Tag Archives: system

Canadian Cannabis 2.0: Going Beyond GPP

By Lindsay Glass
No Comments

One year after Canadian recreational cannabis’s historic date of October 17th, 2018, in comes Cannabis 2.0, which will see edibles containing cannabis and cannabis concentrates enter the legal recreational market. As of October 17th, 2019, there are seven classes of legal cannabis products in the marketplace, making Canada an innovative leader in this evolving industry.

The launch of cannabis edibles and concentrates into the legal market has also led to changes in the regulatory framework and the introduction of new best practices in terms of Good Production Practices (GPP). This should not come as a surprise, as these products are introducing the inclusion of cannabis and food products.

Since Oct 17th, 2019, we have seen a significant amendment to the Cannabis Regulations through the addition of sections 88.93 and 88.94, stating that holders of a license to process cannabis edibles or extracts must identify and analyze all potential hazards and have control measures in place to prevent, eliminate or reduce these hazards from occurring. Any license holder that conducts activities related to cannabis edibles, extracts or produces an ingredient used in an edible or extract must also prepare, retain, maintain and implement a preventive control plan (PCP). To indicate that cannabis edibles and extracts regulations resemble other regulated food commodities, would not be an understatement.

By having license holders establish food safety practices similar to the ones being used by federally regulated food commodities, it is allowing cannabis producers to implement a preventive approach by focusing on safety and reducing hazards in their operation.

According to the Cannabis Regulations a license holder’s PCP must include the following:

  • Identify all of the biological, chemical and physical hazards that could contaminate or could be at risk of contaminating any cannabis product or anything that could be used as an ingredient in producing a cannabis product. Once all of the hazards have been identified, you need to determine the likelihood of that hazard occurring
  • The measures to be taken to control each identified hazard. Each control measure must then describe the task involved, how the monitoring task is carried out, who will be performing the monitoring task and how often the monitoring task is carried out
  • A description of the critical control points, which are the steps in the process where a control measure is applied and is essential to eliminating a hazard. Next are the measures to be taken to monitor a critical control point
  • A description of each cannabis product produced or ingredient that will be used in a cannabis product, including extract contents, permitted & prohibited ingredients, exceptions, naturally occurring substances and uniform distribution
  • A description of corrective action procedures for every critical control point
  • A description of verification procedures

What else comes with the collaboration of these two commodities in a regulatory environment? The need for industry to adapt and move beyond the basic GPP and pharmaceutical requirements and start thinking in terms of preventative controls and food safety. By encompassing the GPP requirements, traceability, employee training and now a complete hazard analysis and preventive control plan, you have the makings of a full food safety plan. However, food safety plans can be comprehensive and difficult to manage by utilizing a manual system.

HACCPCompanies that are serious about the integration of cannabis edibles and extracts into their operations, will need to implement compliance and traceability technology that will facilitate an automated system. In return, you will streamline all monitoring processes throughout the production, packaging and storage stages of the system. This is crucial to a preventive control plan. An automated solution will also help with record keeping, document management and corrective actions, as license holders deal with failures in real time to avoid negative impacts on their products.

There are many compliance software platforms available in the industry and choosing the right one for your operation is a task in itself, as not all software platforms for the cannabis industry are created equally. Although many seed-to-sale platforms handle regulatory requirements and some document management, these platforms do not see cannabis as food products, and therefore, are leaving companies with a void in this aspect of their operation. When looking for a software platform that will encompass all of your regulatory needs, pay particular attention to systems that are designed for the food industry but have adapted to cannabis. These systems will be the most dynamic when it comes to implementing preventive control plans, handling in-depth traceability with recall plans and the ability to become completely digital.

For more information on how to automate your food safety plan for cannabis edibles and extracts, please contact Iron Apple QMS to learn about our online Cannabis QMS.

Cannabis Economics & Creating Efficiencies for Profit Margin

By Laura Breit
No Comments

News of cannabis glut and falling wholesale prices has been dominating the airwaves of late, despite some recent reports showing that prices are remaining steady. As legalization continues to spread across the nation, the industry is poised to become commoditized, especially in those areas where it has been legal for a longer period of time. Whether specializing in retail cannabis products or industrial hemp, companies in the cannabis industry should be taking note of the sweeping economic implications of a maturing marketplace.

As is true in any industry, rapid growth and significant investments are sometimes followed by a slowdown (think dot-com, but less extreme). There are measures that companies can take in order to avoid negative outcomes, and a step in the right direction includes focusing on the bottom line and planning for future growth. Company leaders need to educate themselves on the competitive landscape and take the long view toward solutions for their operations.

Sounds easy enough, but how do we actually do this? One key step is to pay attention to overall expenses and create efficiencies wherever possible in order to remain competitive. This means that during the facility and systems design phase, all outcomes need to be taken into account. One of the most important – and cost conscious – things to consider is energy usage. Energy Star, the EPA-backed program for energy efficiency, says that facilities can “reduce their energy use by up to 30 percent through low or no-cost measures.” Generally, this means that efficiencies are built-in to the design with energy cost savings and sustainability in mind.

One of the largest energy outputs for a cannabis operation includes the facility’s HVAC and electrical systems. We have found that when clients step back to consider a range of alternatives, they have a more comprehensive base for this important decision. Considering outside factors, such as growth projections and specific goals, cannabis companies can make a more educated decision on the system that will provide the best economic outcome for their business. Often, those that plan ahead and look past the initial system cost, find longer term savings and lower energy usage over time.

A plant in flowering under an LED fixture

As an example, we had a client looking to build an indoor cannabis cultivation operation. They had originally chosen to build their facility with high pressure sodium lighting to save money up front. Because this method of lighting typically has a lower first cost, it appeals to many companies that are starting out and wary of their budget. However, this particular client was poised for growth and looking to make sustainable choices that would impact their bottom line and meet their goals for environmentally sound business practices. We were able to create a model for them to illustrate the long-term benefits of installing LED lighting. This type of lighting allows growers to keep room temperatures higher, without compromising plant health with issues like tip burn. In addition, LED lights are more efficient and reduce the cooling load. This means mechanical systems were able to be downsized reducing first costs, and these systems also consumed less energy, reducing operational costs. Despite a higher first cost of the LED lights, the company ended up saving enough money in the reduced mechanical equipment size, as well as in the reduction of energy use from the lights and the mechanical equipment. The first costs between an HPS system and an LED system were much more comparable than originally expected, and they were able to keep their operational costs to an absolute minimum. This type of scenario has proven true over and over when models are built to show longer-term cost benefits for electrical and HVAC systems, using analysis from an experienced team of designers and engineers.

While the greater economic outlook for the cannabis industry is in flux, a thoughtful approach can help operations avoid negative outcomes. As more and more companies continue to enter the space, investments roll in and supply rises, we will all watch to see if demand will match this growth. Taking note of incremental methods for impacting the bottom line, such as smart HVAC and electrical system selection, can mean the difference between success and failure (and profit margins!) in this turbulent landscape.

Soapbox

Increase Density in your Canopy

By Carl Silverberg
No Comments

One goal all growers seem to agree on is the need to increase density in their houses. How that gets done, well, there are a variety of ways and here’s one way a grower chose to do it:

With 45,000 square feet of greenhouse space, Nathan Fumia, a cannabis grower and consultant for a commercial operation in California, wasn’t pleased with what he was seeing. “If I put my hand inside the canopy and I can see sunlight on it, I’m losing money,” was how he described the situation. Unfortunately, the operators and staff of the greenhouse disagreed. They thought increasing density would rob the leaves of needed light.

He chose to test his theory by increasing the number of plants on one of his benches from 140 to 150 plants. To ensure the validity of the research, Nathan grew the same strain on Bench 1 as Bench 2, and to make sure all the metrics were equal, he even processed the crops separately. After weighing, Bench 2 (his research bench) showed an 8% higher yield than Bench 1.

“The post-harvest data from the weight, yield confirmed my decision to maximize density by increasing the total number of plants per bench,” says Fumia. “Whenever I saw red on the canopy heat map from LUNA, I knew there was room for improvement and I knew that I wasn’t making the money that I should have from those areas.”

His next challenge was where to place the extra ten plants? Did it make a difference or could he just shove 150 plants in a space that was originally planned for 140? Again, his greenhouse system was able to pinpoint the best sub-sections on the benches and Nathan was able to see exactly which plants were growing the fastest. That also gave him the ability to understand why certain quadrants of the bench were doing better than others.

“We were able to determine which quadrant on which bench was already at 100% density, and determine which quadrant wasn’t. Without that data, it would have been pure guesswork.”

He dialed down even further to find out which cultivars grew the best on a particular bench in the greenhouse. “Some cannabis cultivars need more light, some need less, some need warmer climates, and some need cooler climates,” Fumia noted. “Additionally, in order to increase the density of flowering points/buds, we began focusing on better pruning techniques in the vegetative phase, directly increasing branches for flowering.”

With optimization even more important now than it was 12-18 months ago, Nathan summed up the impact on his bottom line. “With a crop cycle averaging just over six a year, at that time we were averaging $600-$800 a pound depending on the strain. Some were even more. Ten extra plants per bench per cycle was a nice bounce for us.”

Obviously, this isn’t the only way to increase density. What’s your suggestion? Share your ideas with the rest of us by posting your comments below.

PerkinElmer & Emerald Scientific Collaborate

By Cannabis Industry Journal Staff
1 Comment

Last week, just before MJBizCon, PerkinElmer announced a collaboration with Emerald Scientific, allowing Emerald Scientific customers access to PerkinElmer’s portfolio of cannabis and hemp testing products and services. PerkinElmer is a leading instrument manufacturer and analytical method developer. Emerald Scientific is a distributor for scientific lab testing equipment and instrumentation.

Emerald Scientific now offers their customers PerkinElmer products, like their QSight® 420 Triple Quad system LC/MS, the Titan MPS™ Microwave Sample Preparation System, the Clarus® SQ 8 Gas Chromatograph/Mass Spectrometer (GC/MS) and the Flexar™ High-Performance Liquid Chromatography (HPLC) system. This partnership also allows Emerald Scientific customers to utilize the PerkinElmer analytical methods and standard operating procedures (SOPs) for cannabis and hemp testing. That includes SOPs for things like sample preparation, acquisition methods and consumable use. They’ll also be able to shop for lab products like PerkinElmer’s chromatography columns, vials and sample prep products.

According to Greg Sears, vice president and general manager, Food and Organic Mass Spectrometry at PerkinElmer, the cannabis testing market is exploding and this will help labs get their equipment and necessities all in the same place. “With the cannabis and hemp markets continuing to grow rapidly and regulations strengthening, labs increasingly need streamlined access to best-in-class, user-friendly testing solutions geared toward the unique requirements of the industry,” says Sears. ““This collaboration with Emerald Scientific brings together leading cannabis analysis offerings in one place to help labs start up and expand more efficiently.  In addition, we can build on the work we have done with Emerald around testing standardization which is important for the science of the industry.”

Kirsten Blake, Vice President of Emerald Scientific, says they are really excited about the partnership. “As regulations become more challenging, laboratory competition intensifies, and the science of the industry receives increasing focus, it is essential to align with organizations dedicated to improving both the quality and throughput of analytics,” says Blake. “After working with PerkinElmer to inform, educate, and advance the cannabis science industry around best practices, we see them as the industry leader for providing analytical instrumentation, methods and SOP’s. By adding their complementary solutions to our existing portfolio, we can now deliver complete packaged analytical solutions to the cannabis and hemp industries.”

California Suspends Almost 400 Licenses

By Cannabis Industry Journal Staff
2 Comments

On November 1st, the Bureau of Cannabis Control (BCC) sent notices to 394 businesses in California that their licenses will be suspended until they comply with certain traceability system requirements. This story was first reported by John Schroyer at Marijuana Business Daily.

On Wednesday, November 6th, the number of licenses suspended dropped to a total of 385, including 63 retailers, 61 delivery services, 47 microbusinesses, 185 distributors and 29 transportation licenses. That’s almost 5% of all the cannabis business licenses in California.

According to Alex Traverso, spokesman for the BCC, licensees were given plenty of opportunities to fix their errors. Businesses were given notice that they needed to enroll in Metrc within five days following their provisional licensing. The BCC gave those businesses a reminder roughly three months ago and sent an additional warning in late October regarding the deadline.

It’s a relatively easy fix for those trying to get back in compliance. The rationale behind suspending the licenses is that those businesses need to undergo a mandatory traceability system training so they know how to use Metrc and get credentialed. Enroll in the Metrc system, get credentialed and your license should be restored.

“It’s relatively simple to get your license out of suspension,” Traverso told KPBS News. “These are growing pains. I think we knew it was going to be a process and it was going to take some time, and that it was going to be an adjustment period for a lot of people who have been doing things one way for some time now.”

Traverso added that about 80 businesses enrolled in the Metrc system as soon as they received the notice that their license is suspended. Those licenses should be restored to active shortly, Traverso said.

A Playbook for Growth: Start with a True Cloud ERP as Your Foundation

By David Stephans
No Comments

Cannabis businesses have become a driving force for economic growth in the United States. We’ve all heard the statistics. In 2018, the industry accounted for approximately $10.4 billion in revenue and is slated to grow to $21 billion by 2021.

But with growth comes pressure to produce more, enhance quality and optimize operations. However, managing a cannabis business without modern, capable tools can hinder growth and leave opportunities on the table. That’s why fast-growing cannabis businesses are looking to the proven benefits of a true cloud Enterprise Resource Planning (ERP) platform to help manage production, provide insights and improve business operations. When we add in the complexity and ever-changing nature of regulation, the need for a robust operational system becomes even more critical.

David Stephans will be speaking during CIJ’s October 9th webinar, “Driving Strategic Advantage for your Cannabusiness through Process Efficiency, Quality & Compliance” Click here to learn more and register for free.Cannabis business leaders may want to develop their own “playbook” to differentiate themselves in the market. But before they start to engineer their forward-thinking approach, they should start with a cloud ERP as their foundation. This can help with everything from the most basic of needs to more sophisticated strategies. In this article, we’ll review some key cannabis business goals and tactics, and how ERP can help lay the groundwork for success.

Drive growth and expansion.

Business growth often translates into operational expansion, meaning more facilities, staff and compliance requirements to manage. A cloud ERP supports these functions, including the launch of new products, expanding pricing schedules and increasing production to meet demand. Having the ability to track and manage growth is crucial, and a cloud ERP can provide the real-time reporting and dashboards for visibility across the entire business. This includes not just operational visibility, but also a look into a company’s sales, finances and supply chain.

Foster exemplary customer experience.

Cannabis companies need to streamline processes from the moment an order is placed to when it arrives at the customer’s door. In the mind of consumers, cannabis businesses compete against the likes of Amazon. They must be able to provide a similar experience and level of service, with customers receiving orders in a couple of business days. Cloud ERP can help automate processes. And when things go wrong, it can also help with resolution, especially when it’s paired with a customer relationship management (CRM) system on the same cloud platform. For the B2B market, cloud ERP empowers account management to review past orders to better meet future customer needs.

Stay a step ahead of the game.

In the industry, change is a constant. The future will likely bring about shifts in products, regulations and suppliers. A cloud ERP can modify workflows, controls and process approvals on the fly, so companies can adapt to new requirements. It offers security against emerging risks and easy integration with other systems cannabusinesses may need. An advanced cloud ERP will also provide cutting-edge capabilities, such as AI insights and data-capture from Internet-of-Things (IoT) devices.

Ensure quality product for raving fans and avoid flags on the field through airtight compliance.

Many cannabis companies are passionate about delivering the highest-quality cannabis products. Auditability is key to both quality and compliance. Complete traceability, with lot and serial number tracking, will record comprehensive audit trails from seed to sale. A cloud ERP will incorporate RFID tags down to the plant, lot and product levels to assist in this process. As cannabis goods move through their lifecycle, the cloud ERP will append appropriate tracking to purchasing receipts, inventory as it moves between locations, products as they’re packaged and sales orders as they’re fulfilled.

As a heavily regulated industry, cannabis business is also subject to burdensome compliance standards. A cloud ERP can support the rigorous testing that’s required to assure potency and safety. It easily facilitates Good Manufacturing Practices (GMP) and Good Production Practices (GPP), which ensures products are consistently produced according to quality standards. Many regulatory agencies require digital reporting; cloud ERP can facilitate this requirement through integration with Metrc, Health Canada and the FDA. Compliance can be a costly endeavor, and this type integration saves time, money, and effort.

As you can see, a cloud ERP helps efficiently balance compliance and regulatory requirements, with operational efficiency and customer service – key strategies in any cannabusiness playbook.

Soapbox

The Stress of a Grower

By Carl Silverberg
2 Comments

Tell me that you can’t relate to this story.

You’re sitting down to dinner at a restaurant about ten minutes from where you work, finally relaxing after a tough day. You’ve set your environmental alerts on your plants; you have that peace of mind that the technology promised and you know that if anything goes wrong you’ll get notified immediately. As you’re looking at the menu, you receive an alert telling you that the temperature in one of your 2,000 square foot grow rooms has gone out of the safe range. Your mind starts to race, “It’s week seven, I’ve got 500 plants one week away from harvest, that’s 200 pounds of cannabis worth about $150,000-$200,000. Oh my God, what am I going to do?”

You’re doing all this at the dinner table and even though you’re not in a state of panic, you are extremely concerned. You need to figure out what’s going on. You check the graphing and see that over the past hour your humidity dropped and your temperature is gradually going up. Within the past ten minutes, the temperature has gone to 90 degrees. Your numbers tell you that the temperature in the room with $200,000 of cannabis is going up about five degrees every three minutes.

adamJgrow
Monitoring a large grow room can be a stressful task.

“I see this trend and can’t figure it out,” the grower relates. “Normally, the HVAC kicks on and I’d begin to see a downward trend on the graphs. I pre-set my trigger for 90 degrees. But, I’m not seeing that. What I AM seeing is the temperature gradually and consistently getting warmer without the bounce-back that I would expect once the HVAC trigger was hit. All I know is I better find out what’s causing all this and I better find out fast or my entire crop is gone.”

You go through the rest of the checklist from LUNA and you see that the lights are still on. Now, you’re starting to sweat because if the temperature in that room hits 130 and stays there for more than twenty minutes, you’re losing your entire crop. You have to walk in your boss’s office the next day and explain why, after all the time and money you put in over the past seven weeks, not only is all that money gone but so is the $200,000 he is counting on to pay salaries, expenses, and bank loans.

This is something you’ve been working on for seven straight weeks and if you don’t make the right decision, really quickly, when that room hits 130 degrees here’s what happens.

“My equipment starts to fail,” our grower continues. “The crop literally burns as the oils dry up and the crop is worthless. At 130 degrees, my grow lights essentially start to melt. All you can think of is that temperature going up five degrees every three minutes and you’re ten minutes from your facility. I need to leave that restaurant right now, immediately, because even if I get there in ten minutes the temperature is going to be almost 120 degrees while I’ve been sitting here trying to figure out what’s wrong.”

You run out to your car and you speed back to the facility. The grow room is now 125 degrees, you have maybe three or four minutes left to figure things out before you flush $200,000 down the drain. The first thing you do is turn off the grow lights because that’s your primary source of heat. Then, you check your HVAC panel and you realize it malfunctioned and shorted out. There’s the problem.

The real toll is the human cost. Once this happens, no grower ever wants to leave and go home or even go to dinner. It’s a horrible toll. It’s the hidden cost we don’t talk about. The grower opens up with his own personal experience.“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” 

“You think about the burden on the person that you bring in to replace you while you’re out of town and then you think about the burden on you if something goes wrong again. And you decide, it’s not worth it. The anxiety, the fear that it will happen again, it’s not worth it. So, you don’t go. I didn’t even see my sister’s new baby for eight months.”

Your desire to see your family, your desire to have a normal life; all of that goes out the window because of your desire to be successful in your job. It outweighs everything.

This is every grower. It’s why many farmers never leave their property. It just becomes a normal way of living. You just repeat it so much that you don’t even think about it. Why go on vacation if your stress level is higher than it is if you’re home. You’re constantly worried about your farm or your facility. The only way to escape it is to not go away at all.

“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” he tells us. “You don’t realize how stressful a lifestyle you live is until you step back and look at it. Or, if you have an alert system that allows you to pull back. That’s when you realize how difficult your life is. Otherwise, it just seems normal.”

As AI technology expands its footprint into agriculture, there will be more tools to help mediate situations like this; more tools to give you a more normal life. It’s one of the reasons we got into the business in the first place.

Food processing and sanitation

Key Points To Incorporate Into a Sanitation Training Program

By Ellice Ogle
2 Comments
Food processing and sanitation

To reinforce the ideas in the article, Sanitation Starting Points: More Than Sweeping the Floors and Wiping Down the Table, the main goal of sanitation is to produce safe food and to keep consumers healthy and safe from foodborne illness. With the cannabis industry growing rapidly, cannabis reaches a larger, wider audience. This population includes consumers most vulnerable to foodborne illness such as people with immunocompromised systems, the elderly, the pregnant, or the young. These consumers, and all consumers, need and deserve safe cannabis products every experience.

GMPSanitation is not an innate characteristic; rather, sanitation is a trained skill. To carry out proper sanitation, training on proper sanitation practices needs to be provided. Every cannabis food manufacturing facility should require and value a written sanitation program. However, a written program naturally needs to be carried out by people. Hiring experienced experts may be one solution and developing non-specialists into an effective team is an alternative solution. Note that it takes every member of the team, even those without “sanitation” in their title, to carry out an effective sanitation program.

Sanitation is a part of the Food and Drug Administration’s Code of Federal Regulations on current Good Manufacturing Practices (GMPs) in manufacturing, packing or holding human food (21 CFR 110). Sanitation starts at the beginning of a food manufacturing process; even before we are ready to work, there are microorganisms, or microbes, present on the work surfaces. What are microbes? At a very basic level, the effects of microbes can be categorized into the good, the bad, and the ugly. The beneficial effects are when microbes are used to produce cheese, beer or yogurt. On the other hand, microbes can have undesirable effects that spoil food, altering the quality aspects such as taste or visual appeal. The last category are microbes that have consequences such as illness, organ failure and even death.In a food manufacturing facility, minimizing microbes at the beginning of the process increases the chance of producing safe food.FDAlogo

Proper sanitation training allows cannabis food manufacturing facilities to maintain a clean environment to prevent foodborne illness from affecting human health. Sanitation training can be as basic or as complex as the company and its processes; as such, sanitation training must evolve alongside the company’s growth. Here are five key talking points to cover in a basic sanitation training program for any facility.

  1. Provide the “why” of sanitation. While Simon Sinek’s TEDx talk “Start with why” is geared more towards leadership, the essential message that “Whether individuals or organizations, we follow those who lead not because we have to, but because we want to.” Merely paying someone to complete a task will not always yield the same results as inspiring someone to care about their work. Providing examples of the importance of sanitation in keeping people healthy and safe will impart a deeper motivation for all to practice proper sanitation. An entertaining illustration for the “why” is to share that scientists at the University of Arizona found that cellphones can carry ten times more bacteria than toilet seats!
  2. Define cleaning and sanitizing. Cleaning does not equal sanitizing. Cleaning merely removes visible soil from a surface while sanitizing reduces the number of microorganisms on the clean surface to safe levels. For an effective sanitation system, first clean then sanitize all utensils and food-contact surfaces of equipment before use (FDA Food Code 2017 4-7).
  3. Explain from the ground up. Instead of jumping into the training of cleaning a specific piece of equipment, start training with the foundational aspects of food safety. For example, a basic instruction on microbiology and microorganisms will lay down the foundation for all future training. Understanding that FATTOM (the acronym for food, acidity, temperature, time, oxygen and moisture) are the variables that any microorganism needs to grow supplies people with the tools to understand how to prevent microorganisms from growing. Furthermore, explaining the basics such as the common foodborne illnesses can reinforce the “why” of sanitation.

    Food processing and sanitation
    PPE for all employees at every stage of processing is essential
  4. Inform about the principles of chemistry and chemicals. A basic introduction to chemicals and the pH scale can go a long way in having the knowledge to prevent mixing incompatible chemicals, prevent damaging surfaces, or prevent hurting people. Additionally, proper concentration (i.e. dilution) is key in the effectiveness of the cleaning chemicals.
  5. Ensure the training is relevant and applicable to your company. Direct proper sanitation practices with a strong master sanitation schedule and ensure accountability with daily, weekly, monthly and annual logs. Develop sanitation standard operating procedures (SSOPs), maintain safety data sheets (SDS’s) and dispense proper protective equipment (PPE).

Overall, sanitation is everyone’s job. All employees at all levels will benefit from learning about proper sanitation practices. As such, it is beneficial to incorporate sanitation practices into cannabis food manufacturing processes from the beginning. Protect your brand from product rework or recalls and, most importantly, protect your consumers from foodborne illness, by practicing proper sanitation.

A Case for Digital Cultivation Management in the Cannabis Industry

By Allison Kopf
No Comments

The steady destigmatization and legalization of medical and recreational cannabis at the state level continues to propel a large and fast-growing industry forward. In 2018, the legal cannabis industry grew to $10.4 billion in the U.S., employing more than 250,000 people according to New Frontier Data. 

The mass production of anything that humans consume is invariably accompanied by an increased concern for safety and accountability—especially in the case of cannabis, which the federal government still deems a Schedule I substance. Each U.S. state has its own mix of laws based on the will of its voters, spanning the spectrum from fully legal to fully illegal.  

While the mix of legality in states can be hard to keep up with, all states with any form of cannabis legalization have one thing in common: the need to regulate this new industry. Last year, the federal government issued a Marijuana Enforcement Memorandum that allows federal prosecutors to decide how to prioritize enforcement of federal marijuana laws, so states are at risk.

If you are a public official involved in state cannabis regulation, or anyone involved in the supply chain from cultivator to dispensary, chances are you are using some kind of seed-to-sale tracking technology to monitor things like plant inventory, sales volume, chain of custody—and to hedge against federal encroachment by having a legitimate form of accountability.

Mandatory Request For Proposals (RFPs) issued by states for compliance solutions have spawned an entire sub-industry of seed-to-sale tracking, and point-of-sale hardware and software vendors, with large multi-million dollar contracts being awarded. Metrc’s RFID (Radio Frequency Identification) plant and packaging tags are gaining wide usage, and 11 states plus DC have adopted the technology.

While states are taking the right steps to keep their legal cannabis industry legitimate and accountable, there is actually a major gap that existing systems don’t cover: cultivation management. Most of the existing RFPs and platforms focus on the post-harvest side of the business (processing, packaging, distribution) and may have some cultivation management capability, but are not geared for the cultivation operation, which is where a lot of the risk actually lies for both growers and state regulators. 

As a state official or a cultivator, what could be more damaging to business than a massive product recall—especially after the product has been distributed and consumed? This is the fastest way to get shut down or audited by the state as a grower or invite federal investigation if you’re a state. And these recalls cost growers millions of dollars and possibly their license. There is massive risk involved by not addressing the cultivation side.

PlantTag
A plant tagged with a barcode and date for tracking

With current tracking systems, it’s possible to see where the product came from in the event of such a recall, but nearly impossible to pinpoint and see what actually happened and when the recall happened. This makes it almost impossible to stop the same problem in the future and puts consumers at unnecessary risk.

The reason most seed-to-sale systems are difficult for growers to use is because they were designed for regulators to address the most obvious regulatory questions (are growers abiding by the law? Who is selling and buying what and how much? Is the correct tax amount being levied?). They were not designed for growers and in many cases, cultivation teams are using two systems—their own ERP and/or spreadsheets and seed-to-sale tracking mandated by regulators.

This means there is a huge missing link in data that should be captured during the cultivation process. In many cases, growers are tracking crop inventory during the growth stage with pen and paper, or at best, in Excel. Cultivators need a tool designed for them that helps both run better operations and identify hazards to their crop health before it’s too late, and regulators need complete traceability along the supply chain to reduce risk to consumers.

To fill this critical data gap, there is a strong case for states in their RFPs and ongoing regulatory capacity, to adopt and encourage cultivators to use Cultivation Management Platforms (CMPs) alongside any existing seed-to-sale and ERP solutions for complete traceability.

As more states move to legalize medical and recreational cannabis, mitigating risk as part of a larger regulatory framework will only become more important. Adopting and using a CMP empowers growers to focus on not just tracking data, but making that data accessible and functional for growers to drive efficiency and profits all while ensuring security and regulatory compliance in this rapidly evolving industry.

Why the Central Chiller Isn’t So Central to Grow Room HVAC

By Geoff Brown
No Comments

There’s a better way to design HVAC for cannabis grow rooms, and it may seem a little odd at first.

Central chillers are a tried-and-true solution for projects requiring large refrigeration capacity. They’re found in college campuses, hospitals, office buildings and other big facilities.

While central chillers are a good default for most large-scale applications, they fall short in this industry. Grow rooms, with their need for tight, variable conditions and scalable, redundant infrastructure, have HVAC requirements that the central chiller model simply can’t deliver on.

Let’s unpack the shortcomings with the central chiller in this niche and explore some possible solutions.

What’s Wrong With Chillers?

Building a scalable HVAC system is essential for the cannabis industry as it continues to ramp up production in the U.S. and Canada.

Many growers are building their large facilities in phases. In Canada, this is common because growers must have two harvests before they can receive a production permit, so they build just one phase to satisfy this requirement and then build out the facility after the government’s approval.

This strategy of building out is less feasible with a central chiller.

solsticegrowop_feb
Indoor cultivator facilities use high powered lights that give off heat, requiring an efficient air cooling system.

A chiller and its supporting infrastructure are impractical to expand, which means it and the rest of the facility needs to be built to full size for day one, even though the facility will be in partial occupancy for a long time. This results in high upfront capital costs.

If the facility needs to expand later down the road, to meet market demand for example, that will be difficult because, as mentioned, it’s expensive to add capacity to a central chiller.

Additionally, the chiller creates a central point of failure for the facility. When it goes down, crops in every room are at risk of potentially devastating loss. Grow rooms are unusual because of their requirement for strict conditions and even a slight change could have big impact on the crop. Losing control due to mechanical failure could spell disaster.

One Southern Ontario cannabis grower met with some of these issues after constructing their facility, which uses a central chiller for cooling and dehumidification. The chiller was built for full size, but the results were disappointing as early as phase one of cultivation. While sensible demands in the space are being easily met, humidity levels are out of control – flowering rooms are up to 75% RH.

Humidity is one of the most important control aspects to growers. Without a handle on it, growers risk losing their entire crop either because there’s not enough and the plants dry out, or there’s too much and the plants get mold disease. This facility has fortunately not yet reported serious crop issues but is mindful of the potential impact on harvest quality.

By going unitary, capital costs scale on a linear basis.If tight control over humidity is what you need, then a chilled water system needs very careful consideration. That’s because typical chiller system designs get the coils cold enough to lower the air temperature, but not cold enough to condense water out of the air as effectively as a properly designed dehumidifier coil.

A chilled water system capable of achieving the coil temperatures needed for adequate dehumidification in a typical flower room will also require full-time reheat to ensure that air delivered to the plants isn’t shockingly cold — either stunting their growth or killing them altogether. This reheat source adds complexity, cost and inefficiency which does not serve growers well, many of whom are under pressure from both utilities and their management to minimize their energy usage.

How Do Unitary Systems Solve These Problems?

Compared to central chillers, a unitary setup is more agile.

A facility can commence with the minimum capacity it needs for start-up and then add more units in the future as required. They’re usually cheaper to install than a central system and offer several reliability and efficiency benefits as well.

The real business advantage to this approach is to open up the grower’s cash flow by spreading out their costs over time, rather than a large, immediate cost to construct the entire facility and chiller for day one. By going unitary, capital costs scale on a linear basis.

Talltrees
One of the flowering rooms in an indoor set up (Image: Tall Trees LED Company)

Growers can have more control over their crop by installing multiple units to provide varying conditions, room-by-room, instead of a single system that can only provide one condition.

For example, flowering rooms that each have different strains of crop may require different conditions – so they can be served by their own unit to provide variability. Or, rooms that need uniform conditions could just be served by one common unit. The flexibility that growers can enjoy with this approach is nearly unlimited.

Some growers have opted for multiple units installed for the same room, which maximizes redundancy in case one unit fails.

A cannabis facility in the Montreal area went this direction when building their HVAC system. Rather than build everything in one shot, this facility selected a unitary design that had flowering rooms served independently by a series of units, while vegetation rooms shared one. The units were sized to provide more capacity than currently required in each room, which allows the grower to add more plants and lighting in the future if they choose.

This facility expects to build more grow rooms in a future phase, so it was important to have an intelligent system that could accommodate that by being easy to add capacity to. This is accomplished by simply adding more units.Multiple, small systems also have a better return-on-investment.

The grower, after making a significant investment in this facility, was also averse to the risk of losing crop due to mechanical failure, which is why they were happy to go with a system of independent grow room control.

Multiple, small systems also have a better return-on-investment. Not only are they easier to maintain (parts are easier to switch out and downtime for maintenance is minimal) but they can actually be more efficient than a large, central system.

Some units include heat recovery, which recycles the heat created by the dehumidification process to efficiently reheat the unit’s cold discharge air and keep the space temperature consistent, without needing expensive supplementary heaters. There’s also economizer cooling, which can be used to reduce or even eliminate compressor usage during winter by running the unit on dry outside air only.

Demand for cannabis continues to increase and many growers are looking to expand their businesses by adding new facilities or augmenting existing ones. Faced with the limitations of the traditional chiller system, like the lack of flexibility, scalability and redundancy, they’re looking for an intelligent alternative and the unitary approach is earning their trust. It’s expected this option will soon become the leading one across North America.