)

Mothers to clones: Happy clones, it’s all about the water

RO is the most common way to clear your incoming water. The process uses pressure filtration by forcing your water through a series of filters or meshes that block or extract large particles, organics and metals. Normally this is 98%-99% efficient. These systems do require attention and maintenance as they do have filters that are required to be changed regularly depending on the clarity of your original water source and the type of material filtered. This accomplishes a lot of your water clearing process to empty the balloon, but it does not clear the pesky biologicals or pathogens. RO is covered in detail in our “You are what you drink” webinar so look that over for a deeper explanation. There are a wide range of relatively low-cost suppliers based on capacity and filtration efficiency. From an operations standpoint, the key is to understand the filter replacement cycle and cost of replacement.

Ultraviolet Light (UV)

UV light can be used to clear organics and pathogens from water. The primary use is to clear origin water but it is also especially important for recovered water that you save from the humidity in your grow rooms. More on this below. One has to be cautious about the use of UV light. It will cause sunburn and eye damage with exposure so handle this resource with care. After RO & UV treatment, input water should be an empty balloon ready for the addition of your perfect nutrient salt recipe. There are a wide range of low-cost UV lighting solution suppliers from which to choose and they are easy to find.

Dehumidification & Recovery (DEHU)

Early root follicles: Reaching for first nutrients

The number one way to conserve water in an accelerated growth aeroponic grow room is to recapture the humidity that is transpired into the air as the plants grow. While DEHU water is effectively distilled water (or clear of particulates), it can be full of healthy little bacteria or pathogens than may be transported through air or residing in the equipment filters. Clearing these with UV light normally makes this water directly reusable in your fertigation systems. Not all dehumidifiers are perfect. Some metals used in their construction can leach into the recovered water, so this is worth a deeper look as you create your complete water system. Air treatment suppliers are covered in Part 1 of this series.

Used Fertigation Water, or “Flush”

At the start of the flower cycle, take your clean water (the empty balloon) and add your perfect nutrient salt flower recipe and deliver it to your plants. Over the grow cycle from flower to harvest, your plants will use portions of your nutrients and your balloon contents will drift from your target recipe you’re your desired cycle, clear or flush your reservoirs and reset your recipe by refilling your balloon to your exact targets. The exiting nutrient-rich “flush” water can also be recycled into your source water feed since the salts and metals present can be cleared from the mixture through the same RO process that your source water goes through. The end result is perfectly good recycled water savings.

Oxygen Reduction Potential (ORP)

Healthy roots reach for water: Early veg when plants get rolling

ORP is a measurement of an oxidizing agent. Oxidizing solutions are a common and inexpensive method of disinfecting water before and during use in hydroponic systems. Oxidizers can be used to monitor and deal with the “cleanliness” of a nutrient water solution while it is in use. Several oxidizing agents exist with the most common being: hydrogen peroxide, chlorine, ozone and chlorine dioxide. The characteristics of each of these agents and how they interact with the organic matter in solutions is different. The ideal concentrations to use in each situation to kill or control pathogens is unique and one of the topics covered by our “Letters from the AEssenseGrows plant science team” on our website. That deep dive is the subject of another paper.

When you take all of these subjects together and they are done right, you should be able to recycle 95% of your source water with a professional water treatment & recycling system.

Here, I would like highlight the ultimate water hero: Ashley Hubbard, director of cultivation at RAIR Cannabis. For a quick tour of her water treatment and recovery room, see here. No one that I know manages water better than RAIR Cannabis and Ashley leads the team there.

To download the complete guide and get to the beef quickly, please request the complete white paper Top Quality Cultivation Facilities here.

Stay tuned for Part 3 coming next week where we’ll discuss The Right Build Out.

Beyond Compliance: Understanding and Combating Contamination

By Jill Ellsworth MS, RDN, Tess Eidem, Ph.D.
No Comments

As an emerging field in cannabis, contaminant testing remains a gray area for many businesses. The vast differences in state-by-state regulations, along with the frequent changes of previously established rules make testing a difficult, time-consuming process. But at its core, the science and reasoning behind why we test cannabis is very clear – consumer safety and quality assurance are key factors in any legal, consumer market. The implications of federal legalization make cannabis testing even more important to the future of the cannabis supply chain. Understanding the types of contaminants, their sources and how to prevent them is essential to avoiding failures, recalls and risking consumer safety.

When talking about cannabis contaminant testing there are four groups of contaminants: pesticides, heavy metals, foreign materials and microbes. The microbes found on cannabis include plant pathogens, post-harvest spoiling microbes, allergens, toxin release and human pathogens. While all of these can be lurking on the surface of cannabis, the specific types that are tested for in each state vary widely. Understanding the full scope of contaminants and looking beyond state-specific compliance requirements, cultivators will be able to prevent these detrimental risks and prepare their business for the future.

Environmental controls are essential to monitor and regulate temperature and humidity

Beyond just the health of the plant, both medical patients and adult use consumers can be adversely affected by microbial contaminants. To immunocompromised patients, Aspergillus can be life-threatening and both adult use and medical consumers are susceptible to allergic reactions to moldy flower. But Aspergillus is just one of the many contaminants that are invisible to the human eye and can live on the plant’s surface. Several states have intensive testing regulations when it comes to the full breadth of possible harmful contaminants. Nevada, for example, has strict microbial testing requirements and, in addition to Aspergillus, the state tests for Salmonella, STEC, Enterobacteriaceae, coliforms and total yeast and mold. Over 15 states test for total yeast and mold and the thresholds vary from allowing less than 100,000 colony forming units to allowing less than 1,000 colony forming units. These microbes are not uncommon appearances on cannabis – in fact, they are ever-present – so understanding them as a whole, beyond regulatory standards is a certain way to future-proof a business. With such vast differences in accepted levels of contamination per state, the best preparation for the future and regulations coming down the pipeline is understanding contamination, addressing it at its source and harvesting disease-free cannabis.

The risk of contamination is present at every stage of the cultivation process and encompasses agricultural practices, manufacturing processes and their intersection. From cultivation to manufacturing, there are factors that can introduce contamination throughout the supply chain. A quality control infrastructure should be employed in a facility and checkpoints within the process to ensure aseptic operations.

Microbial monitoring methods can include frequent/consistent testing

Cultivators should test their raw materials, including growing substrates and nutrient water to ensure it is free of microbial contamination. Air quality plays an important role in the cultivation and post-harvest processes, especially with mold contamination. Environmental controls are essential to monitor and regulate temperature and humidity and ensure unwanted microbes cannot thrive and decrease the value of the product or make it unsafe for worker handling or consumers. Developing SOPs to validate contact surfaces are clean, using proper PPE and optimizing worker flow can all help to prevent cross-contamination and are part of larger quality assurance measures to prevent microbes from spreading across cultivars and harvests.

Methods of microbial examination include air quality surveillance, ATP surface and water monitoring, raw materials testing, and species identification. Keeping control of the environment that product is coming into contact with and employing best practices throughout will minimize the amount of contamination that is present before testing. The solution to avoiding worst case scenarios following an aseptic, quality controlled process is utilizing a safe, post-harvest kill-step, much like the methods used in the food and beverage industries with the oversight of the FDA.

The goal of the grower should be to grow clean and stay clean throughout the shelf life of the product. In order to do this, it is essential to understand the critical control points within the cultivation and post-harvest processes and implement proper kill-steps. However, if a product is heavily bio-burdened, there are methods to recover contaminated product including decontamination, remediation and destroying the product. These measures come with their own strengths and weaknesses and cannot replace the quality assurance programs developed by the manufacturer.

plantsjacques

Optimizing Your LED Spectrum for Leaf Surface Temperature

By Andrew Myers
5 Comments
plantsjacques

Every detail counts at an indoor grow facility. Indoor growers have complete control over nearly every aspect of their crop, ranging from light intensity to air circulation. Among the most important factors to regulate is temperature. While ambient air temperature is critical, growers will also want to measure leaf surface temperature (LST).

To illustrate, let’s say you keep your living room at a cozy 76 degrees. Then, if you place a thermometer under your tongue – your body is (hopefully) not at 76 degrees but is likely between a healthy temperature of 97 to 99 degrees.

A similar story can be told for cannabis plants grown indoors. A grow facility’s ambient air is often different than the plants’ LST. Finding an ideal LST for plant growth can be complex, but modern technology, including spectrally tunable LED grow lights, can simplify monitoring and maintaining this critical aspect.

Why Should Growers Care About LST?

Temperature plays a pivotal role in plant health. Many biochemical reactions contributing to growth and survival only occur within an ideal temperature range. If temperatures dip or spike dramatically, growers may witness inhibited growth, plant stress or irreversible damage to their crops.

The leaf is among the most important plant structures as it’s where most metabolic processes happen. Therefore, finding an optimum LST can improve growth rate and the production of metabolites such as pigments, terpenes, resins and vitamins.

Because many plants rely on their leaves for survival, it makes sense that leaves have their own temperature regulation system. Evaporation through pores in the leaf – known as stomata – can cool the plant through a process called transpiration. Up to 90% of water absorbed is used for transpiration, while 10% is used for growth.

The efficacy of transpiration is determined by the vapor pressure deficit (VPD), which refers to the relative humidity in the ambient air compared to the relative humidity in the leaf. If relative humidity is low, the VPD can be too high, which may cause plants to have withered, leathery leaves and stunted growth. On the other hand, a low VPD correlates to high relative humidity, and can quickly result in disease and mineral deficiencies. Higher humidity often results in a higher LST as transpiration may not be as effective.

When it comes to LST, growers should follow these basic guidelines:

  • Most cannabis plants’ LST should fall between 72 and 86 degrees – generally warmer than the ambient air.
  • LST varies depending on individual cultivar. For example, plants that have evolved in colder climates can generally tolerate cooler temperatures. The same can be said for those evolved in equatorial or temperate climates.
  • CO2 availability also plays a role in LST; CO2 generally raises the target temperature for photosynthesis.

How Does Light Spectrum Affect LST?

We know that CO2 concentration, specific genetic markers and ambient temperature all play an important role in moderating LST. But another important factor at an indoor grow is light spectrum – especially for those using spectrally tunable LEDs. Growers will want to optimize their light spectrum to provide their crop with ideal conditions.

A combination of red and blue wavelengths is shown to have the greatest impact on photosynthesis and, thus, LST. Photons found along the green and yellow wavelengths may not be absorbed as efficiently and instead create heat.

solsticegrowop_feb
Indoor cultivator facilities often use high powered lights that can give off heat

Optimized light spectrums – those with an appropriate balance between red and blue light – create more chemical energy instead of heat, thereby resulting in a lower LST. Using fixtures that are not spectrally tuned for plant growth, on the other hand, can waste energy and ultimately contribute to a higher LST and ambient temperature, negatively affecting plant growth. Consequently, measuring LST doesn’t only indicate ideal growing conditions but also indirectly illustrates the efficiency of your grow lights.

LED fixtures already run at a lower temperature than other lighting technologies, so indoor growers may need to raise the ambient temperature at their grow facilities to maintain ideal LST. Switching to spectrally tuned LEDs may help growers cut down on cooling and dehumidifying costs, while simultaneously improving crop health and productivity.

What’s the Best Way to Measure LST?

There are several tools available for growers to measure LST, ranging from advanced probes to specialty cameras. However, many of these tools provide a reading at a specific point, rather than the whole leaf, leading to some inaccuracies. Temperature can dramatically vary across the leaf, depending if parts are fully exposed to the light or in the shadows.

Investing in a forward-looking infrared camera (FLIR) gives indoor growers a more accurate picture of LST and light efficiency. That being said, growers should not only measure leaves at the top of the plant, but across the middle and bottom of the plant as well. That way, growers receive a complete snapshot of growing conditions and can make changes as needed.

At an indoor grow facility, it’s not enough to only measure ambient room temperature. Of course, this aspect is important, but it will paint an incomplete picture of plant health. Measuring LST gives growers nuanced insights as to how plants respond to their environment and how they can better encourage resilient, healthy growth.

Using spectrally tunable LEDs makes achieving LST easier and more cost-effective. Lights with optimized spectrums for plant growth ensure no energy is wasted – resulting in superior performance and efficiency.

The Power of Prevention: Pathogen Monitoring in Cannabis Cultivation and Processing Facilities

By Nathan Libbey
2 Comments

As the cannabis market matures and the value chain becomes modernized, it’s important to address product safety in a comprehensive way. In other areas of manufacturing, Hazard Analysis & Critical Control Points (HACCP) has been the standard for reducing hazards both for employees and for the products themselves. A Critical Control Point (CCP) is any spot from conception to consumption where a loss of control can potentially result in risk (Unnevehr, 1996). In the food realm, HACCP has been used to drive quality enhancements since the 1980s (Cichy, 1982).

In a nutshell, HACCP seeks to help identify where a problem may enter a product or environment and how that problem may be addressed before it escalates. In cannabis, these hazards include many of the same problems that food products have: specifically molds, yeasts, and pathogenic bacteria (Listeria, E. coli, etc.). While the current industry standard is to test products at the end stage for these contaminants, this late-stage pass/fail regimen leads to huge lots of destroyed product and a risk for consumer distrust (Yamashiro, 2019). HACCP, therefore, should be applied at every stage of the production process.

Pathogen Environmental Monitoring (PEM) is a tool that can be used to identify CCPs in a cannabis cultivation or processing facility. The main goal of a PEM program is to find a contaminant before it reaches a surface that touches the product or the product itself. PEM is conducted using a pre-moistened swab or a sponge to collect a sample from the cannabis environment. The swab can then be sent to a lab for microbial testing. Keys to an effective PEM are:

1. Start with a broad stroke – When the FDA comes to a facility suspected of producing pathogen-laced food products, they conduct what is known as a Swab-a-thon. A Swab-a-thon is a top to bottom collection of samples, usually totaling 100 or more. Similarly, preemptively swabbing should be the first step in any PEM—swab everything to see what exists as a baseline.

2. Map your scene – identify on a map of your facility the following:

  • Cannabis contact surfaces (CCS) (belts, clippers, tables, etc)
  • Non-cannabis contact surfaces (Non-CCS) (floors, lighting, drains, etc)
  • Flow of air and people (where do air and people enter and where do they go?

Identifying the above zones will help deepen your understanding of where contaminants may come into contact with cannabis and how they may migrate from a Non-CCS to a CCS. 

3. Plan and execute:

  • Based on the results of mapping, and Swab-a-thon, identify where and when you will be collecting samples on a consistent and repeatable basis. Emphasis should be placed on areas that are deemed a risk based on 1) and 2). Samples should be collected at random in all zones to ensure comprehensive screening.

4. Remediate and modify:

  • If you get a positive result during PEM, don’t panic—pathogens are ubiquitous.
  • Remediate any trouble spots with deep cleaning, remediation devices or other protocols.
  • Re-test areas that were positive for pathogens to ensure remediation is successful.
  • Revisit and modify the plan at least once a year and each time a new piece of equipment is added or production flow is otherwise changed.

The steps above are a good starting point for a grower or processor to begin a PEM. Remember that this is not a one-size-fits-all approach to safety; each facility has its own unique set of hazards and control points.

Comprehensive guides for PEM can be found at the links below, many of the concepts can be applied to cannabis production.


https://affifoodsafety.org/lcp/advanced-search/

http://www.centerforproducesafety.org/amass/documents/document/263/Listeria%20Guidance%20UFPA%202013.pdf

Cichy, R. (1982). HACCP as a quality assurance tool in a commissary food-service system. International Journal of Hospitality Management, 1(2), 103-106.

Unnevehr, L., & Jensen, H. (1996). HACCP as a Regulatory Innovation to Improve Food Safety in the Meat Industry. American Journal of Agricultural Economics, 78(3), 764-769.

Yamashiro, C, & Baca, Y. (2019).  Prevent high-value cannabis crop loss with innovative environmental monitoring tool.

Cannabusiness Sustainability

Designing More Sustainable Cannabis Facilities

By Sophia Daukus
1 Comment

The topic of sustainability has grown in importance and priority for both consumers and regulators. From reducing emissions to lowering energy and water consumption, cannabis growing facilities face unique challenges when it comes to designing sustainable operations. Moreover, as the cannabis market grows and usage becomes more accepted, regulatory bodies will continue to increase the number of directives to help ensure the safety and quality of cannabis products.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

Ubiquitous throughout cannabis grow rooms and greenhouses, flooring can be easily overlooked, yet offers an economical way to create more sustainable facilities. Many of today’s grow rooms are located in old retrofitted warehouses or former industrial buildings that were designed without sustainability or environmental concerns in mind.

Combined with energy efficient lighting and more thoughtful water usage, flooring can help create a more efficient facility that not only improves business operations, but also contributes to a better bottom line.

Sustainability Challenges Facing Cannabis Facilities

Whether in an old warehouse space or a new structure designed from the ground up, cannabis businesses face unique operational challenges when it comes to sustainable best practices.

  • Energy Consumption: Like any indoor farm, lighting plays an important role in cannabis growing facilities. Traditional grow lights can utilize a large amount of electricity, putting a strain on the company budget as well as regional energy resources. Switching to highly-efficient LED lighting can help facilities reduce their consumption, while still maximizing crop yield.
  • Water Consumption: Among the thirstiest of flora, cannabis plants require consistent and plentiful watering for healthy and fruitful crop production.
  • Carbon Dioxide (CO2) Enrichment: In many cases, carbon dioxide is introduced into facilities to help enhance the growth of crops. However, this practice may pose safety and health risks for workers, the surrounding community and the planet at large. CO2 is a greenhouse gas known to contribute to climate change.

In order to head off upcoming regulatory restrictions, as well as to alleviate the mounting safety and health concerns, it behooves cannabis grow room managers and owners to explore alternatives for improving sustainability in their facilities.

Flooring Requirements for More Sustainable Cannabis Facilities

Spanning thousands or even hundreds of thousands of square feet throughout a facility, flooring can be a unique way to introduce and support sustainable practices in any grow room or greenhouse.

When seeking to improve operational efficiency and implementing the use of sustainable practices in cannabis facilities, look for flooring systems with the following characteristics:

  • Impervious Surfaces— Fertilizers, fungicides, and other chemicals can infiltrate porous unprotected concrete to leach through the slab matrix and into the soil and groundwater below. Non-porous flooring options, such as industrial-grade, fluid-applied epoxies and urethanes, are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.
  • Light-Reflective Finishes— Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms. By mirroring overhead lighting back upward, bright, light-reflective flooring can help minimize facilities’ reliance on expensive ceiling fixtures and electricity usage.
  • USDA, FDA, EPA, OSHA and ADA Compliancy— With cannabis industry regulations currently in flux, grow facilities that select food- and pharmaceutical-compliant flooring will be ahead of the game. Governing bodies in some states have already begun expanding the facility requirements of these sectors to the cannabis market.
  • Durable and Easy Care— Having to replace flooring every couple of years imposes high costs on businesses as well as the environment. Installation of many traditional types of flooring produces cut-off waste and requires landfill disposal of the old floor material. In contrast, by installing industrial-grade flooring systems that are highly durable and easy-to-maintain, facilities can count on long-term performance and value, while helping to minimize disposal costs and concerns.
Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Optimal flooring can help cultivation facilities reduce waste, improve the efficacy of existing lighting and lengthen floor replacement cycles for a better bottom line and a healthier environment. Additionally, having the right grow room floor can assist facilities in meeting regulatory requirements, help ensure production of quality products and improve the safety for consumers and staff.

Flooring Benefits for Employees and Consumers

Safety is paramount in any workplace. When it comes to the manufacture of foodstuffs and other consumed products, government oversight can be especially stringent. With the right compliant flooring in place, cultivation facilities can focus on the rest of their business, knowing that what’s underfoot is contributing to the safety of employees and their customers.

Here’s how:

  • Chemical Resistance— Floors can be exposed to a high concentration of chemicals, acids and alkalis in the form of fertilizers, soil enhancers and other substances. In processing locations, the proper disinfecting and sanitizing of equipment can require harsh solvents, detergents and chemical solutions, which can drip or spill onto the floor, damaging traditional flooring materials. It pays to select cannabis facility flooring with high chemical resistance to help ensure floors can perform as designed over the long term.
  • Thermal Shock Resistance— Optimal cannabis facility flooring should be capable of withstanding repeated temperature cycling. Slab-on-grade structures in colder climates may be especially vulnerable to floor damage caused by drastic temperature differences between a freezing cold concrete slab and the tropical grow room above. This extreme contrast can cause certain floor materials to crack, delaminate and curl away from the concrete substrate. The resulting crevices and uneven surfaces present trip and fall hazards to employees and leave the slab unprotected from further degradation. As an alternative, thermal shock-resistant floors, such as urethane mortar systems, furnish long-lived functionality even when regularly exposed to extreme temperature swings.
  • Humidity and Moisture Resistance— Traditional floor surfaces tend to break down in ongoing damp, humid environments. Cannabis facility flooring must be capable of withstanding this stress and more.
  • Pathogen Resistance— Undesirable microbes, fungi and bacteria can thrive in the moist, warm environments found in grow rooms. Floors with extensive grout lines and gaps provide additional dark, damp locations for pathogen growth. Fluid-applied flooring results in a virtually seamless surface that’s directly bonded to the concrete. Integral floor-to-wall cove bases can further improve wash down and sanitation.
  • Proper Slope and Drainage— Where food and/or pharmaceutical facility regulations have already been extended to cannabis operations, flooring is required to slope properly toward a floor drain. This prevents puddling, which can be a slip hazard as well as a microbe breeding ground. Unlike more typical materials, resinous flooring offers an economical solution for correcting floor slope wherever needed.

The Problems Presented by Traditional Flooring Options

Previously, cannabis growers often relied on traditional greenhouse-type flooring, including tamped down dirt floors, gravel or bare concrete. However, current and upcoming regulations are curtailing the use of these simple flooring options.

Growers often compare and contrast the benefits and value of traditional greenhouse flooring with more modern solutions, such as fluid-applied epoxy and urethane floors.

Dirt and gravel flooring offers little opportunity to properly sanitize, thus potentially inviting microorganism and pathogen invasion, contamination and costly damage. Growers who have turned to bare concrete floors face other concerns, including:

  • Unprotected concrete is inherently porous and therefore able to quickly absorb spilled liquids and moisture from the air. In addition, organic and synthetic fertilizers, fungicides, and chemicals can leach through the concrete floors, contaminating the groundwater, injuring the surrounding environment and wildlife.
  • Older slabs often lack an under-slab vapor barrier. Even in new construction, a single nail hole can render an under-slab barrier ineffective. In these situations, moisture from underneath the floor slab can move upward osmotically through the alkaline slab, leading to blistering and damage to standard commercial floor coverings.
  • Bare concrete floors can stain easily. These dark stains tend to absorb light instead of reflecting it, contributing to a potential increase in energy usage and cost.
  • The mold proliferation encouraged by the warmth and humidity of grow rooms can easily penetrate into the depths of unprotected slab surfaces, eventually damaging its structural integrity and shortening the usable life of the concrete.

While traditional greenhouse flooring options can initially seem less expensive, they frequently present long-term risks to the health of cannabis grow businesses. In addition, the performance of dirt, gravel and bare concrete floors runs counter to the industry’s commitment to reducing the carbon footprint of growing facilities.

Choosing Sustainable Grow Room Flooring

It’s no secret that the cannabis industry is undergoing enormous change and faces numerous environmental challenges. Luckily, optimal flooring options are now available to help growers economically increase their eco-friendly practices on many fronts. By focusing on quality resinous flooring, cannabis growers can get closer to meeting their sustainability goals, while simultaneously contributing to improved operation efficiency, enhanced yields and an increased bottom line.

Flooring Tips for Cannabis Growing Facilities

By Sophia Daukus
5 Comments

In the burgeoning cannabis market, grow facilities are facing more and more competition every day. New indoor cultivation enterprises are often being set up in formerly vacant industrial buildings and commercial spaces, while in other cases, companies are planning and constructing new grow facilities from the ground up. For all these establishments, continually lowering production costs while supplying the highest possible quality in ever-increasing yields is the way forward.

Whether in existing or new structures, concrete floors are ubiquitous throughout the majority of cannabis growing facilities. With the right treatment, these indoor concrete traffic surfaces can greatly contribute to a company achieving its operational objectives. Alternatively, insufficiently protected concrete floors can create annoying and costly barriers to accomplishing company goals.

Challenges in Cannabis Grow Facility Construction

As with any emergent industry, mainstream acceptance and market growth is bringing regulation to cannabis cultivation. Local governments are paying more attention to how cannabis growing facilities are constructed and operated. In addition to the standard business matters of building safety, employee working conditions and tax contributions, elected officials are increasingly under pressure from constituents to analyze the overall effect of grow facilities on their communities at large.

High consumption of energy for grow room lights and high water usage are just part of the equation. The temperature and humidity needs of a grow facility can be similar to that of an indoor swimming pool environment. While warmth and moisture are ideal for cannabis growth, they also provide the ideal conditions for the growth and proliferation of fungi and other undesirable microorganisms. Therefore, to help preserve plant health in the moist indoor climate, fumigation often comes into play.

Carbon dioxide (CO2) enrichment of grow room air, a common practice proven to increase crop yields, presents another set of safety and health considerations in dense urban environments.

Adding to these challenges, many cannabis grow facilities are producing plants destined for either pharmacological or nutritional use. This in itself demands scrutiny by regulators for the sake of the consuming public.

As a result, grow room managers and owners must stay informed about the evolution of the industry in terms of local and federal agency regulations concerning their facilities, their overall operation and their products.

Bare Concrete Floors in Grow Rooms

As a foundational construction material, concrete continues to lead the way in commercial and industrial construction. Despite the many advantages of concrete floors, when left unprotected they can present significant challenges specific to cannabis grow rooms.

  • Untreated, bare concrete is naturally porous, easily absorbing liquids and environmental moisture. Substances found in grow rooms, such as fertilizers, fungicides and other chemicals, can leach through the porous concrete floor slab into the soil and ground water. Whether organic or synthetic, concentrations of such substances can be highly detrimental to the surrounding environment.
  • Whether in an existing or newly constructed facility, it is not uncommon for the under-slab vapor barrier to be compromised during construction. When this occurs, moisture from the soil beneath the floor slab can enter the concrete and move osmotically upward, creating a phenomenon known as Moisture Vapor Transmission (MVT). The resulting moisture and moisture vapor tends to become ever more alkaline as it rises upward through the concrete slab. MVT can result in blistering, bubbles and other damage to floor coverings.
  • The warm temperatures, regular watering of plants and high relative humidity maintained within many grow rooms can contribute to a weakening of the structural integrity of unprotected grow room slabs.
  • Within the confined space of a grow room, the warm, moist air invites microbe proliferation. Food and pharmaceutical plants are high on the priority list when it comes to facility hygiene levels, as demanded by code.

Public health guidelines for cannabis cultivation facilities in various parts of the country are increasingly mirroring those of food processing. Typical requirements include having smooth, durable, non-absorbent floor surfaces that are easily cleaned and in good repair, possessing proper floor slope towards a sanitary floor drain, with no puddling, as well as an integral floor-to-wall cove base. These directives cannot be met with bare concrete alone.

Optimal Grow Room Flooring Performance

In some locations, cannabis growing facilities are already subject to strict building codes and regulations. This will no doubt be spreading to other regions in the near future. For example, the Public Health Agency of Los Angeles County publishes construction guidelines to ensure cannabis facility floors meet standards mirroring the food processing and pharmaceutical manufacturing industries, where sanitation, facility hygiene and safety are paramount. In these types of facilities, bare, unprotected concrete floor slabs are not allowed as a general rule, due to the material’s innate porosity and absorbency.

Flooring in grow rooms, like in their food and pharma industry counterparts, should optimally:

  1. Provide a monolithic and virtually seamless surface to help eliminate crevices, grout lines and other dark, damp locations where soil and pathogens tend to hide
  2. Be impervious and non-porous, providing a surface that can isolate toxic materials on the surface for proper clean-up where needed
  3. Enable correction or improvement of the floor slope for proper drainage, with no low spots to help avoid puddling
  4. Be installed with integral floor-to-wall cove options for easier wash-down and sanitizing
  5. Have the strength and thermal shock resistance, plus the tenacious bond, to undergo steam-cleaning and/or hot power washing, where needed
  6. Enable seamless, continuous surface installation over concrete curbs and containment areas
  7. Offer antimicrobial options for highly sensitive locations
  8. Demonstrate high compressive strength and impact resistance for durability under heavy loads
  1. Display excellent abrasion resistance, allowing the system to perform under grueling daily wear-and-tear
  2. Present customizable slip-resistance options that can be balanced with easy clean-ability
  3. Facilitate the use of floor safety markings, such as color-coded traffic and work area designations
  1. Be formulated with low odor, low-VOC chemistries that meet all EPA and similar regulations
  2. Be able to contribute LEED Green Building Credits, where desired
  3. Include options for refurbishing old or damaged concrete surfaces to allow reuse of existing facility resources, as opposed to having to be demolished, thus unnecessarily contributing to landfill waste
  4. Withstand and perform in continually damp grow room conditions, without degrading
  5. Be compliant with FDA, USDA, EPA, ADA, OSHA, as well as local regulations and/or guidelines
  6. Include MVT mitigating solutions where Moisture Vapor Transmission site issues are present
  7. Provide waterproofing underlayment options for multi-story facilities
  8. Demonstrate excellent resistance to a broad range of chemicals, fertilizers and extreme pH substances

Finding an affordable floor system with all the above features may seem like a tall order. Luckily, innovative manufacturers now offer cannabis facility flooring that meets sanitation, regulatory compliancy, durability and budgetary needs of growers.

Resinous Flooring Value for Cannabis Facilities

Choosing the right floor solutions for a given cultivation facility may be one of the most important decisions an owner or manager makes. Since floors are present throughout the structure, poor selection and compromised protection of concrete slabs can end up wreaking havoc with profits and yields over time.

Few facilities can afford the inconvenience and expense of an otherwise unnecessary floor repair or replacement. Having to suddenly move cumbersome plant beds and heavy pots in order to give workers access to the floor area can be headache. In addition, the unscheduled downtime and overall juggling of resources that invariably must take place make a strong case for investing in optimal grow room flooring from the start.

An excellent long-term value, professional-grade resinous floor systems present cannabis growers with a unique set of solutions for cultivation rooms. Not only does this type of flooring offer all the desirable features listed above, but also furnish a host of added benefits to grow room operations, including:

Very High Gloss Finish

  • Highly reflective floor surfaces enable light entering the space from overhead to bounce back upward, exposing the underside of leaves to the light and potentially increasing yields
  • Exceptionally high gloss floor finishes in light colors help make the most of your existing lighting sources, significantly increasing room illumination
  • Achieving greater illumination without adding fixtures helps reduce energy consumption and associated costs

Virtually Seamless Surface

  • Fluid-applied resin-based flooring provides an impermeable, monolithic surface that is exceptionally easy to clean and maintain
  • The virtually seamless finish of resinous coated floors greatly reduces the number of locations for soil, pathogens and microbes to gather
  • Resinous floors, by incorporating integral cove bases to eliminate ninety degree angles, correcting floor slope to eliminate puddling, and allowing for a virtually seamless surface, provide an optimally sanitary flooring solution

Outstanding Moisture Tolerance

  • Designed specifically for use in wet industrial environments, cementitious urethane flooring is a top choice for humid grow rooms
  • Also called “urethane mortar”, this type of floor can help mitigate certain undesirable site conditions, such as Moisture Vapor Transmission (MVT)

Chemical, Acid and Alkali Resistance

  • Whether organic or synthetic, many soil enhancers and substances used to eradicate undesirable fungi and pests can damage concrete and shorten the usable life of foundational slabs
  • Protecting concrete slabs with monolithic, non-absorbent and appropriately chemical resistant coating systems allows concrete to perform as designed, for as long as intended
  • A proper barrier coating on the floor allows spilled or sprayed substances to be properly cleaned up and disposed of, rather than allowing the liquids to seep through the porous slab, and into the surrounding natural environment

Added Safety

  • Resinous coating systems’ slip-resistance is completely customizable at the time of installation, enabling growers to request more traction in pedestrian walkways and less slip-resistance under raised beds.
  • Epoxy, urethane and polyaspartic resinous flooring systems accommodate the installation of safety and line markings, as well as varying colors to delineate specific work areas
  • The antimicrobial flooring options available from some manufacturers offer further hygiene support in highly sensitive facilities
  • Today’s industrial resinous floor coatings from reputable suppliers are very low to zero V.O.C. and compliant with EPA and other environmental regulations

Resinous coating systems provide ideal value to informed growers who require durable, reliable and long-lasting high performance flooring for their facilities.

Support from the Ground Up

From incredible medical advances to high tensile fiber in construction materials, the expanding cannabis industry is bringing exciting opportunities to many areas of the economy. As more and more growers enter the market, so increases the pressure to compete.

By choosing light reflective, seamless and moisture tolerant resinous flooring that meets regulatory guidelines for grow rooms, managers can help reduce their overhead costs on multiple fronts — and get a jump on the competition.

Food processing and sanitation

Sanitation Starting Points: More Than Sweeping the Floors and Wiping Down the Table

By Ellice Ogle
No Comments
Food processing and sanitation

Sanitation is not just sweeping the floors and wiping down the table – sanitation has a wide-ranging function in a cannabis food manufacturing facility. For example, sanitation covers the employees (and unwanted pests), food-contact equipment (and non-food-contact equipment), trash disposal (including sewage), and more. Ultimately, sanitation systems maintain a clean environment to prevent foodborne illness from affecting human health. Fortunately, there are resources and tools to ease into establishing a robust sanitation program.

Overall, the main goal of sanitation is to produce safe food, to keep consumers healthy and safe from foodborne illness. With the cannabis industry growing and gaining legalization, cannabis reaches a larger, wider audience. This population includes consumers most vulnerable to foodborne illness such as people with immunocompromised systems, the elderly, the pregnant, or the young. These consumers, and all consumers, need and deserve safe cannabis products every experience.

FDAlogoTo produce safe food, food manufacturing facilities in the United States must at least follow the Food and Drug Administration (FDA)’s Code of Federal Regulations Title 21 Chapter I Subchapter B Part 117, current good manufacturing practice, hazard analysis, and risk-based preventive controls for human food. Although cannabis is currently not federally regulated, these regulations are still relevant for a cannabis food manufacturing facility since the same basic principles still apply. Also, these regulations are a good resource to simplify a comprehensive sanitation program into more manageable components, between sanitary operations and sanitary facilities. With more manageable components, the transition is smoother to then identify the appropriate tools that will achieve a thorough sanitation program.

Sanitary operations

1) General maintenance of the facilities: The buildings and fixtures of the food manufacturing facility cover a lot of ground – hiring a maintenance team will divide the responsibility, ensuring the entire facility can be maintained in a clean and sanitary condition. Furthermore, a team can build out a tool like a preventative maintenance program to restrict issues from ever becoming issues.

Figure 1: Dirty Cloth Towel in Dirty “Sanitizer” Solution
Dirty Cloth Towel in Dirty “Sanitizer” Solution (an example of what NOT to do)

2) Control of the chemicals used for cleaning and sanitizing: Not all chemicals are equal – select the appropriate cleaning and sanitizing chemicals from reputable suppliers. Obtain the right knowledge and training on proper use, storage, and proper protective equipment (PPE). This ensures the safe and effective application of the chemicals in minimizing the risk of foodborne illness.

3) Pest control: Understand the environment within the facility and outside the facility. This will aid in identifying the most common or likely pests, in order to focus the pest control efforts. Keep in mind that internal pest management programs can be just as successful as hiring external pest control services.

4) Procedures for sanitation of both food-contact and non-food-contact surfaces: Developing sanitation standard operating procedures (SSOPs) provides guidance to employees on appropriate cleaning and sanitizing practices, to balance effective and efficient operations. A master sanitation schedule can control the frequency of indicated sanitation procedures.

5) Storage and handling of cleaned portable equipment and utensils: Cross contamination in storage can be minimized with tools such as controlled traffic flow, signage, training, color coding, and more.

Sanitary facilities

6) Water supply, plumbing, and sewage disposal: Routine inspections of plumbing, floor drainage, and sewage systems prevent unintended water flow and damage.

7) Toilet facilities: Clearly defining standards for the toilet facilities and setting accountability to everyone who uses them will ensure that the toilet facilities are not a source of contamination for the food products.

Food processing and sanitation
PPE for all employees at every stage of processing is essential

8) Hand-washing facilities: Good manufacturing practices (GMPs) include proper hand washing and proper hand washing starts with suitable hand-washing facilities. For example, frequent checks on running water, hand soap, and single use towels ensure that all hands are clean and ready to produce safe food.

9) Trash disposal: While trash can be a source of cross contamination, trash can also attract and harbor pests. Scheduling regular trash disposal and controlling traffic flow of waste are two ways to minimize the risk of cross contamination from trash.

Bonus

Even after meeting these requirements, sanitation programs can be more sophisticated. An example is to institute an environmental monitoring program to verify and validate that the sanitation program is effective. Another example is in identifying and measuring key performance indicators (KPIs) within the sanitation program that can improve not just the sanitation processes, but the operations as a whole. Principally, sanitation is cleanliness on the most basic level, but waste management can encompass sanitation and grow into a larger discussion on sustainability. All in all, sanitation programs must reshape and evolve alongside the company growth.

Sanitation is interwoven throughout the food manufacturing process; sanitation is not a single task to be carried out by a sole individual. As such, it is beneficial to incorporate sanitation practices into cannabis food manufacturing processes from the beginning. Protect your brand from product rework or recalls and, most importantly, protect your consumers from foodborne illness, by practicing proper sanitation.

Water Policy in California: Six Key Takeaways from the State Water Board’s New Cannabis Cultivation Policy

By Amy Steinfeld
No Comments

Cannabis is the most highly regulated crop in California, and the state just added another layer of regulation. This article breaks down the State Water Resources Control Board’s (SWRCB) recently updated Cannabis Cultivation Policy – Principles and Guidelines for Cannabis Cultivation (“Policy”) into six key takeaways.1 These guidelines impose new rules on cannabis cultivation activities that have the potential to impact a watercourse (stream, creek, river or lake). Most of these rules apply to cultivation of sun-grown cannabis, which is currently allowed in some form in 12 counties. Compliance with these new requirements will be implemented through the CalCannabis Cultivation Licensing Program.

  1. When developing farmland, hillsides should be avoided and erosion must be controlled.

The Policy provides specific rules for growing pot on undisturbed land. To prevent erosion, numerous limitations are placed on earthmoving and activities in sensitive areas, and cultivators are not allowed to grade hillsides that exceed a 50% slope.2

Cultivation prepping activities must minimize grading, dust, soil disturbance, erosion, and impacts on habitat, especially during the winter season.3 No vehicles or heavy equipment may be used within a riparian setback4 or watercourse,5 and cultivators must avoid damaging native riparian vegetation6 and oak woodlands.7 All farm equipment, fuel, and hazardous materials must be carefully stored away from creeks and sensitive habitat.8 The Policy also governs road construction.9

  1. Cultivators should avoid work in or near a surface waterbody.10

If a cultivator’s activities impact a river, stream, or lake, they must consult with the California Department of Fish and Wildlife (CDFW).11 Cultivators must maintain minimum riparian setbacks for all cannabis activities, including grading and ancillary farm facilities. Before grading land, a biologist must identify any sensitive flora or fauna, and if any is located, consult with CDFW and provide a report to the Regional Board.12 No irrigation runoff, tailwater, chemicals or plant waste can be discharged to a waterbody.13 Diversion facilities for the irrigation of cannabis may not block fish passage, upstream or downstream, and must be fitted with a CDFW-approved fish screen; new facilities are subject to all applicable permits and approvals.

  1. During the dry season, cultivators may not use surface water.

The use of surface water supplies in California requires a valid water right and the use of water for cannabis cultivation is no different.14 Anyone seeking to appropriate “water flowing in a known and defined channel” or from a watercourse must apply to the SWRCB and obtain a permit or license.15 Alternatively, a landowner whose property is adjacent to a watercourse may have a riparian right to divert the water for use on her land. Riparian users do not need permission from the SWRCB to divert water, but they must report water use annually.16

The biggest obstacle that growers face under this Policy is that they cannot divert anysurface water during the dry season—the growing season (April 1 through Oct. 31). It should be noted:

  • The seasonal prohibition of surface water diversion applies regardless of the nature of the water right or what has been historically used to irrigate other crops.
  • During the dry period, cultivators may only irrigate using stored water (see no. 5 below) or groundwater.
  • It remains to be seen whether a legal challenge will be brought against the state for their draconian prohibitions on irrigating cannabis during the six-month growing season. Because this prohibition applies to all watersheds in California, singles out one low-water use crop, and ignores established water rights, it is overly broad and may constitute a constitutional “taking” of property rights.
  1. During the wet season, surface water diversions must be monitored closely.

Cannabis-specific restrictions also apply during the wet season. From Nov. 1 to March 31, cultivators must comply with instream flow requirements and check in with the state daily. All surface water diversions for cannabis are subject to “Numeric and Narrative Instream Flow Requirements,” to protect flows needed for fish migration and spawning. To ensure diversions do not adversely impact fish flows, cultivators must also “maintain a minimum bypass of at least 50% of the streamflow.”17,18

While valid appropriative right holders may divert more than 10 gal./min. for cannabis irrigation during the wet season, riparian right holders are not allowed to exceed that diversion rate.19 All cultivators (including small diverters <10 acre-feet (“AF”)/yr) are required to employ water-saving irrigation methods, install measuring devices to track diversions daily, and maintain records on-site for at least five years.20 Cultivators must inspect and repair their water delivery system for leaks monthly,21 and inspect sprinklers and mainlines weekly to prevent runoff.22

  1. Cannabis cultivators may obtain a new water storage right for use during the dry season.

To address dry season irrigation limitations, cultivators are urged to store water offstream during the wet season, including rainwater, for dry season use. Growers may not rely on onstreamstorage reservoirs, except if they have an existing permitted reservoir in place prior to Oct. 31, 2017.23 Alternatively, small growers (storage is capped at 6.6 AF/yr) may benefit from the new Cannabis SIUR Program, an expedited process for cultivators who divert from a surface water source to develop and install storage offstream. Only diverters with a valid water right that allows for diversion to storage between Nov. 1 and March 31 qualify.

  1. Groundwater is less regulated, but cultivators should avoid drilling or using wells near waterbodies.

Groundwater is generally the recommended water supply for cannabis because, unlike surface water, it may be used during the dry season and is not subject to many of the restrictions listed above. It should be noted however:

  • Many groundwater basins are now governed by California’s Sustainable Groundwater Management Act (“SGMA”), which requires water agencies to halt overdraft and restore balanced levels of groundwater pumping from certain basins. Thus, SGMA may result in future pumping cutbacks or pumping assessments.
  • In some counties, moratoriums and restrictions on drilling new wells are on the rise.
  • Under this Policy, the state may step in to restrict groundwater pumping in the dry season in watersheds where there are large numbers of cannabis groundwater, wells located close to streams, and areas of high surface water-groundwater connectivity.24

In short, groundwater pumpers are at risk of cutback if the state deems it necessary to maintain nearby creek flows.Noncompliance can bring lofty fines, revocation of a grower’s cultivation license, or prosecution

Final Takeaways

This cannabis policy presents one of California’s most complex regulatory schemes to date. Before investing in a property, one must understand this Policy and have a robust understanding of the water rights and hydrology associated with the cultivation site. Growers looking to reduce permitting time and costs should invest in relatively flat, historically cultivated land with existing wells and ample groundwater supplies, or alternatively, grow indoors.

This article attempts to synthesize the maze of water supply and water quality regulations that make compliance exceedingly difficult; more detailed information can be found here. Noncompliance can bring lofty fines, revocation of a grower’s cultivation license, or prosecution. Growers are encouraged to contact a hydrologist and water lawyer before making major investments and to designate a water compliance officer to monitor and track all water diversions and water used for irrigation. Growers should also consult with their local jurisdiction regarding water use restrictions and stream setbacks before moving any dirt or planting cannabis.


References

  1. The Policy is available at: https://www.waterboards.ca.gov/water_issues/programs/cannabis/cannabis_policy.html (will go into effect on or before April 16, 2019.)
  2. Policy, Appendix A, Section 2, Term 4. The Policy defines “Qualified Professional” as a: California-Licensed Professional Geologist, including Certified Hydrogeologist and Certified Engineering Geologist, California-Licensed Geotechnical Engineer, and Professional Hydrologist. (Policy, Definition 72, p. 11.)
  3. Policy, Appendix A, Section 2, Terms 4 and 10.
  4. Policy, Appendix A, Section 2, Term 3.
  5. Policy, Appendix A, Section 2, Term 40.
  6. Policy, Appendix A, Section 2, Term 33.
  7. Policy, Appendix A, Section 2, Term 34.
  8. Policy, Appendix A, Section 2, Term 7.
  9. Policy, Appendix A, Section 2, Terms 15 to 29.
  10. Policy, Appendix A, Section 1, Term No. 41.
  11. Policy, Appendix A, Section 1, Term No. 3; see also 1602.
  12. Policy, Appendix A, Section 1, Term No. 10.
  13. Policy, Appendix A, Section 1, Term No. 326.
  14. Policy, Appendix A, Section 2, Term 69.
  15. Wat. Code §1225; See alsoWat. Code §1201 [providing that the state shall have jurisdiction over, “[a]ll water flowing in any natural channel” except water that is appropriated or being used for beneficial purpose upon land riparian to the channel.”]
  16. Wat. Code §§ 5100–02.
  17. Policy, p. 12.
  18. Policy, Attachment A, pp. 60, 63.
  19. Policy, Section 2, Term 78.
  20. Policy, Section 2, Term 82.
  21. Policy, Section 2, Term 95.
  22. Policy, Section 2, Term 99.
  23. Policy, Section 2, Term 79.
  24. Policy, p. 11.

8 Mistakes Businesses Make When Managing Product Labels: Part 2

By Rob Freeman
No Comments

Editor’s Note: This article contains the last four common labeling mistakes that businesses can make. The previous four mistakes were published last week here


Mistake #5: Planning Just-In-Time Inventory Too Close to Production; Effecting On-time Deliveries

Using JIT (Just-In-Time) management is common throughout North America. JIT involves manufacturers and suppliers trying to minimize, or even eliminate, their inventory. This approach relies on suppliers to deliver materials just before production is started. When this method is done properly, it is a very efficient way to minimize production costs, but when companies do not prepare for a “crisis” situation, they will have nothing in stock to fall back on.

Minimizing inventory costs is always a challenge. It’s a never-ending contradiction trying to maintain low inventory costs while factoring the percentage of potential new growth. Calculations can fluctuate from month to month, especially when industries rely on commodity ingredients or are impacted by sudden regulatory changes like we see with the cannabis, food packaging, and health supplement markets. Front runners in these markets practice minimizing their product label inventories, but their needs might quickly change from one day to the next. They do not want to place a one-time annual label order for each SKU. If an ingredient runs out of supply or a regulatory change affects their production profile, they would be sitting on unusable labels that will go to waste.

Best Method Approach: Think in terms of what the bottom line effect will be when factoring how you should manage your inventory. Try not to reduce your inventory too low. This could cause your company to experience shipping delays when complications arise with suppliers or quality control. You should have at least one-to-two production cycles worth of inventory available for those “crisis” moments.

Rob Freeman, author of this article, is the Director of Business Development and Marketing at Label Solutions Inc.

This backup inventory can also help reduce paying for excessive rush fees. Sometimes businesses can experience unexpected demand for a product, especially when companies consolidate production plants, acquire other companies, or have a new product launch. Supplier material shortages can greatly impact internal quality control and delay delivery times. Building a strong business relationship with your label provider is key to working around business demands and potential problems; which in turn, will help your label provider ship on-time deliveries so your production deadlines are met.

Mistake #6: Selecting the Lowest Price, But Approving the Wrong Materials for Your Product Needs

Sometimes clients buy the lowest priced labels without their procurement department knowing what the label specification requirements should be. It’s always a good business practice to shop for the best price, but it is equally as important to make sure you understand what you’re buying for that price.

Label providers vary on the quality of work they do, value-added services they offer, their production expertise, and the quality of material they use. Additionally, the hidden potential costs to lowest price shopping is that once the construction of those labels fail, it could cost you much more than a simple reorder.

Best Method Approach:Establish clear and concise procedures so your production team can forward the necessary criteria for your procurement department to have during the buying process.

brands want strong, eye-catching labels that stand out online, on the shelf, and/or on the retail floor. On a separate note, some businesses and manufacturers don’t care how long their brand and contact information remains on their product after the purchase. This gives them the flexibility to buy extremely low-quality material, but the outcome is a much lower brand awareness reminder at the end of the product’s use. But if your business model is such that you sell a “one-time use” product and all that you need is the label to survive through the POS, then the cheapest materials and lowest price might be your best solution.

In most cases, brands want strong, eye-catching labels that stand out online, on the shelf, and/or on the retail floor. Manufacturers want their labels to remain on their product, so their customers have a reminder of what they need to buy again or the ability to reread product use instructions and label warnings. Even if you don’t require the most expensive materials, using good quality, durable substrates and inks is always a solid approach.

Mistake #7: Not Preparing for Oil Based Products

One of the most popular products expected in retail for 2019 will be essential oils and/or CBD infused oil ingredients in foods, drinks, and wellness supplements. One of the most common mistakes relating to oil-based products is that entrepreneurs often forget that oils can soak into paper substrates and/or disperse certain inks, even when laminated.

Whether your product is on display in retail, or being sampled at a trade show, the last thing you want to be concerned about is your product name and contact information smearing or washing out. Even the smallest drop of oil can seep into a paper label and spread the ink to the point that you’ll have your own little tie-dye action on the label. That might look cool to some, but you lose your branding and the perception with most retail customers will be that your company is either cheap or is not professional.

Best Method Approach: There are affordable films such as polypropylene materials that will allow you to print the look you want while still protecting your branding and product. From cooking oils to industrial grade oils, the approach is the same but may require different types of films and ink solubility, so each bottle and container has oil resistant labels that maintain a professional look.Whenever one of our clients launch a new product or changes the intended surface conditions for label application, testing the label is always extremely important

If you’re feeling overwhelmed, remember that you don’t need to select all the label materials on your own. Your label provider should help you settle on the best solution.

Mistake #8: Not Properly Testing New Labels and New Product Surfaces

This is one of the most common and overlooked issues. Whenever one of our clients launch a new product or changes the intended surface conditions for label application, testing the label is always extremely important. This is especially critical when dealing with high quantity orders.

Best Method Approach: Testing parameters should be outlined by you and your label provider so both parties understand how long the label and the ink consistency should remain on the surface after purchase and use of product. There are wide variations of testing, so it will depend on the type of product and the intended industry.

For example, testing hand-applied, durable labels on powder coated metals for the boat and trailer industry require a completely different testing method compared to tests for typical food and beverage products that are machine applied. Usually, with uniform container products like food clamshell packaging, beverage cans, and supplement jars, all you will need to do is make sure to test labels on your production line, so your team is confident with the results.

Final Thoughts

In summary, preventing just one of these mistakes can yield huge cost savings no matter if your company is a start-up or a large corporation. Even if these eight common mistakes do not directly apply to your own issues, hopefully the “Best Methods” approach will give your company ideas about how you can prepare for future product releases, reduce product label issues, and improve your own quality control metrics.

If you have topics relating to product labeling that you would like me to discuss, please write to info@easylabeling.com. Be sure to save this article and forward it to your peers for future reference.

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 2

By Kathy Knutson, Ph.D.
2 Comments
HACCP

HACCP is a food safety program developed in the 1960s for the food manufacturing industry, mandated for meat, seafood and juice and adopted by foodservice for the safe serving of meals at restaurants. With state requirements for the safe production of cannabis-infused products, namely edibles, facilities may be inspected against HACCP principles. The cannabis industry and state inspectors recognize the need for safe edible manufacture. Lessons can be learned from the food industry, which has advanced beyond HACCP plans to food safety plans, starting with procurement and including the shipment of finished product to customers.

In my work with the food industry, I write HACCP and food safety plans and deliver training on food safety. In Part 1 of this series, I wrote about the identification of hazards, which is the first step in HACCP plan development. Before we continue with the next HACCP step, I will discuss Good Manufacturing Practices (GMPs). GMPs are the foundation on which HACCP is built. In other words, without GMPs in place, the facility will not have a successful HACCP program. GMPs are required in the food, dietary supplement and pharmaceutical industries, all under the enforcement of the federal Food and Drug Administration (FDA). Without federal regulation for cannabis edible manufacture, there may not be state-mandated requirements for GMPs. Let me warn you that any food safety program will not succeed without proper control of GMPs.HACCP

GMPs cover all of your programs and procedures to support food safety without having a direct, instant control. For example, when brownies are baked as edibles, food safety is controlled by the time and temperature of baking. A written recipe and baking procedure are followed for the edible. The time and temperature can be recorded to provide documentation of proper baking. In the food industry, this is called a process preventative control, which is critical to food safety and is part of a HACCP plan. Failure of proper time and temperature of baking not only leads to an unacceptable product in terms of quality, but results in an unsafe product that should not be sold.

Back to GMPs. Now think of everything that was done up to the steps of mixing and baking. Let’s start with personnel. Facilities for edibles have hiring practices. Once an employee is hired, the employee is trained, and training will include food safety procedures. When working at the job after training, the employee measuring ingredients will demonstrate proper grooming and hand washing. Clean aprons, hairnets, beard nets and gloves will be provided by the facility and worn by the employee. The same goes for the employee that bakes and the employee that packages the edible. One category of GMPs is Personnel.

Edibles facilities are not foodservice; they are manufacturing. A second GMP category is cleaning and sanitizing. Food safety is controlled through proper cleaning and sanitizing of food contact surfaces (FCS). The edible facility will have in place the frequency and methods for cleaning all parts of the facility- outside, offices, restrooms, break room and others. GMPs cover the general cleaning procedures and procedures for cleaning receiving, storage; what we would consider processing to include weighing, process steps and packaging; finished product storage and shipping. Management of the facility decides the methods and frequency of cleaning and sanitizing with greater care given to processing. Without proper cleaning and sanitizing, a facility cannot achieve food safety.

I could go on and on about GMPs. Other GMPs include water safety, integrity of the buildings, pest control program, procurement, sewage disposal and waste disposal. Let’s transition back to HACCP. In Part 1 of this series, I explained identification of hazards. Hazards are one of three types: biological, chemical and physical.

At this point, I am not surprised if you are overwhelmed. After reading Part 1 of this series, did you form a food safety team? At each edibles facility, there should be at least one employee who is trained externally in food safety to the standard that foodservice meets. Classes are offered locally and frequently. When the facility is ready, the next step of training is a HACCP workshop for the food industry, not foodservice. Edibles facilities are not foodservice; they are manufacturing. Many colleges and associations provide HACCP training. Finally, at the least, one employee should attend a workshop for Preventive Controls Qualified Individual.

To institute proper GMPs, go to ConnectFood.com for a GMP checklist. Did you draw up a flow diagram after reading Part 1? With a flow diagram that starts at Receiving and ends at Shipping, the software at ConnectFood.com takes you through the writing steps of a HACCP or food safety plan. There are many resources out there for GMPs, so it can get overwhelming. ConnectFood.com is my favorite resource.

The next step in HACCP development after identification of hazards is to identify the exact step where the hazard will be controlled. Strictly speaking, HACCP only covers process preventive controls, which typically start with a weigh step and end with a packaging step. A facility may also have a step where temperature must be controlled for food safety, e.g. cooling. In HACCP, there are commonly two process preventive controls:

  • Biological hazard of Salmonella and Escherichia coli: the heat step
  • Physical hazard of metal: metal detector

Strictly speaking, HACCP does not include cleaning, sanitizing and supplier approval for procurement of ingredients and packaging. I hope you see that HACCP is not enough. There have been hundreds of recalls and outbreaks due to problems in non-processing steps. The FDA requires food manufactures to go beyond HACCP and follow a written food safety plan, which includes hazards controlled at these steps:

  • Biological hazard of Listeria monocytogenes: cleaning and sanitizing of the processing environment and equipment
  • Physical hazards coming in with ingredients: supplier approval
  • Physical hazard of glass and hard plastic: Here I am thinking of glass breaking or plastic pieces flying off buckets. This is an internal hazard and is controlled by following written procedures. The written document is a Standard Operating Procedure (SOP).
  • Chemical hazard of pesticides: supplier approval
  • Chemical hazard of mycotoxins: supplier approval
  • Chemical hazard of allergens: supplier approval, label check at Receiving and product labeling step

Does a cannabis edible facility honestly not care or not control for pesticides in ingredients because this is not part of HACCP? No. There are two ways for procurement of ingredients in which pesticides are controlled. Either the cannabis cultivation is controlled as part of the samebusiness or the facility works with a supplier to confirm the ingredient meets pesticide tolerances. Strictly speaking, this control is not part of HACCP. For this and many other reasons, HACCP is a good place to start the control of food safety when built on a solid foundation of GMPs. In the same way the food industry is required to go beyond HACCP with a food safety plan, the cannabis industry must go beyond HACCP.

My thoughts will be shared in a webinar on May 2nd hosted by CIJ and NEHA. I encourage you to listen in to continue this discussion.Please comment on this blog post below. I love feedback!