Tag Archives: Testing

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 5

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Protection in the Court of Public Opinion

In the last four articles, I have outlined areas that impact your operations as they apply to laboratory quality programs. But this article will take a different path. It will focus on protecting your crop and brand along with any business that utilizes your crop, such as dispensaries or edible manufactures in the court of public opinion.

Now, the elephant in the room for cannabis companies is the difference between rules written by the state and their enforcement by the state. There are many anecdotal stories out there that can be used as case studies in identifying ways to protect your brand. Remember, consumers and the media caught them, not the regulators.

Cheating in the cannabis industry: growers, dispensaries, edibles manufactures, etc. This includes:

  1. Finding laboratories that will produce results that the client wants (higher potency numbers)
  2. Not testing for a particular contaminant that may be present in the cannabis product.
  3. Selling failed crops on the gray or black market.
  4. Claiming to regulators that the state rules are unclear and cannot be followed (e.g. So, give me another chance, officer)

So why should you be worried? Because, even if the state where you operate fails to enforce its own rules, the final end-user of your product will hold you accountable! If you produce any cannabis product and fail to consider these end-users, you will be found out in the court of public opinion by either the media or by the even more effective word of mouth (e.g. Social Media).

So, let’s take a look at some recent examples of these problems:

  1. “Fungus In Medical Marijuana Eyed As Possible Cause In California Man’s Death”
  2. “Pesticides and Pot: What’s California Smoking?”
  3. Buyers beware: California cannabis sold Jan. 1 could be tainted”

Each of these reports lists contamination by microbial stains or pesticides as being rampant within the California market whose products are used for medical or recreational use. Just imagine the monetary losses these cannabis businesses faced for their recalled cannabis product when they got caught. Remember, consumers and the media caught them, not the regulators.Institute a quality program in your business immediately.

How can you be caught? There are many different ways:

  1. Consumer complaints to the media
  2. Secret shopper campaigns (more to come on that in the next article)
  3. Media investigations
  4. Social media campaigns

What are the effects on your business? Product recalls such as these two to hit the California market recently.

So, what should you do to produce an acceptable product and provide reasonable protection to your cannabis business? Institute a quality program in your business immediately. This quality program will include areas of quality assurance and quality control for at least these areas.

  1. Growing
  2. Processing or formulating
  3. Shipping
  4. Dispensing
  5. Security
  6. Training of staff
  7. Laboratory services

Setting up and supporting these programs requires that your upper management impose both a rigorous training program and make employee compliance mandatory. Otherwise, your business will have an unreasonable risk of failure in the future.

Further information on preparing and instituting these types of quality assurance and quality control programs within your business can be found at the author’s website.

FSC logo

Food Safety Consortium To Address Cannabis Safety, Edibles Manufacturing

By Aaron G. Biros
1 Comment
FSC logo

The 6thAnnual Food Safety Consortium Conference & Expo will feature an entire track dedicated to cannabis. As announced in May of this year, the Cannabis Quality series will feature presentations by subject matter experts in the areas of regulations, edibles manufacturing, cannabis safety & quality as well as laboratory testing.FSC logo

The Food Safety Consortium is hosted by our sister publication, Food Safety Tech, and the Cannabis Quality series will be co-hosted by Cannabis Industry Journal. A number of cannabis-focused organizations will participate in the series of talks, which are designed to help attendees better understand the cannabis edibles market, regulations surrounding the industry and standards for manufacturers. Some highlights include the following:

  • Ben Gelt, board chairman at the Cannabis Certification Council (CCC), will moderate a panel where leaders in the edibles market discuss supply chain, production and other difficulties in manufacturing infused products. Panelists include Leslie Siu, Founder/CEO Mother & Clone, Jenna Rice, Director of Operations at Gron and Kristen Hill, MIP Director, Native Roots Dispensary, among others. “The Cannabis Certification Council believes consumer education campaigns like #Whatsinmyweed are critical to drive standards and transparency like we see in food,” says Gelt. “What better place to discuss the food safety challenges the cannabis industry faces than the Food Safety Consortium”
  • Radojka Barycki, CEO of Nova Compliance, will discuss the role of food safety in the cannabis industry and identify some biological and chemical hazards in cannabis product testing in her talk, “Cannabis: A Compliance Revolution.”
  • Larry Mishkin, counsel to Hoban Law Group and partner at the law firm, Silver & Mishkin, which serves cannabis businesses in Illinois, will provide insights during the conference.
  • Cameron Prince, vice president of regulatory affairs at The Acheson Group, will help attendees better understand key market indicators and current trends in edibles manufacturing during his talk on November 15. “With the current trend of legalizing cannabis edibles, medicinal and recreational suppliers alike are looking to quickly enter the edibles market,” says Prince. “Understanding the nuances of moving to food production relative to food safety, along with navigating the food industry’s regulatory environment will be critical to the success of these companies.”
  • Tim Lombardo and Marielle Weintraub, both from Covance Food Solutions, will identify common pathogens and areas where cross contamination can occur for edibles manufacturers.

The Food Safety Consortium will be held November 13–15 in Schaumburg, Illinois (just outside of Chicago). To see the full list of presenters and register for the conference, go the Food Safety Consortium’s website.

Safety & Efficacy: Ensuring Dosing Accuracy for Infused Products

By Amy Davison
No Comments

Complications with dosing inaccuracies in the cannabis industry has always been a hot topic. In 2014, The Cannabist tested several Colorado infused products only to find that the results were different from what was indicated on the label. While the industry has come a long way at the state level since then, a study published in The Journal of the American Medical Association this past November found that 26 percent of CBD products sold online contained less CBD than the label. Similar to when you buy a bottle of wine or ibuprofen, people should be able to trust product labels.

Process validation in action at the Stratos facility
Process validation in action at the Stratos facility
(image credit: Lucy Beaugard)

There are processes that cannabis-infused product manufacturers can adopt to solve this issue. Incorporating process validation establishes reproducible customer experiences while in-process controls create product consistency and potency reliability. These operational and compliance techniques originated in the pharmaceutical industry and will undoubtedly become the future gold standard for best practices with cannabis manufacturers.

Product testing alone cannot assess quality for an entire lot or batch of product; therefore, each step of the manufacturing process must be controlled through Good Manufacturing Practices (GMP). Process validation is an aspect of GMPs used by the pharmaceutical industry to create consistency in a product’s quality, safety and efficacy. There are three main stages to process validation: process design, process qualification and continued process verification. Implementing these stages ensures that quality, including dosing accuracy, is maintained for each manufactured batch of product.

Validation: Step 1

Process design, the first phase of process validation, defines the manufacturing process based on previous product development and process research. The appropriate equipment, instruments and materials are selected as part of process design. Both standard operating procedures for equipment and operations as well as batch records for manufacturing steps are also finalized during this phase. The batch record must include critical process parameters (CPP), the parameters that must be maintained in order to produce product that consistently meets specified criteria. Mixing speed and time, temperature, pressure and flow rate are examples of common CPP. Training production personnel is also defined and performed as part of process design. Operators are trained on operating procedures and batch records in order to learn how to make the product successfully.

Process validation can help ensure accurate dosing.
Process validation can help ensure accurate dosing. (image credit: Lucy Beaugard)

Validation: Step 2

Process qualification, the next stage of process validation, is performed to evaluate the capability of a process for reproducible and robust manufacturing. Because reproducibility of a process cannot be fully assessed with a single batch, evaluation is typically performed on a minimum of three separate batches. For each batch included in the process qualification, the frequency and number of samples are increased over normal sampling to provide a more thorough assessment of each batch. The testing includes visual inspection for defects as well as quantitative tests such as weight or volume and potency. In addition to composite sampling, which is performed by combining samples from multiple time points throughout a batch (e.g. beginning, middle and end) to assess a batch as a whole, stratified sampling is performed. Stratified samples are taken from specified points throughout a batch, and rather than being combined, the samples are tested separately to indicate consistency throughout a given batch.

The Stratos product lineup- validation helped produce each of these consistently.

In addition to evaluating the reproducibility of a process, tests for robustness are performed during process qualification to demonstrate how changes in a process may impact the product. It is important to use different operators for performing manufacturing steps to ensure changes in personnel do not affect product quality. Switching out equipment and instruments will also reveal any sensitivities in a process. For example, when a different oven, mixer or tablet press is used, are the appearance, texture and potency impacted? If the product remains the same, that points toward the process being robust. Challenging the CPP will also provide important feedback regarding a process. If a step requires a temperature range of 50° – 70°C, it is recommended that the process be tested at the low end and high end of the range, to ensure the final product meets all required specifications. If the range assigned to a unit’s gross weight is 500 g ± 5%, then testing at 475 g and 525 g will offer more insight into how much variance the process truly can withstand.

Validation: Step 3

Once the process has been assessed for reproducibility and robustness, it transitions to continued process verification, which is the third and final stage of Process Validation. Performance of quality checks during each batch for the life of a product is part of this final stage. For infused products such as tablets, these checks include appearance – the tablets are the color and shape indicated by the batch record and they include the required imprint(s); weight – the tablets are within the specified weight range, which indicates correct tablet size and consistency of ingredients; hardness – tablets will dissolve/disintegrate for proper dosing; and friability – tablets will withstand stress of routine handling.

As your company grows in manufacturing volume, each of these three steps will become critical to safeguard against any inconsistencies. As we know in this industry, our most valuable asset is our license and success can be negatively impacted based on meeting compliance. Dedicating an internal role within quality and compliance will serve to future-proof your business against additional rules and regulations that are likely to come.

Two Recalls Hit California Cannabis Market

By Aaron G. Biros
No Comments

Just weeks ago, the first voluntary cannabis product recall occurred under California’s new regulations. According to an article on MJBizDaily.com by John Schroyer, the recall for their vaporizer cartridges affects almost 100 dispensaries in California.

Bloom Brands, the company issuing the voluntary recall, mentioned in a press release that batches sold between July 1-19, 2018 were contaminated with the pesticide Myclobutanil and therefore does not meet the Bureau of Cannabis Control (BCC) standards. Below is an excerpt from the press release:

We are working closely with the BCC to remedy this issue and expect clean, compliant products to be back on shelves in three weeks…. At Bloom, we are continuing to work with the BCC and other partners to ensure that the space is properly regulated and safe for all customers. Transparency and safety remain our top concerns and we will provide updates as additional information becomes available. We apologize for any concern or inconvenience this serious misstep has caused. We thank you for your continued trust and confidence in our products.

Then, just days later, Lowell Herb Co. issued a voluntary recall on their pre-rolls. First reported by MJBizDaily.com, it appears the products initially passed multiple lab tests and was cleared for retail sales. Weeks after the batch passed tests, a laboratory reversed its decision, saying the products failed to pass the state’s testing standards. The contaminant in question was not mentioned.

The CCIA post calling out the BCC
The CCIA post calling out the BCC

Many seem to think these recalls are a product of the BCC’s unrealistic expectations in their lab testing rules. In a Facebook post days ago, the California Cannabis Industry Association called out the BCC for their unworkable rules. “The BCC has set testing standards that are nearly impossible to meet,” reads the post. “As a result recalls like this will be the norm and the industry will suffer a bottleneck in supply. Testing standards need to be realistic, not impossible.”

On July 13, California issued the first draft of their proposed permanent regulations, which would update and change the current emergency regulations. The proposed action levels for a batch to pass a pesticide test can be found on pages 105 and 106. The state’s regulatory bodies are holding public meetings on the proposed rules throughout August and stakeholders can also submit comments via email.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 4

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

In the last three articles, I discussed the laboratory’s responses or defenses used to reply to your questions about laboratory results that place stress on the success of your business. The Quality Control (QC) results can cause this stress if they are not run correctly to answer the following questions:

  1. Are the laboratory results really true?
  2. Can the laboratory accurately analyze sample products like my sample?
  3. Can the laboratory reproduce the sample results for my type of sample?

Now let’s discuss the most important QC test that will protect your crop and business. That QC sample is the Matrix Sample. In the last article in this series, you were introduced to many QC samples. The Matrix Sample and Duplicate were some of them. Take a look back at Part 3 to familiarize yourself with the definitions.

The key factors of these QC sample types are:

  1. Your sample is used to determine if the analysis used by the laboratory can extract the analyte that is being reported back to you. This is performed by the following steps:
    1. Your sample is analyzed by the laboratory as received.
    2. Then a sub-sample of your sample is spiked with a known concentration of the analyte you are looking for (e.g. pesticides, bacteria, organic chemicals, etc.).
    3. The difference between the sample with and without a spike indicates whether the laboratory can even find the analyte of concern and whether the percent recovery is acceptable.
    4. Examples of failures are from my experiences:
      1. Laboratory 1 spiked a known amount of a pesticide into a wastewater matrix. (e.g. Silver into final treatment process water). The laboratory failed to recover any of the spiked silver. Therefore the laboratory results for these types of sample were not reporting any silver, but silver may be present. This is where laboratory results would be false negatives and the laboratory method may not work on the matrix (your sample) correctly. .
      2. Laboratory 2 ran an analysis for a toxic compound (e.g. Cyanide in final waste treatment discharge). A known amount of cyanide was spiked into a matrix sample and 4 times the actual concentration of that cyanide spike was recovered. This is where laboratory results would be called false positives and the laboratory method may not work on the matrix (your sample) correctly.
  2. Can the laboratory reproduce the results they reported to you?
    1. The laboratory needs to repeat the matrix spike analysis to provide duplicate results. Then a comparison of the results from the first matrix spike with its duplicate results will show if the laboratory can duplicate their test on your sample.
      1. If the original matrix spike result and the duplicate show good agreement (e.g. 20% relative percent difference or lower). Then you can be relatively sure that the result you obtained from the laboratory is true.
      2. But, if the original matrix spike result and the duplicate do not show good agreement (e.g. greater than 20% relative percent difference). Then you can be sure that the result you obtained from the laboratory is not true and you should question the laboratory’s competence.

Now, the question is why a laboratory would not perform these matrix spike and duplicate QC samples? Well, the following may apply:

  1. These matrix samples take too much time.
  2. These matrix samples add a cost that the laboratory cannot recover.
  3. These matrix samples are too difficult for the laboratory staff to perform.
  4. Most importantly: Matrix samples show the laboratory cannot perform the analyses correctly on the matrix.

So, what types of cannabis matrices are out there? Some examples include bud, leaf, oils, extracts and edibles. Those are some of the matrices and each one has their own testing requirements. So, what should you require from your laboratory?

  1. The laboratory must use your sample for both a matrix spike and a duplicate QC sample.
  2. The percent recovery of both the matrix spike and the duplicate will be between 80% and 120%. If either of the QC samples fail, then you should be notified immediately and the samples reanalyzed.
  3. If the relative percent difference between the matrix spike and the duplicate will be 20% or less. If the QC samples fail, then you should be notified immediately and the samples should be reanalyzed.

The impact of questionable laboratory results on your business with failing or absent matrix spike and the duplicate QC samples can be prevented. It is paramount that you hold the laboratory responsible to produce results that are representative of your sample matrix and that are true.

The next article will focus on how your business will develop a quality plan for your laboratory service provider with a specific focus on the California Code Of Regulations, Title 16, Division 42. Bureau Of Cannabis Control requirements.

EVIO Logo

EVIO Labs Massachusetts Accredited to ISO 17025

By Aaron G. Biros
No Comments
EVIO Logo

EVIO Inc.’s Massachusetts lab announced yesterday they received ISO/IEC 17025 accreditation from the American Association for Laboratory Accreditation (A2LA). According to the Massachusetts Cannabis Control Commission, the body in charge of regulating the state’s cannabis industry, accreditation to ISO/IEC 17025: 2017 is a requirement for cannabis testing labs.

The press release says this makes EVIO Labs Massachusetts one of only a few operating and accredited testing laboratories serving the state’s medical cannabis industry. With recreational sales coming shortly to the state, EVIO is preparing for a higher demand in their lab testing services. “We are very proud of all of the teams’ hard work that resulted in this advanced accreditation,” says James Kocis, lab director of EVIO Labs Massachusetts. “With the state-mandated laboratory regulations, EVIO upholds the high standards of testing and plays a pivotal role in ensuring consumer safety and confidence in the states burgeoning marijuana market.”

According to Adam Gouker, general manager at A2LA, EVIO Labs Massachusetts, based in Southborough, MA, is the first cannabis laboratory they accredited in the state. “A2LA is excited to expand our cannabis accreditation program into yet another state, promoting the value of independent third-party accreditation to support quality products in the industry,” says Gouker. “Having the opportunity to work with a prominent name in the industry such as EVIO Labs and assess their exceptional Massachusetts laboratory has been an additional bonus.”

EVIO LogoAccording to the A2LA press release, by achieving ISO/IEC 17025 accreditation, EVIO Labs Massachusetts demonstrates that they “have management, quality and technical systems in place to ensure accurate and reliable analyses, as well as proper administrative processes to ensure that all aspects related to the sample, the analysis, and the reporting are standardized, measured, and monitored.” It also requires that personnel are competent to perform each analysis.

EVIO Inc. operates in the cannabis testing market with lab services in a number of states, including Oregon, California and Florida among others. Their Florida location was the first accredited cannabis lab in the state and they recently earned the same accreditation for their Berkeley, California location.

Orange Photonics Introduces Terpenes+ Module in Portable Analyzer

By Aaron G. Biros
No Comments

Last week at the National Cannabis Industry Association’s (NCIA) Cannabis Business Summit, Orange Photonics unveiled their newest product added to their suite of testing instruments for quality assurance in the field. The Terpenes+ Module for the LightLab Cannabis Analyzer, which semi-quantitatively measures terpenes, Cannabichromene (CBC) and degraded THC, adds three new chemical analyses to the six cannabinoids it already reports.

CBC, a cannabinoid typically seen in hemp and CBD-rich plants, has been linked to some potentially impactful medical applications, much like the findings regarding the benefits of CBD. The module that tests for it, along with terpenes and degraded THC, can be added to the LightLab without any changes to hardware or sample preparation.

Dylan Wilks, chief technology officer of Orange Photonics
Dylan Wilks, chief technology officer of Orange Photonics

According to Dylan Wilks, chief technology officer of Orange Photonics, this could be a particularly useful tool for distillate producers looking for extra quality controls. Cannabis distillates are some of the most prized cannabis products around, but the heat used to create them can also create undesirable compounds,” says Wilks. “Distillate producers can see potency drop more than 25% if their process isn’t optimized”. With this new Terpenes+ Module, a distillate producer could quantify degraded THC content and get an accurate reading for their QC/QA department.

We spoke with Stephanie McArdle, president of Orange Photonics, to learn more about their instruments designed for quality assurance for growers and extractors alike.

Stephanie McArdle, president of Orange Photonics
Stephanie McArdle, president of Orange Photonics

According to McArdle, this could help cultivators and processors understand and value their product when terpene-rich products are the end goal. “Rather than try to duplicate the laboratory analysis, which would require expensive equipment and difficult sample preparation, we took a different approach. We report all terpenes as a single total terpene number,” says McArdle. “The analyzer only looks for monoterpenes (some common monoterpenes are myrcene, limonene and alpha-pinene), and not sesquiterpenes (the other major group of cannabis terpenes, such as Beta- Caryophyllene and Humulene) so the analysis is semi-quantitative. What we do is measure the monoterpenes and make an assumption that the sesquiterpenes are similar to an average cannabis plant to calculate a total terpene content.” She says because roughly 80% of terpenes found in cannabis are monoterpenes, this should produce accurate results, though some exotic strains may not result in accurate terpene content using this method.

The LIghtLab analyzer on the workbench
The LIghtLab analyzer on the workbench

As growers look to make their product unique in a highly competitive market, many are looking at terpenes as a source of differentiation. There are a variety of areas where growers can target higher terpene production, McArdle says. “During production, a grower may want to select plants for growing based on terpene content, or adjust nutrient levels, lighting, etc. to maximize terpenes,” says McArdle. “During the curing process, adjusting the environmental conditions to maximize terpene content is highly desirable.” Terpenes are also beginning to get recognized for their potential medical and therapeutic values as well, notably as an essential piece in the Entourage Effect. “Ultimately, it comes down to economics – terpene rich products have a higher market value,” says McArdle. “If you’re the grower, you want to prove that your product is superior. If you’re the buyer, you want to ensure the product you buy is high quality before processing it into other products. In both cases, knowing the terpene content is critical to ensuring you’re maximizing profits.”

Orange Photonics’ LightLab operates very similarly to instruments you might find in a cannabis laboratory. Many cannabis testing labs use High Performance Liquid Chromatography (HPLC) to analyze hemp or cannabis samples. “The primary difference between LightLab and an HPLC is that we operate at lower pressures and rely on spectroscopy more heavily than a typical HPLC analysis does,” says McArdle. “Like an HPLC, LightLab pushes an extracted cannabis sample through a column. The column separates the cannabinoids in the sample by slowing down cannabinoids by different amounts based on their affinity to the column.” McArdle says this is what allows each cannabinoid to exit the column at a different time. “For example, CBD may exit the column first, then D9THC and so on,” says McArdle. “Once the column separates the cannabinoids, they are quantified using optical spectroscopy- basically we are using light to do the final quantification.”

NCIA Releases Cannabis Testing Policy Guides

By Aaron G. Biros
No Comments

The National Cannabis Industry Association (NCIA) announced earlier this week the release of two white papers at their Cannabis Business Summit in San Jose, California. The first white paper, dedicated to cannabis testing policy, offers recommendations for state’s addressing cannabis testing, advising them on how to write rules for the testing market.“As wonderful as cannabis is, we’ll face a crisis together as an industry way too soon.  When it happens, the key will be how we respond to it,” says Moss.

The NCIA Policy Council is like a think tank for helping for and shape state and federal level policy related to cannabis. Kurshid Khoja, principal at Greenbridge Corporate Counsel and member of the Policy Council, says this release of the testing policy recommendations demonstrates how we can help shape policy on the state level. “As both an NCIA Board member and a member of the Policy Council, I am really excited about the Council’s work,” says Khoja. “Somewhat under the radar, the Policy Council is establishing itself as the think tank for the cannabis industry. On topics ranging from tax policy to pesticides to international competition, the Policy Council is churning out quality papers to raise awareness and educate policy makers in DC. With the release of its testing policy recommendations this week, the Policy Council is demonstrating that it could also help shape policy on the state level.”

The second white paper is meant to provide guidance to businesses dealing with crisis communications. The manual describes best practices in crisis communications, showing businesses how to identify and avoid potential public communications issues in the cannabis industry.

Jeanine Moss, Crisis Manual Subcommittee Chair of NCIA’s Marketing & Advertising Committee, says the creation of a crisis manual is meant to preempt problems we might face soon in the cannabis industry. “As wonderful as cannabis is, we’ll face a crisis together as an industry way too soon.  When it happens, the key will be how we respond to it,” says Moss. “That’s why we think it is so important for NCIA members to have an easy and practical guide that can not only help protect businesses during a crisis, but also the industry as a whole. This manual will help businesses prevent problems, keep issues from spiraling out of control, and share positive messages during times of stress.”

The guides will be presented this week at the NCIA’s Cannabis Business Summit & Expo in San Jose, California.

The Importance of Medical Cannabis Trials In Europe

By Marguerite Arnold
No Comments

Calls for more testing have been a watchword of both cannabis reform advocates and opponents alike for many years.

However, now is a really good time for cannabis companies to consider sponsoring medical trials across Europe for their cannabis products. This is why:

The Current Environment On The Ground

Germany is Europe’s biggest consumer of both prescription medications and medical devices dispensed by prescription. It is, as a result, Europe’s most valuable drug market. And ground zero for every international cannabis company right now as a result.Targeting Germany for your latest pharmaceutical product is difficult no matter who you are.

Here, however, are a few problems that face every pharma manufacturer, far beyond cannabis. Targeting Germany for your latest pharmaceutical product is difficult no matter who you are.

  1. The vast majority by euro spending on all drugs and devices dispensed by prescription must be pre-approved. To add to this problem, before they can be prescribed, new drugs must get on the radar of doctors somehow. To put this in stark relief, the entire prescription drug and medical device annual spend is about 120 billion euros a year in Germany. Only 20 billion euros of that, however, may be obtained relatively easily (without pre-approval from an insurer). Preapproval also only comes when there is trialor other scientific evidence of efficacy.
  2. There are strict rules banning the advertising of prescription drugs to patients and highly limiting this outreach to doctors.
  3. There are strict rules prohibiting the use of the word “cannabis” to promote anything.
  4. There is a strong reliance on what is called “evidence-based medicine.” That means that large numbers of doctors and insurance company approvers need to see hard data that this drug or device actually works better than what is currently on the market.

How then, is a new drug supposed to get on the radar of those who prescribe the drug? Or patients?

If this sounds like an impossible situation to navigate, do not despair. There is a way out.

The Impact of the European Medicines Agency

This agency has been much in the news of late. Namely, the British do not want to exclude themselves from the regulatory umbrella of this organization.

Largely unknown outside Europe, this agency actually has a hugeinfluence on how drugs are brought into the region. Specifically, this is the EU-wide agency (aka the EMA) that both regulates all drugs within Europe, but has also, since 2016, been making clinical reports submitted by pharmaceutical companies, available to anyone who asks for them. That includes doctors, members of the public and of course, the industry itself.

In the middle of July, the agency also published a report on the success of its now three-year-old program, including the usage of its entry website. Conveniently written in English, it is possible to easily search new trial data, which, also now must be made public.

Medical trial data, in other words, that can be created by sponsored cannabis company backed trials.

It remains the best way to get patients, doctors and insurance companies familiar with new drugs. Or even new uses for old drugs in the case of cannabis.

Will Trials Move Legalization Discussions?

Of all the established cannabis companies now in operations with producton the ground, GW Pharmaceuticals has learned that this strategy can actually cut both ways.GW logo-2

However,there are no other cannabis companies in the position of GW Pharma – namely with a monopoly on a whole country (the UK), where it alone can legally grow cannabis crops and process the same into medication and further for very profitable export. In addition, even more disturbingly, and clearly an era that is coming to an end, the vast majority of British patients have been excluded from access to cannabis except in the case of GW Pharma products.

The current row over expanded medical use in the UK, in fact, was triggered by two things. The failure of the latest GW Pharma trial for drug resistant epilepsy in Eastern Europe. And the deliberate importation by several desperate families, of good old cannabis (CBD) oil into the UK. No medical processing required.

GW Pharma said their product Epidiolex (for the treatment of childhood epilepsy) is being considered by the European Medicines Agency

However, that is the UK.

Other cannabis companies can take a page out of the company’s handbook. All that is required for faster market entry, is a slightly altered recipe.

By sponsoring cannabis-related trials in each country they want to enter, starting with Germany, cannabis companies can literally put themselves on the medical map.

Why?

Because doctors, patients andother researchers will be easily able to see and access country-specific medical data on each use of cannabis covered by a trial, per EU country. All made possible, of course, by the new open door policy of the EMA.

Growing the Medical Market

While this may sound like an “expensive” proposition, there are really few other alternatives. And with no advertising budget, plus a marketing budget that must include outreach to everyone in the supply chain including doctors, distributors and even pharmacies, the trial approach in the end may be the most efficacious in broadening both the demand and market. Not to mention the cheaper option.

How such a trial strategy might be coordinated at a time when domestic cultivation is still on hold is still a question. However for those companies considering market entry and cultivation bid if not domestic processing strategies for their products is an industry strategy that will pay off in spades.

Its role in the legalization of cannabis as medicine, as well as the speedier introduction of new drugs overall into the European system,cannot be underestimated, even if it is currently underutilized by the cannabis industry specifically now.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 3

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the last two articles, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) paperwork wall used if a grower, processor or dispensary (user/client) questioned a laboratory result and the conflicts of interest that exist in laboratory culture. Now I will discuss the second line of defense that a laboratory will present to the user in the paperwork wall: Quality Control (QC) results.

Do not be discouraged by the analytical jargon of the next few articles. I suggest that you go immediately to the conclusions to get the meat of this article and then read the rest of it to set you on the path to see the forest for the trees.

QC in a laboratory consists of a series of samples run by the laboratory to determine the accuracy and precision of a specific batch of samples. So, to start off, let’s look at the definitions of accuracy and precision.QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

According to the Standard Methods for the Examination of Water and Wastewater:

Accuracy: estimate of how close a measured value is to the true value; includes expressions for bias and precision.

Precision: a measure of the degree of agreement among replicate analyses of a sample.

A reputable laboratory will measure the Accuracy and Precision of QC samples in a batch of user samples and record these values in both the analytical test report issued to the user and in control charts kept by the laboratory. These control charts can be reviewed by the user if they are requested by the user. These control charts record:

Accuracy (means) chart: The accuracy chart for QC samples (e.g., LRB, CCV, LFBs, LFMs, and surrogates) is constructed from the average and standard deviation of a specified number of measurements of the analyte of interest.

Precision (range) chart: The precision chart also is constructed from the average and standard deviation of a specified number of measurements (e.g., %RSD or RPD) for replicate of duplicate analyses of the analyte of interest.

Now, let’s look at what should be run in a sample batch for cannabis analyses. The typical cannabis sample would have analyses for cannabinoids, terpenes, microbiological, organic compounds, pesticides and heavy metals.

Each compound listed above would require a specific validated analytical method for the type of matrix being analyzed. Examples of specific matrixes are:

  • Cannabis buds, leaves, oil
  • Edibles, such as Chocolates, Baked Goods, Gummies, Candies and Lozenges, etc.
  • Vaping liquids
  • Tinctures
  • Topicals, such as lotions, creams, etc.

Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.

Also, both ISO 17025-2005 and ISO 17025-2017 require the use of a validated method.

ISO 17025-2005: When it is necessary to use methods not covered by standard methods, these shall be subject to agreement with the customer and shall include a clear specification of the customer’s requirements and the purpose of the test and/or calibration. The method developed shall have been validated appropriately before use.

ISO 17025-2017: The laboratory shall validate non-standard methods, laboratory-developed methods and standard methods used outside their intended scope or otherwise modified. The validation shall be as extensive as is necessary to meet the needs of the given application or field of application.

Validation procedures can be found in a diverse number of analytical chemistry associations (such as AOACand ASTM) but the State of California has directed users and laboratories to the FDA manual “Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2nd Edition, 2015

The laboratory must have on file for user review the following minimum results in an analytical statistical report validating their method:

  • accuracy,
  • limit of quantitation,
  • ruggedness,
  • precision,The user must look beyond the QC data provided in their analytical report or laboratory control charts.
  • linearity (or other calibration model),
  • confirmation of identity
  • selectivity,
  • range,
  • spike recovery.
  • limit of detection,
  • measurement uncertainty,

The interpretation of an analytical statistical report will be discussed in detail in the next article. Once the validated method has been selected for the specific matrix, then a sample batch is prepared for analysis.

Sample Batch: A sample batch is defined as a minimum of one (1) to a maximum of twenty (20) analytical samples run during a normal analyst’s daily shift. A LRB, LFB, LFM, LFMD, and CCV will be run with each sample batch. Failure of any QC sample in sample batch will require a corrective action and may require the sample batch to be reanalyzed. The definitions of the specific QC samples are described later.

The typical sample batch would be set as:

  • Instrument Start Up
  • Calibration zero
  • Calibration Standards, Quadratic
  • LRB
  • LFB
  • Sample used for LFM/LFMD
  • LFM
  • LFMD
  • Samples (First half of batch)
  • CCV
  • Samples (Second half of batch)
  • CCV

The QC samples are defined as:

Calibration Blank: A volume of reagent water acidified with the same acid matrix as in the calibration standards. The calibration blank is a zero standard and is used to calibrate the ammonia analyzer

Continuing Calibration Verification (CCV): A calibration standard, which is analyzed periodically to verify the accuracy of the existing calibration for those analytes.

Calibration Standard: A solution prepared from the dilution of stock standard solutions. These solutions are used to calibrate the instrument response with respect to analyte concentration

Laboratory Fortified Blank (LFB): An aliquot of reagent water or other blank matrix to which known quantities of the method analytes and all the preservation compounds are added. The LFB is processed and analyzed exactly like a sample, and its purpose is to determine whether the methodology is in control, and whether the laboratory is capable of making accurate and precise measurements.

Laboratory Fortified Sample Matrix/Duplicate (LFM/LFMD) also called Matrix Spike/Matrix Spike Duplicate (MS/MSD): An aliquot of an environmental sample to which known quantities of ammonia is added in the laboratory. The LFM is analyzed exactly like a sample, and its purpose is to determine whether the sample matrix contributes bias to the analytical results. The background concentrations of the analytes in the sample matrix must be determined in a separate aliquot and the measured values in the LFM corrected for background concentrations (Section 9.1.3).Laboratories must validate their methods.

Laboratory Reagent Blank (LRB): A volume of reagent water or other blank matrix that is processed exactly as a sample including exposure to all glassware, equipment, solvents and reagents, sample preservatives, surrogates and internal standards that are used in the extraction and analysis batches. The LRB is used to determine if the method analytes or other interferences are present in the laboratory environment, the reagents, or the apparatus.

Once a sample batch is completed, then some of the QC results are provided in the user’s analytical report and all of the QC results should be recorded in the control charts identified in the accuracy and precision section above.

But having created a batch and performing QC sample analyses, the validity of the user’s analytical results is still not guaranteed. Key conclusion points to consider are:

  1. Laboratories must validate their methods.
  2. Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.
  3. QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

The user must look beyond the QC data provided in their analytical report or laboratory control charts. Areas to look at will be covered in the next few articles in this series.