According to a press release, Digipath, Inc. (OTCQB: DIGP) was awarded a recreational cannabis-testing license and a renewal of their medical cannabis-testing license in Nevada.
The news came the week following Nevada’s opening day for recreational cannabis sales, which began July 1st. Some estimates report up to $5 million in sales within the first weekend.
According to Todd Denkin, president of Digipath, that massive start hasn’t showed any signs of slowing. “I was in a dispensary yesterday and it was packed,” says Denkin. “There were 40 people in line and it was pouring rain outside.” He says the flow of customers to dispensaries hasn’t stopped since July 1st.
Because of that demand as well as the state’s testing requirements, Denkin is preparing to expand. “From a laboratory’s perspective, we expect a large increase in volume,” says Denkin. “Most of the medical cultivators we work with got their rec license as well so we’re working with a lot of the same clients and getting new clients on a regular basis.” Before the launch of recreational sales, DigiPath has been doing lab testing for medical cannabis for over two years.
Cindy Orser, PhD., chief science officer at Digipath, says they are on their way to receiving ISO 17025 accreditation via the American Association for Laboratory Accreditation (A2LA). According to Orser, labs in Nevada must go out and do the sampling themselves, then bring the samples back to the lab for testing. The testing regulations overall seem relatively similar to what we’ve seen develop in other states with required pesticide testing and microbial screening. “We have a list of 24 pesticides, (two of them are plant growth regulators) that we monitor for,” says Orser. “We have specific allowable limits for that set of chemicals.” For microbial testing, Orser says they enumerate total aerobic count (TAC), total yeast and mold (TYM), pathogenic E. coli and Salmonella spp., enterobacteriaceae and bile-tolerant gram-negative, a subset of enterobacteria, as well as screening for mycotoxins. All of the testing in the state goes through just eleven laboratories, including DigiPath.
In preparing for expansion, they are looking at California in addition to other states. California released a set of draft regulations for lab testing in the spring, which many say is an example of regulatory overreach. “We still don’t know exactly what’s going to happen in California,” says Orser. “The draft regulations that have come out are so restrictive.” As Digipath looks toward expanding more in Nevada, California and other states, all eyes are on regulators proposing requirements for laboratory testing. “The future looks promising,” says Denkin.
Denver-based Green Man Cannabis last week voluntarily recalled batches of cannabis sold to both medical patients and recreational consumers. The recall comes after the discovery of off-label pesticides during inspections in both dry-flower cannabis and infused products.
According to the Denver Department of Environmental Health (DEH), the products have labels that list an OPC License number of 403-00738, 403-00361, or 403R-00201. The cannabis in question is not a specific batch, rather, “All plant material and derived products originating from these cultivation facilities are subject to the recall.” The DEH’s statement includes contact information for the company (email: recall@greenmancannabis.com) and the DEH Public Health Inspections Division (email: phicomments@denvergov.org or 720-913-1311).
The DEH statement does not mention which pesticides were detected or the levels at which they were detected. Christian Hagaseth, founder of Green Man Cannabis, says the chemical detected was Myclobutanil. “We had used Eagle 20 in the past, [the pesticide that contains Myclobutanil] but we stopped using it as soon as it was banned,” says Hagaseth. “The DEH found the residues in the growing environment so we immediately performed a voluntary recall.” Green Man has three cultivation facilities, one of which they suspect is contaminated from pesticides sprayed a few years ago.
As far as corrective actions being taken, Hagaseth says they are doing a thorough cleaning and sanitation in two of their grows and a complete remediation plan in the suspected contaminated grow. “This was a good learning experience- the key takeaway for us is we need to clean these environments more consistently,” says Hagaseth. “I am grateful that the system is working; public health and environmental safety are being looked after here.” Hagaseth says the facility in question was operating almost without interruption since 2009, but they adjusted and learned to implement preventative actions following the recall.
The DEH says there have been zero reports of illness related to the recall. “The possible health impact of consuming marijuana products with unapproved pesticide residues is unknown,” the statement reads. “Short and long-term health impacts may exist depending on the specific product, duration, frequency, level of exposure and route of exposure.” The DEH advises consumers that may be concerned to reach out to their physician.
The DEH performs routine inspections of cannabis infused product manufacturers and retail locations in Denver, as well as investigating complaints. “I am sorry that it happened to us, but I am happy the system is working and we are more than happy to comply,” says Hagaseth.
Almost as soon as cannabis became recreationally legal, the public started to ask questions about the safety of products being offered by dispensaries – especially in terms of pesticide contamination. As we can see from the multiple recalls of product there is a big problem with pesticides in cannabis that could pose a danger to consumers. While The Nerd Perspective is grounded firmly in science and fact, the purpose of this column is to share my insights into the cannabis industry based on my years of experience with multiple regulated industries with the goal of helping the cannabis industry mature using lessons learned from other established markets. In this article, we’ll take a look at some unique challenges facing cannabis testing labs, what they’re doing to respond to the challenges, and how that can affect the cannabis industry as a whole.
The Big Challenge
Over the past several years, laboratories have quickly ‘grown up’ in terms of technology and expertise, improving their methods for pesticide detection to improve data quality and lower detection limits, which ultimately ensures a safer product by improving identification of contaminated product. But even though cannabis laboratories are maturing, they’re maturing in an environment far different than labs from regulated industry, like food laboratories. Food safety testing laboratories have been governmentally regulated and funded from almost the very beginning, allowing them some financial breathing room to set up their operation, and ensuring they won’t be penalized for failing samples. In contrast, testing fees for cannabis labs are paid for by growers and producers – many of whom are just starting their own business and short of cash. This creates fierce competition between cannabis laboratories in terms of testing cost and turnaround time. One similarity that the cannabis industry shares with the food industry is consumer and regulatory demand for safe product. This demand requires laboratories to invest in instrumentation and personnel to ensure generation of quality data. In short, the two major demands placed on cannabis laboratories are low cost and scientific excellence. As a chemist with years of experience, scientific excellence isn’t cheap, thus cannabis laboratories are stuck between a rock and a hard place and are feeling the squeeze.
Responding to the Challenge
One way for high-quality laboratories to win business is to tout their investment in technology and the sophistication of their methods; they’re selling their science, a practice I stand behind completely. However, due to the fierce competition between labs, some laboratories have oversold their science by using terms like ‘lethal’ or ‘toxic’ juxtaposed with vague statements regarding the discovery of pesticides in cannabis using the highly technical methods that they offer. This juxtaposition can then be reinforced by overstating the importance of ultra-low detection levels outside of any regulatory context. For example, a claim stating that detecting pesticides at the parts per trillion level (ppt) will better ensure consumer safety than methods run by other labs that only detect pesticides at concentrations at parts per billion (ppb) concentrations is a potentially dangerous claim in that it could cause future problems for the cannabis industry as a whole. In short, while accurately identifying contaminated samples versus clean samples is indeed a good thing, sometimes less isn’t more, bringing us to the second half of the title of this article.
Less isn’t always more…
In my last article, I illustrated the concept of the trace concentrations laboratories detect, finishing up with putting the concept of ppb into perspective. I wasn’t even going to try to illustrate parts per trillion. Parts per trillion is one thousand times less concentrated than parts per billion. To put ppt into perspective, we can’t work with water like I did in my previous article; we have to channel Neil deGrasse Tyson.
The Milky Way galaxy contains about 100 billion stars, and our sun is one of them. Our lonely sun, in the vastness of our galaxy, where light itself takes 100,000 years to traverse, represents a concentration of 10 ppt. On the surface, detecting galactically-low levels of contaminants sounds wonderful. Pesticides are indeed lethal chemicals, and their byproducts are often lethal or carcinogenic as well. From the consumer perspective, we want everything we put in our bodies free of harmful chemicals. Looking at consumer products from The Nerd Perspective, however, the previous sentence changes quite a bit. To be clear, nobody – nerds included – wants food or medicine that will poison them. But let’s explore the gap between ‘poison’ and ‘reality’, and why that gap matters.
In reality, according to a study conducted by the FDA in 2011, roughly 37.5% of the food we consume every day – including meat, fish, and grains – is contaminated with pesticides. Is that a good thing? No, of course it isn’t. It’s not ideal to put anything into our bodies that has been contaminated with the byproducts of human habitation. However, the FDA, EPA, and other governmental agencies have worked for decades on toxicological, ecological, and environmental studies devoted to determining what levels of these toxic chemicals actually have the potential to cause harm to humans. Rather than discuss whether or not any level is acceptable, let’s take it on principle that we won’t drop over dead from a lethal dose of pesticides after eating a salad and instead take a look at the levels the FDA deem ‘acceptable’ for food products. In their 2011 study, the FDA states that “Tolerance levels generally range from 0.1 to 50 parts per million (ppm). Residues present at 0.01 ppm and above are usually measurable; however, for individual pesticides, this limit may range from 0.005 to 1 ppm.” Putting those terms into parts per trillion means that most tolerable levels range from 100,000 to 50,000,000 ppt and the lower limit of ‘usually measurable’ is 10,000 ppt. For the food we eat and feed to our children, levels in parts per trillion are not even discussed because they’re not relevant.
A specific example of this is arsenic. Everyone knows arsenic is very toxic. However, trace levels of arsenic naturally occur in the environment, and until 2004, arsenic was widely used to protect pressure-treated wood from termite damage. Because of the use of arsenic on wood and other arsenic containing pesticides, much of our soil and water now contains some arsenic, which ends up in apples and other produce. These apples get turned into juice, which is freely given to toddlers everywhere. Why, then, has there not an infant mortality catastrophe? Because even though the arsenic was there (and still is), it wasn’t present at levels that were harmful. In 2013, the FDA published draft guidance stating that the permissible level of arsenic in apple juice was 10 parts per billion (ppb) – 10,000 parts per trillion. None of us would think twice about offering apple juice to our child, and we don’t have to…because the dose makes the poison.
How Does This Relate to the Cannabis Industry?
The concept of permissible exposure levels (a.k.a. maximum residue limits) is an important concept that’s understood by laboratories, but is not always considered by the public and the regulators tasked with ensuring cannabis consumer safety. As scientists, it is our job not to misrepresent the impact of our methods or the danger of cannabis contaminants. We cannot understate the danger of these toxins, nor should we overstate their danger. In overstating the danger of these toxins, we indirectly pressure regulators to establish ridiculously low limits for contaminants. Lower limits always require the use of newer testing technologies, higher levels of technical expertise, and more complicated methods. All of this translates to increased testing costs – costs that are then passed on to growers, producers, and consumers. I don’t envy the regulators in the cannabis industry. Like the labs in the cannabis industry, they’re also stuck between a rock and a hard place: stuck between consumers demanding a safe product and producers demanding low-cost testing. As scientists, let’s help them out by focusing our discussion on the real consumer safety issues that are present in this market.
*average of domestic food (39.5% contaminated) and imported food (35.5% contaminated)
According to Jonathan Modie, spokesman for the Oregon Health Authority (OHA), on Friday, October 21st, the OHA issued a ‘health alert’ regarding cannabis products sold from a McMinnville dispensary that were possibly tainted with extremely high levels of Spinosad, an insecticide commonly used to combat mites and other pests. “My understanding is that two medical patients purchased the cannabis products whom we had contact info for, but most of the purchasers were recreational customers,” says Modie. “Because it is not required to get contact info for recreational customers, we issued the health alert to get the word out as quickly as possible because we didn’t know who bought the product.” The OHA is urging consumers who purchased cannabis from New Leaf CannaCenter in McMinnville to check the labels and see if they purchased potentially dangerous cannabis, and to either return the cannabis to the dispensary or dispose of it appropriately.
The action level, the measured amount of pesticides in a product that the OHA deems potentially dangerous, for Spinosad is 0.2 parts-per-million (PPM). The two batches in question are the strains Dr. Jack (batch number G6J0051-02) and Marion Berry (batch number G6J0051-01), which were tested to contain approximately 42 PPM and 22 PPM respectively, much higher than the OHA’s action level.
While this is the first health alert issued in Oregon in connection with potentially contaminated cannabis, Modie says he expects there will be more health alerts in the future. “Unfortunately the product was inappropriately transferred from the grower to the dispensary and from the dispensary to customers, so we are working to get the word out to dispensaries, growers and processors about the testing rules to prevent this from happening in the future,” says Modie. “We want to make it clear that any grower, processor or dispensary that does not follow the testing requirements or fail to label, store or retain batches that fail a test will be subject to enforcement actions such as fines, penalties, suspension or revocation of their license.” The OHA has a list of pesticide analytes and their action levels on their website.
“We are advising recreational and medical users alike to read the product labels closely; the labels must have the license or registrant number, the packaging or distributor license number, the name of the strain and the universal symbol,” says Modie. “We are also suggesting consumers request a copy of pesticide test results from the dispensary.” It is unclear at this time if all of the cannabis products in question have been properly disposed of, but OHA was informed that New Leaf has pulled all products in question off of the shelf.
Sample volume remains to be the primary influence on whether an automated solution is a logical investment for a cannabis testing facility. Due to both the complexity of the material being tested and the extraction approach at hand, it may be difficult to find an automated platform that can fully accommodate your laboratory’s needs. Hamilton Robotics in collaboration with United Chemical Technologies (UCT) has developed a solution that allows for automation of specific sample clean up steps commonly utilized in cannabis pesticide testing schemes. The MPE2 Positive Pressure Extraction/Evaporation Module is a standalone manifold that can also be incorporated into a number of automated liquid handling decks. Used in tandem with dispersive solid phase extraction (dSPE) salts/sorbents packed into a 96 well plate, this combination provides laboratories with high throughput extraction convenience with comparable results to traditional dSPE for the analysis of over forty pesticides.
As states continue to expand testing requirements for pesticides, it is vital that your laboratory is equipped with a method that allows versatility for the addition of new compounds without burdening your extraction team. There are a variety of dSPE salt and sorbent blends readily available that have been optimized for cannabis extractions. This allows for the use of a reliable extraction technique that can be adapted for the automation age. Hamilton is widely recognized throughout both clinical and forensic laboratory settings and the MPE2 platform is an excellent first system for laboratories beginning to automate/semi-automate their processes.
Following an initial QuEChERS extraction, additional cleanup is typically recommended for extracts that are being analyzed for pesticide content due to the low detection limits often required. dSPE provides the necessary sample clean up to obtain those thresholds, but often burdens a laboratory staff with additional time consuming preparation steps. Traditionally, dSPE salts are packed into 2 mL centrifugation tubes that require a cumbersome supernatant pipetting step followed by additional vortex, spin and transfer steps. By packing the dSPE sorbents into a well plate format, the user is able to completely automate this above described clean up ultimately saving time and adding convenience without jeopardizing any recovery data.
For most compounds, the recovery was greater than 65% for both methods of dSPE. The mean recoveries for traditional dSPE were 98.0%, 99.2% and 97.9% at pesticide concentrations of 50 ng/mL, 100 ng/mL and 200 ng/mL, respectively. For comparison, the mean recoveries at the same concentrations for well plate dSPE were 85.0%, 88.9% and 89.1%. Therefore, there was typically about a 10-11% absolute difference in recovery between the two methods, which can be corrected for by implementing the use of internal standards. When comparing the recovery differences between the two methods, there are six compounds with noticeably larger discrepancies across all three concentrations, namely: chlorpyrifos, cyprodinil, diazinon, spinetoram, spiromesifen 278 and trifloxystrobin. If these data sets are excluded, then the average absolute differences in recovery between the two methods decrease to 8.8%, 6.4% and 5.8% for concentrations of 50 ng/mL, 100 ng/mL and 200 ng/mL, respectively.
Overall, laboratories can estimate on saving 40-60 minutes per 96 samples processed using the Hamilton MPE2 in conjunction with a UCT dSPE plate. When a liquid handling robot is also available, this time saving estimation is potentially doubled. Time spent per sample, including the training of laboratory scientists, is an important factor to consider when setting up your laboratory. Automation is in an investment that can greatly reduce a laboratory’s overall labor costs in the long run.
Last week, news of problems facing Oregon’s cannabis laboratory accreditation program surfaced, leading some to speculate about possible delays for the recreational cannabis market. According to The Register-Guard, ORELAP administrator Gary Ward believed the program was “on the precipice of collapse.”
According to Jonathan Modie, spokesman for the Oregon Health Authority (OHA), the Oregon Environmental Laboratory Accreditation Program (ORELAP) was anticipating over 30 cannabis laboratories applying for accreditation and they doubled their staff from two to four to prepare for the uptick in applications.
In June, the agency had zero labs applying for accreditation but within two months, 37 labs applied. However, the Oregon Department of Environmental Quality (DEQ) just provided three additional staff members on Monday to help with the application process, says Modie.
Some believe the issues could mean the state may not have enough accredited labs by October 1st, when the recreational cannabis market is expected to go into full swing. “It is difficult to say exactly how many labs we can accredit by October 1,” says Modie. “We have seven labs today which would bring it to nine labs waiting for assessment, but our goal is to get as many labs assessed and hopefully accredited as soon as possible.”
With the additional staff members, Modie is hopeful this will jumpstart the program. “We really appreciate our collaboration with the DEQ and look forward to boosting our capacity a bit to help us get through this busy time,” says Modie.
Part of the reason some laboratories might have trouble meeting prerequisites is simply because the requirements are very strict. “The process involves submitting a quality manual, standard operating procedures, method validation, submitting proficiency testing data and finally undergoing an ORELAP assessment by our staff, so it is a very rigorous process,” says Modie. “This speaks to our concern for making sure they have the right systems in place so public health is protected.” Modie said there were at least three labs that did not pass the assessment.
Bethany Sherman, chief executive officer of OG Analytical, believes the hardest part of the process involves getting accredited for testing pesticides. OG Analytical, based in Eugene, Oregon, has already received their accreditation, one of the first to do so. “The pesticide testing requires our most expensive instrumentation and the sample preparation for testing pesticides is the most time consuming,” says Sherman. “Not only does it require very specific instrumentation, it also requires a real know-how and expertise to ensure we are cleaning samples appropriately, minimizing background noise and looking at the pesticides in trace quantities.” According to Sherman, laboratories are also left to their own devices to develop methodologies specifically for the cannabis matrix, adding to the difficulties.
Rodger Voelker, Ph.D., lab director at OG Analytical, seems confident that the state will be able to handle it. “It is a relief they were able to get some resources from the DEQ and I think the state will not allow a program with this kind of importance to fall apart,” says Voelker. He believes after this initial phase of putting the program in place, the workload will go down. “It is easier to maintain a program than it is to implement,“ adds Voelker. In his eyes, it is crucial for the program to require rigorous science. “People are forced to reconcile that there is a tremendous amount of controls to be considered to produce legally defensible data and I think it is great that the requirements are so strict.”
The OHA’s job is to essentially safeguard public health and they do not want to leave any stone unturned when it comes to potential contamination, says Modie. “This is not just about getting as many labs accredited as possible, this is about protecting public health.”
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.