Tag Archives: Testing

amandarigdon

Proficiency Testing in the Cannabis Industry: An Inside Look

By Cannabis Industry Journal Staff
No Comments
amandarigdon

Cannabis Labs Virtual Conference: Part 4

Proficiency Testing in the Cannabis Industry: An Inside Look
By Amanda Rigdon, Chief Technical Officer, Emerald Scientific

This presentation covers specifics of different proficiency testing schemes available to the cannabis industry. Additionally, specific challenges facing both laboratories and PT providers in the cannabis industry will be addressed. Data relating to residual solvent and potency proficiency testing will be presented.

Integrating Your LIMS System With State Tracking Systems

By Cannabis Industry Journal Staff
No Comments

Cannabis Labs Virtual Conference: Part 3

Integrating Your LIMS System With State Tracking Systems
By Hannah O’Brien, Operations Manager, Confident Cannabis

Running a lab is hard. Running a cannabis lab is harder. Watch this webinar hosted by Confident Cannabis, the most popular and only free cannabis LIMS in the country, to learn how cannabis compliance and regulatory burdens impact analytical testing laboratories in any state, and how important purpose-built software solutions are to make their business run smoothly.

Ask The Expert: Exploring Cannabis Laboratory Accreditation Part 4

By Aaron G. Biros
No Comments

In the first part of this series, we spoke with Michelle Bradac, senior accreditation officer at A2LA, to learn the basics of cannabis laboratory accreditation. In the second part, we sat down with Roger Brauninger, A2LA Biosafety Program manager, to learn why states are looking to lab accreditation in their regulations for the cannabis industry. In the third part, we heard from Michael DeGregorio, chief executive officer of Konocti Analytics, Inc., discussing method development in the cannabis testing industry and his experience with getting accredited.

In the fourth and final part of this series, we sit down with Susan Audino, Ph.D., an A2LA lead assessor and instructor, laboratory consultant and board member for the Center for Research on Environmental Medicine in Maryland. Dr. Audino will share some insights into method validation and the most technical aspects of laboratory accreditation.

Susan Audino, Ph.D.

Susan Audino obtained her Ph.D. in Chemistry with an analytical chemistry major, physical and biochemistry minor areas. She currently owns and operates a consulting firm to service chemical and biological laboratories. Susan has been studying the chemistry and applications of cannabinoids and provides scientific and technical guidance to cannabis dispensaries, testing laboratories and medical personnel. Dr. Audino’s interest most directly involves cannabis consumer safety and protection, and promotes active research towards the development of official test methods specifically for the cannabis industry, and to advocate appropriate clinical research. In addition to serving on Expert Review Panels, she is also chairing the first Cannabis Advisory Panel and working group with AOAC International, is a member of the Executive Committee of the ASTM Cannabis Section and has consulted to numerous cannabis laboratories and state regulatory bodies.

CannabisIndustryJournal: What are the some of the most significant technical issues facing an accreditation body when assessing a cannabis-testing laboratory?

Susan: From the AB perspective, there needs to be a high level of expertise to evaluate the merits and scientific soundness of laboratory-developed analytical test methods. Because there are presently no standard or consensus test methods available, laboratories are required to develop their own methods, which need to be valid. Validating methods require a rigorous series of tests and statistical analyses to ensure the correctness and reliability of the laboratory’s product, which is– the test report.

CIJ: When is method validation required and how does this differ from system suitability?

Susan: Method validation is required whenever the laboratory modifies a currently accepted consensus or standard test method, or when the laboratory develops its own method. Method validation is characterized by a series of analytical performance criteria including determinations of accuracy, precision, linearity, specification, limit of detection, and limit of quantitation. The determination of system suitability requires a series of deliberate variations of parameters to ensure the complete system, that is all instrument(s) as well as the analytical method, is maintained throughout the entire analytical process. Traditionally, method validation has been referred to as “ruggedness” and system suitability as “robustness.”

CIJ: What are the most important aspects of method validation that must be taken into account? 

Susan: In keeping with the FDA guidelines and other accepted criteria, I tend to recommend the International Conference on Harmonization (ICH), particularly Q 2A, which is a widely recognized program that discusses the pertinent characteristics of method validation. This include: method specification, linearity, range, accuracy, and precision (e.g., repeatability, intermediate precision, reproducibility). As mentioned earlier, system suitability is also a critical element and although related to method validation, does require its own protocol.

CIJ: What three areas do you see the laboratory having the hardest time with in preparing for accreditation? 

Susan: My responses to this question assume the laboratory employs appropriate instruments to perform the necessary analyses, and that the laboratory employs personnel with experience and knowledge appropriate to develop test methods and interpret test results.

  • By and large, method validation that is not appropriate to the scope of their intended work. Driving this is an overall lack of information about method validation. Oftentimes there is an assumption that multiple recoveries of CRMs constitute “validation”. While it may be one element, this only demonstrates the instrument’s suitability. My recommendation is to utilize any one of a number of good single laboratory validation protocols. Options include, but are not limited to AOAC International, American Chemical Society, ASTM, and ICH protocols.
  • Second is the lack of statistically sound sampling protocols for those laboratories that are mandated by their governing states to go to the field to sample the product from required batches. Sampling protocols needs to address the heterogeneity of the plant, defining the batch, and determining/collecting a sample of sufficient quantity that will be both large enough and representative of the population, and to provide the laboratory an adequate amount from which to sub-sample.
  • Third, sample preparation. This is somewhat intertwined with my previous point. Once an appropriate sample has been collected, preparation must be relevant to the appropriate technology and assay. It is unlikely that a laboratory can perform a single preparation that is amenable to comprehensive testing.

California Releases Proposed Emergency Regulations

By Aaron G. Biros
No Comments

Last week, the California Bureau of Cannabis Control released their proposed emergency regulations for the industry. The Bureau, the government agency tasked with regulating California’s cannabis industry, announced the proposed emergency regulations ahead of the highly anticipated January 2018 start date.

The Bureau also published helpful fact sheets and overview documents, providing a good snapshot of the major requirements for different types of licenses. Here are some of the key takeaways:

Temporary licenses will allow businesses to operate for 120 days while their annual license application is being processed. Not surprisingly, local jurisdictions have considerable autonomy. Getting a license seems to be contingent on first getting local approval to operate. According to Josh Drayton, communications and outreach director at the California Cannabis Industry Association (CCIA), working with local governments will be crucial to making progress. “Now that the Brown Administration has created the framework for medical and adult use cannabis, the main challenge we face as an industry is getting local municipalities to move forward with regulations,” says Drayton. “California has a dual licensing process which means that cannabis operators must receive a local permit/license/authorization before being able to apply for a state license. A majority of California cities and counties have yet to finalize their regulations which will delay state licensing.”

The initial reactions to these proposed regulations seem positive, given that this is a culmination of efforts over several years. “The California Cannabis Industry Association welcomes the release of the emergency regulations,” says Drayton. “These regulations represent years of hard work and collaboration between the administration, the regulating departments, and the cannabis industry.”

License Distinctions

A-type licenses are for businesses in the adult-use market, while M-type licenses are for the medical market. Laboratory licenses don’t have this distinction, as they can test both medical and adult-use products.

The record keeping and security requirements seem relatively straightforward, requiring normal surveillance measures like 24-hour video, commercial-grade locks and alarm systems. The rules also lay out guidelines for disposing of waste, including securing it on the premises and not selling it.

Distributors

Distributor licenses appear to have a number of compliance documentation requirements, such as arranging for all product testing, quality assurance and packaging and label accuracy. “Cannabis and cannabis products must pass through a distributor prior to being sold to customers at a retail establishment,” reads the overview the Bureau published. There is also a transport-only distributor license option. Those regulations appear to be more comprehensive than others, with a number of regulations pertaining to appropriate transportation and security measures.

Everything has to be packaged before it gets to retail; Retailers are not allowed to package or label cannabis products on premises. Microbusiness licenses will be available, which should be an exciting new development to follow as the market matures.

Labs

The state will require ISO 17025 accreditation for testing labs. A provisional license is required for a lab to operate in the short term, expiring after 12 months. Laboratory personnel are required to go in the field and do the sampling. Documentation requirements, sample sizes, sampling procedures and storage and transportation rules are also laid out.

Testing labs are required to test for cannabinoids, foreign material, heavy metals, microbial impurities, mycotoxins, moisture content and water activity, residual pesticides, residual solvents and processing chemicals and terpenoids (terpenes). Infused and edible products are required to be tested for homogeneity in THC and CBD concentrations as well. Drayton and the CCIA welcome these new testing regulations, hoping it might improve overall public safety. “We believe that these regulations will address public health issues by mandating the testing of all cannabis products,” says Drayton. “The evolution of the cannabis industry will continue, and we will continue to advocate for good policy that creates solutions for the problems that arise. I believe that we will be visiting and revisiting cannabis regulations for many years to come.”

Certificates of analysis (COA) will be required, showing whether a batch passes or fails testing requirements. Harvest batches that fail testing can be processed for remediation. “Testing laboratories are required to develop and implement a quality assurance program that is sufficient to ensure the reliability and validity of the analytical data produced by the laboratory,” reads the statement on QA and QC.

The Bureau, at the end of their regulatory overview document, lays out some possible enforcement actions, disciplinary actions and citations that could come from noncompliance. “These emergency regulations create a framework for both medical and adult use consumers,” says Drayton.  “January 1, 2018 will be the first date that adults 21 years and older will be able to purchase cannabis without a medical card.”

In the coming weeks, we’ll be breaking down and analyzing the other proposed emergency regulations that the state released. Stay tuned for a breakdown of the California Department of Food & Agriculture (CDFA) regulations on cannabis cultivation, as well as The California Department of Public Health (CDPH) cannabis manufacturing regulations.

Steep Hill Expands To Oregon

By Aaron G. Biros
1 Comment

Last week, Steep Hill announced they are expanding into Oregon with a laboratory in Portland. According to the press release, the company has licensed its testing technology to Dr. Carl Balog, a renowned pain and addiction physician.

Steep Hill has expanded significantly over the past year, including new laboratories in Pennsylvania, Maryland, Washington D.C. and Hawaii, among other states. The Berkeley-based company works in lab testing, research and development, licensing, genetics and remote testing. In 2008, Steep Hill opened the first-ever commercial cannabis-testing laboratory in the country.

Jmîchaeĺe Keller, president and chief executive officer of Steep Hill, says this is a development that will help them better understand cannabis chemistry and its medical applications. “We are pleased to announce our expansion into Oregon and especially pleased to partner with Dr. Balog, a physician who brings years of pain and addiction experience to the Steep Hill body of expertise,” says Keller. “In addition, Dr. Balog plans to use his specialized knowledge to aid Steep Hill’s research and development efforts to broaden our understanding of cannabis chemistry and to explore its wider medical applications. In partnering with Dr. Balog, we hope that Steep Hill will be able to help physicians around the United States to curb the opioid epidemic by offering Steep Hill Verified™ medicinal cannabis as an alternative to a crisis that plagues this country.”

Examination of cannabis prior to testing- credit Steep Hill Labs, Inc.

Dr. Balog, now owner and medical director of Steep Hill Oregon, says medical cannabis could be an excellent harm reduction tool, and hints at it being a possible tool in the opioid crisis. “I deal with the consequences of the opioid epidemic on a daily basis as a pain and addiction specialist,” says Dr. Balog. “The growing trend of using cannabis products as an alternative to opioids highlights the need for regulated testing. Because of the variability of marijuana preparations, testing ensures that scientific rigor is applied in a standardized way. I am dedicated to ensuring that patients have access to safe, tested cannabis, free from contaminants and to verified labels that can be trusted for their content.”

They expect Steep Hill Oregon to be open for business in the second quarter of 2018.

Soapbox

Terpene Reconstitution: This Oak Barrel Is Not Your Answer

By Dr. Zacariah Hildenbrand
3 Comments

I’m not much of an oenophile but I recently came across a very interesting set of documentaries about sommeliers, which are experts on the science of wine and, most importantly, how wines are to be paired with food. What struck me as the most fascinating topic pertained to how mistakes made in the vineyard could be concealed by the barrel in which the wine is stored. For example, if the weather conditions throughout the season had been particularly tumultuous, and you end with sub-optimal grapes that are lacking complexity, then you can compensate for this by aging the wine in a variety of different oak barrels to enhance the flavor. To me, this is synonymous with the way that I’ve seen cannabis concentrates being handled, particularly with respect to terpenes. More specifically, it has recently become somewhat fashionable to supplement cannabis extracts with commercially available terpenes to reestablish an aroma profile that is most representative of the original stock material. Taken one step further, I have even heard of hemp extracts being supplemented with terpenes to achieve a particular strain phenotype, which I cannot imagine pans out very well. In my opinion, this is a very bad idea for two reasons:

One, cannabis is incredibly complex and can contain over 100 different terpene molecules, which can collectively act as anti-inflammatories (Chen et al., 2014), anti- microbial agents (Russo, 2011), sleep aids (Silva et al., 2007), bronchodilators (Falk et al., 1990), and even insulin regulators (Kim et al., 2014). So let’s say that you get your stock material tested and the laboratory screens the product for the top 25 most-prevalent terpenes: alpha- and beta-pinenes, linalool, limonene, beta-myrcene, etc. At that point you utilize this information to supplement your extraction product with these terpenes. However, you still may be missing information about other important molecules such as trans-2-pinanol, alpha-bisabolene and alloaromadendrene that are produced at extremely low, yet therapeutically relevant concentrations in the plant. So essentially with the limited information of the terpenes actually present in your stock material, you would be trying to rebuild a puzzle with only a small fraction of the pieces. Even Ben Affleck’s character in the movie ‘The Accountant’ can’t effectively pull this off.

An example of some commercially available terpenes on the market

Secondarily, not all commercially available terpenes are created equal. I’ll be the first to admit that I don’t have decades of experience vetting the quality of terpenes currently on the market; however, the several times that I have thrown samples into the GC-FID (Gas Chromatograph equipped with a Flame Ionization Detector) I have been unpleasantly surprised. Expecting beta-caryophyllene and detecting caryophyllene oxide is frustrating and in my opinion, such inaccuracies are wrong and should not be accepted as colloquialisms.

The moral of the story here is that in order to produce premium cannabis extracts/concentrates, the stock material needs to be handled with extreme care in order to retain the bouquet of terpenes in their natural ratios. This is incredibly important given the volatile nature of terpenes and their seemingly ephemeral, yet vital, nature in cannabis. Thankfully in this bourgeoning industry there are a number of extraction professionals who are delicately navigating the balance between art and science to produce premium products that are incredibly terpene-rich. However, for every alchemyst there is also someone trying to circumvent nature and while as a scientist I am inherently in favor of experimentation, I am also an admirer of natural processes.


Using Cloud-Based LIMS To Improve Efficiency In Cannabis Labs

By Shonali Paul
No Comments

Cannabis testing laboratories around the country are expanding quickly, taking on new clients and growing their business incrementally. Many of these labs are receiving a large number of test requests from growers for potency testing, terpene profiling, pesticide screening, residual solvent screening, heavy metal testing, microbial analysis and even genetic testing. To keep pace with the number of test requests received, efficient data, sample and test management is imperative.

Considering the magnitude of cannabis testing, data management using spreadsheets is a serious impediment to quality assurance. Data being recorded in spreadsheets is error-prone and difficult to manage. Furthermore, using spreadsheets does not allow labs to adhere to regulatory guidelines that demand strict accounting for every gram of the sample, right from reception, consumption for testing, to disposal.

Log samples, keep track of Chain of Custody(CoC), track samples from initial location in the lab through disposal by recording location, custodians and other metadata

To overcome such data management challenges and improve the operational efficiency of cannabis testing laboratories, a Laboratory Information Management System (LIMS) plays a significant role. LIMS are much more capable than spreadsheets and paper-based tools for managing analytical and operational activities. LIMS enhances the productivity and quality by eliminating the manual data entry. With its built-in audit trail capability, LIMS helps labs adhere to regulatory standards.

LIMS can provide companies with a method to manage samples, records and test results, and ensures regulatory compliance by increasing traceability. LIMS can also be integrated with other lab instrumentation and enterprise systems, enabling easier transmission of information across the lab and the organization, reducing manual efforts and improving decision-making.

Account for the entire quantity of sample received, used and disposed

Multiple resources are also available to assist labs in preparing for quality assurance and accreditation, LIMS being one of them. LIMS can help cannabis labs with instrument integration, and automate reporting to help improve efficiencies and reduce errors. LIMS, such as CloudLIMS Lite, a cloud-based LIMS, automates cannabis-testing workflows right from sample collection, data recording, managing test chain of custody, sample weight accounting to report generation. With data security and audit trails, a LIMS provides traceable documentary evidence required to achieve ISO 17025 accreditation for highly regulated labs. Above all, cloud-enabled systems are often low in the total cost of acquisition, have maintenance outsourced, and are scalable to help meet the ever-changing business and regulatory compliance needs.

Incorporate all tests, instruments, sample information and result data (etc.) in one place

Cloud-based products are secure, easy to deploy and scalable. A cloud product is typically hosted on a server with a guaranteed uptime of 99.5%, allowing for a reliable system, accessible 24×7. Cloud-based LIMS have automatic data backup mechanism that allow for quick turnarounds in case of a server failure or in the eventuality of a natural disaster.

With LIMS in place, cannabis labs can manage sample and requisition-centric records, track sample quantity and location, integrate the test data, and provide online reports to clients. This in turn, reduces the turnaround time for testing and improves the operational efficiency. Besides, audit trail of each and every activity performed by the lab personnel is recorded in the system to ensure that the lab follows regulatory compliance.


Editor’s Note: This is a condensed version of a poster that was submitted and displayed at this year’s Cannabis Science Conference in Portland, Oregon. The authors of the original poster are Arun Apte, Stephen Goldman, Aditi Gade and Shonali Paul.

Ask The Expert: Exploring Cannabis Laboratory Accreditation Part 3

By Aaron G. Biros
No Comments

In the first part of this series, we spoke with Michelle Bradac, senior accreditation officer at A2LA, to learn the basics of cannabis laboratory accreditation. In the second part, we sat down with Roger Brauninger, A2LA Biosafety Program manager, to learn why states are looking to lab accreditation in their regulations for the cannabis industry.

In the third part of this series, we sit down with Michael DeGregorio, chief executive officer of Konocti Analytics, Inc., to talk method development in the cannabis testing industry and his experience with getting accredited. In the final part of this series, we are going to sit down with Susan Audino, an instructor at A2LA to learn more about the requirements where she’ll offer some advice for labs seeking accreditation.

Michael DeGregorio, chief executive officer of Konocti Analytics, Inc.

Michael DeGregorio is a doctor of pharmacy with an extensive career in medicine and scientific research. He’s worked in cancer research and medicine, teaching at the University of California, San Francisco, Yale University School of Medicine, University of Texas, Health Science Center at San Antonio and University of California, Davis. Before becoming the CEO of Konocti Analytics, a laboratory based in California, DeGregorio was also a published author in a large number of peer-reviewed medical journals.

In this piece, we sit down with DeGregorio to find out what challenges labs face when getting accredited, why they sought accreditation and their experience with getting off the ground. Stay tuned for the final part of this series!

CannabisIndustryJournal: How does a laboratory go about choosing an appropriate method in an industry where, generally, there are no validated methods available?

Michael DeGregorio: Our approach to developing analytical methods for testing cannabis began with a review of the existing laboratories and their methods, where we found no standardization and inconsistent results. Since cannabis is being used by the public and as a medicine, our goal is to help make it as contaminant-free as possible for the well-being of the consumer, and this begins by developing a state-of-the-art analytical facility.

When developing new methods, we review the published literature to see what has already been done and try to arrive at a scientifically sound consensus. We then perform experiments to determine which set of conditions works best for us. Once we have developed an appropriate method, we validate it pursuant to ISO/IEC 17025 requirements.

CIJ: How do you go about choosing what type of equipment to use for testing (e.g. by limit of detection, acceptable method use of equipment for other industries, etc.)?

Michael: After reviewing the operations of other testing laboratories, we concluded that, in general, they were not taking advantage of the most advanced technologies and had limited personnel qualified to operate it. Because public safety is our main concern, we chose state-of-the-art equipment, including GC/LC-MS with Orbitrap and ICP-MS, for testing medicinal cannabis. In addition to identifying unknown pesticides, we needed the capability of performing full chemical screening of all samples for potentially harmful compounds, e.g. steroids, present in cannabis, as well as the ability to detect trace levels of metals.

Our greatest concern is the fact that pesticides in cannabis have not been adequately studied. Current pesticide regulations suggest that government authorities believe that there are a finite number of pesticides available. Smart farmers could easily avoid the pesticides on current lists. Because of this, we chose to validate our pesticide methods with a focus on chemical classes, as opposed to specific pesticides, to give us the broadest possible coverage of potential compounds. The Orbitrap mass spectrometers also allow us to detect and identify unknown pesticides. This is something not currently being done by other laboratories. The latest microbiology methods for cannabis testing include DNA analysis, and for this we use qRT-PCR technology. Finally, the high sensitivity of ICP-MS allows for the detection of metals concentrations that may be harmful, yet undetectable by other means.

CIJ: What do you feel are the benefits of being accredited?

Michael: Being accredited shows the public that we have made a commitment to quality analytics. We feel this gives our clients peace of mind when marketing their products, knowing that they have been tested by a laboratory meeting the highest international standards of operation available using the latest technology. Furthermore, being accredited requires participation in ongoing proficiency testing programs, which helps maintain analytical competency. It should be pointed out that any prospective client of an analytical facility should take into account the laboratory’s full accredited scope of testing to ensure its competency.

CIJ: What challenges did you face during the process of getting your laboratory started and/or during the accreditation process?

Michael: Developing the quality management system and getting our equipment and processes to a state where they met accreditation requirements took several months of hard work, and turned out to be a bit more daunting than we anticipated. Our pre-accreditation assessment revealed that much work remained to be done, and it gave us a real appreciation for the level of detail and documentation required. We remained determined and eventually achieved our accreditation.

CIJ: What are the benefits to the grower and dispensaries to choosing an accredited laboratory for the testing of their product?

Michael: By choosing an accredited laboratory with a full scope of testing (potency, pesticides, mycotoxins, metals, microbiology, residual solvents and terpenes), growers and dispensaries can rest assured that their products have been tested using validated methods with appropriate quality control by trained, competent personnel. For growers, this makes their products more attractive to potential buyers. For dispensaries, this means they can confidently market their products with the knowledge that the information shown on the label is accurate, which in turn gives their customers peace of mind that the product they are consuming does not contain unacceptable levels of contaminants. 

CIJ: Why did you choose A2LA?

Michael: Once we decided to pursue accreditation, we researched the various accrediting bodies available as well as their reputations. We discovered that while all accrediting bodies are themselves accredited to the same standard, accreditation by the various bodies was not considered equal in practice. In our opinion, A2LA was considered the most prestigious, highly regarded accrediting body. Furthermore, some of the most prestigious laboratories in the country are accredited by A2LA, including Los Alamos National Laboratory, the Food and Drug Administration’s Center for Biologics Evaluation and Research, Lawrence Livermore National Laboratory, Centers for Disease Control, Federal Bureau of Investigation and the United States Department of Agriculture. Many of our preferred sources of scientific supplies and services are accredited by A2LA as well. As our goal was to be accredited by the best available accrediting body, we chose A2LA.

Shimadzu, Cure And CK Sciences Partner On R&D of Pharmaceutical Cannabis Products

By Aaron G. Biros
1 Comment

Yesterday, Shimadzu announced the formation of a partnership with Cure Pharmaceutical Group and CK Sciences to research and develop pharmaceutical cannabis-based products, according to a press release. The three organizations entered a collaborative agreement with the goal of researching and developing products, then moving them through clinical trials using FDA guidelines.

According to the press release, the partnership’s primary goal will be researching and profiling the synergistic effects of the cannabinoids and terpenes, called the “Entourage Effect.”

Shimadzu, a well-know analytical instrument manufacturer, has been making a name for itself in the scientific cannabis space with a number of exciting new ventures. They have worked extensively with cannabis laboratories throughout the country in refining methods and improving analytical chemistry in the space. For example, Shimadzu powers EVIO Labs Florida with over $1.2 million in the latest testing instrumentation.

The Cannabis Analyzer For Potency

Tracy Ryan, chief executive officer and founder of CK Sciences, says outfitting their lab for pharmaceutical research was a big priority for starting their venture. “When we met with Shimadzu, and we saw their passion for our mission, we knew we were in incredible hands! When analyzing cannabis everything has to be so precise,” says Ryan. “With Shimadzu’s platforms and team of brilliant scientists supporting our efforts, we have already set ourselves up for success.”

Back in March, Shimadzu launched their Cannabis Analyzer for Potency, a high-performance liquid chromatograph (HPLC) designed specifically for quantitative determination of cannabinoid content. The organizations in the partnership will be using that instrument, in addition to a headspace Gas Chromatograph Mass Spectrometer (GCMS) for terpene profiling. Both Cure and CK will use the instruments to generate data, with the goal to validate cannabis as a viable pharmaceutical treatment, according to the press release.

Bob Clifford, Ph.D., general manager of marketing for Shimadzu, says they are excited to work with the organizations. “The emerging pharmaceutical cannabis market requires dedicated, thoughtful leaders eager to showcase the pharmaceutical benefits of cannabis on a scientific level,” says Clifford. “The Cure/CK Sciences group has continuously demonstrated such a leadership commitment, and we’re excited about the opportunities this agreement provides.”

Quality Assurance In The Field: Instruments For Growers & Processors

By Aaron G. Biros
2 Comments

As the cannabis marketplace evolves, so does the technology. Cultivators are scaling up their production and commercial-scale operations are focusing more on quality. That greater attention to detail is leading growers, extractors and infused product manufacturers to use analytical chemistry as a quality control tool.

Previously, using analytical instrumentation, like mass spectrometry (MS) or gas chromatography (GC), required experience in the laboratory or with chromatography, a degree in chemistry or a deep understanding of analytical chemistry. This leaves the testing component to those that are competent enough and scientifically capable to use these complex instruments, like laboratory personnel, and that is still the case. As recent as less than two years ago, we began seeing instrument manufacturers making marketing claims that their instrument requires no experience in chromatography.

Instrument manufacturers are now competing in a new market: the instrument designed for quality assurance in the field. These instruments are more compact, lighter and easier to use than their counterparts in the lab. While they are no replacement for an accredited laboratory, manufacturers promise these instruments can give growers an accurate estimate for cannabinoid percentages. Let’s take a look at a few of these instruments designed and marketed for quality assurance in the field, specifically for cannabis producers.

Ellutia GC 200 Series

Shamanics, a cannabis extractor in Amsterdam, uses Ellutia’s 200 series for QA testing

Ellutia is an instrument manufacturer from the UK. They design and produce a range of gas chromatographs, GC accessories, software and consumables, most of which are designed for use in a laboratory. Andrew James, marketing director at Ellutia, says their instrument targeting this segment was originally designed for educational purposes. “The GC is compact in size and lightweight in stature with a full range of detectors,” says James. “This means not only is it portable and easy to access but also easy to use, which is why it was initially intended for the education market.”

Andrew James, marketing director at Ellutia

That original design for use in teaching, James says, is why cannabis producers might find it so user-friendly. “It offers equivalent performance to other GC’s meaning we can easily replace other GC’s performing the same analysis, but our customers can benefit from the lower space requirement, reduced energy bills, service costs and initial capital outlay,” says James. “This ensures the lowest possible cost of ownership, decreasing the cost per analysis and increasing profits on every sample analyzed.”

Shamanics, a cannabis oil extraction company based in Amsterdam, uses Ellutia’s 200 series for quality assurance in their products. According to Bart Roelfsema, co-founder of Shamanics, they have experienced a range of improvements in monitoring quality since they started using the 200 series. “It is very liberating to actually see what you are doing,” says Roelfsema. “If you are a grower, a manufacturer or a seller, it is always reassuring to see what you have and prove or improve on your quality.” Although testing isn’t commonplace in the Netherlands quite yet, the consumer demand is rising for tested products. “We also conduct terpene analysis and cannabinoid acid analysis,” says Roelfsema. “This is a very important aspect of the GC as now it is possible to methylate the sample and test for acids; and the 200 Series is very accurate, which is a huge benefit.” Roelfsema says being able to judge quality product and then relay that information to retail is helping them grow their business and stay ahead of the curve.

908 Devices G908 GC-HPMS

908 Devices, headquartered in Boston, is making a big splash in this new market with their modular G908 GC-HPMS. The company says they are “democratizing chemical analysis by way of mass spectrometry,” with their G908 device. That is a bold claim, but rather appropriate, given that MS used to be reserved strictly for the lab environment. According to Graham Shelver, Ph.D., commercial leader for Applied Markets at 908 Devices Inc., their company is making GC-HPMS readily available to users wanting to test cannabis products, who do not need to be trained analytical chemists.

The G908 device.

Shelver says they have made the hardware modular, letting the user service the device themselves. This, accompanied by simplified software, means you don’t need a Ph.D. to use it. “The “analyzer in a box” design philosophy behind the G908 GC-HPMS and the accompanying JetStream software has been to make using the entire system as straightforward as possible so that routine tasks such as mass axis calibration are reduced to simple single actions and sample injection to results reporting becomes a single button software operation,” says Shelver.

He also says while it is designed for use in the field, laboratories also use it to meet higher-than-usual demand. Both RM3 Labs in Colorado, and ProVerde in Massachusetts, use G908. “RM3’s main goal with the G908 is increased throughput and ProVerde has found it useful in adding an orthogonal and very rapid technique (GC-HPMS) to their suite of cannabis testing instruments,” says Shelver.

Orange Photonics LightLab Cannabis Analyzer

Orange Photonics’ LightLab Cannabis Analyzer

Dylan Wilks, a third generation spectroscopist, launched Orange Photonics with his team to produce analytical tools that are easy to use and can make data accessible where it has been historically absent, such as onsite testing within the cannabis space. According to Stephanie McArdle, president of Orange Photonics, the LightLab Cannabis Analyzer is based on the same principles as HPLC technology, combining liquid chromatography with spectroscopy. Unlike an HPLC however, LightLab is rugged, portable and they claim you do not need to be a chemist to use it.

“LightLab was developed to deliver accurate repeatable results for six primary cannabinoids, D9THC, THC-A, CBD, CBD-A, CBG-A and CBN,” says McArdle. “The sample prep is straightforward: Prepare a homogenous, representative sample, place a measured portion in the provided vial, introduce extraction solvent, input the sample into LightLab and eight minutes later you will have your potency information.” She says their goal is to ensure producers can get lab-grade results.

The hard plastic case is a unique feature of this instrument

McArdle also says the device is designed to test a wide range of samples, allowing growers, processors and infused product manufacturers to use it for quality assurance. “Extracts manufacturers use LightLab to limit loss- they accurately value trim purchases on the spot, they test throughout their extraction process including tests on spent material (raffinate) and of course the final product,” says McArdle. “Edibles manufacturers test the potency of their raw ingredients and check batch dosing. Cultivators use LightLab for strain selection, maturation monitoring, harvesting at peak and tinkering.”

Orange Photonics’ instrument also connects to devices via Wi-Fi and Bluetooth. McArdle says cannabis companies throughout the supply chain use it. “We aren’t trying to replace lab testing, but anyone making a cannabis product is shooting in the dark if they don’t have access to real time data about potency,” says McArdle.