Tag Archives: THCV

Cannabis Vape Clarity: How to Help Consumers Shop Smart

By Vitaly Mekk
1 Comment

Between 2020 and 2021, cannabis vape cartridges saw 25% year-over-year growth and all-in-one vapes grew a whopping 64% as a category during the same time period. Two years later, the vape space shows no signs of slowing down. There are more strain and extraction style options than ever, not to mention advances in consumption device technology.

That huge growth and diversification means consumers have a lot of choices and decisions to make. Cutting through that noise takes a little know-how, however. For a shopper who’s hesitant or overwhelmed when comparing multiple vape options, brands and budtenders can start with some informative, friendly education on how terpenes deserve their consideration.

Why are terpene profiles so important? Imagine going into a wine store and only getting a recommendation for red or white at different price points. You might end up with something delicious that fits your budget, but you’re missing out on deeper nuances that could enrich the experience. Consumers don’t know what they don’t know. But brands can do better.

Terpenes and the Entourage Effect for Vape Products

Instead of the indica-sativa-hybrid trichotomy, focus on the kind of experience you want to have. Understanding terpenes can go a long way to helping consumers find the strains that produce their favorite flavors, scents and sensations. Also key is understanding how terpenes work together in different strains—a phenomenon known as the entourage effect.

Figure 1: The chemical structure of cannabidiol.
The chemical structure of cannabidiol (CBD)

The entourage effect is often simplified to a collaboration between major and minor cannabinoids like CBD, CBG, CBN and THCV. But a true entourage effect isn’t just the combination of different cannabinoids. It’s the combination of terpenes, cannabinoids, flavonoids and other chemicals such as esters.

Why does this matter? The best cannabis represents the best of each of these elements, not simply terpenes and cannabinoids. As a result, the best cannabis vapes are the ones that can preserve all of these elements and produce an entourage effect.

This is where it’s worth pointing out the pros and cons of low-end cannabis vape products. Cheaper strain profiles typically feature fewer ingredients, including the terpenes, flavonoids and esters that contribute to a distinctive entourage effect. It’s not a matter of upselling: Sure, the price point might be attractive, but one-size-fits-all weed isn’t the experience most consumers are ultimately looking for.

How Extraction Methods Impact Cannabinoids, Terpenes and Other Chemical Compounds

The loss of crucial members of a cannabis cultivar’s entourage is one reason extraction methods make such a big difference. It can be hard for many consumers to cut through the jargon of resin vs. rosin, CO2 vs. butane, ice vs. heat and so forth. But one simple way to break it down is this: botanical, aka distillate, terpene profiles typically have 30-60 ingredients. Meanwhile, cannabis-derived terpene profiles will have over 100.

A live rosin vape by Bloom

On the high end of that spectrum is rosin. Rosin products typically will have the largest number and range of flavor components. That’s one reason this category is so popular with cannabis connoisseurs who are particularly dialed into the flavors and effects of the products they consume, vape carts included.

Why Hardware Matters

There are two primary types of vape consumption hardware—510 thread batteries combined with various brands of vape carts, or all-in-one vape devices that come pre-loaded with proprietary concentrates. 510 thread systems were carried over from the nicotine vape space, and quickly became the industry standard because they allow consumers to try vape carts from many different brands with the same rechargeable battery. There is a caveat: Temperature variance can affect the consumer’s experience for the worse, particularly with sensitive terpene boiling points.

All-in-one devices have been gaining popularity because they’re so easy to use. They come pre-loaded with concentrates and don’t require any charging cables or changing device settings. All-in-ones are typically pre-set to a tight temperature range well-suited to their unique concentrate formula—all a consumer has to do is put the device to their lips and pull.

A quality piece of vape hardware won’t produce a burnt flavor or irritate the nose. The flavor will come through cleanly and the draw should be smooth and consistent. Indeed, the latter is another sign of quality vape hardware consumers should know to look for—the resistance of that pull can vary widely between brands. The concentrate should draw easily from the chamber. If it feels like sucking a hefty milkshake through a straw, both the hardware and the concentrates inside are probably not the highest quality.

Whichever terpene profile, strain, extraction technique or device category is on a customer’s mind, it’s critical for brands and budtenders to help guide consumers to their individual best-fit cannabis vape experience.

An Evaluation of Sample Preparation Techniques for Cannabis Potency Analysis

By Kelsey Cagle, Frank L. Dorman, Jessica Westland
No Comments

Sample preparation is an essential part of method development and is critical to successful analytical determinations. With cannabis and cannabis products, the analyst is faced with a very challenging matrix and targets that may range from trace level through percent level thus placing considerable demands on the sample preparation techniques.1 The optimal sample preparation, or “extraction”, method for potency analysis of cannabis flower was determined using a methanol extraction coupled with filtration using regenerated cellulose filters. 

In the United States (US), Canada, and other countries where medicinal and/or adult recreational cannabis has been legalized, regulatory entities require a panel of chemical tests to ensure quality and safety of the products prior to retail sales2. Cannabis testing can be divided into two different categories: Quality and Safety. Quality testing, which includes potency analysis (also known as cannabinoid testing or cannabinoid content), is performed to analyze the product in accordance with the producer/grower expectations and government regulations. Safety testing is conducted under regulatory guidelines to ensure that consumers are not exposed to toxicants such as pesticides, mycotoxins, heavy metals, residual solvents and microbial contaminates.

Potency testing evaluates the total amount of cannabinoid content, specifically focusing on tetrahydrocannabinol (THC) and cannabidiol (CBD). In the US, the biggest push for accurate total THC is to differentiate between hemp (legally grown for industrial or medicinal use), which is defined as cannabis sativa with a THC limit ≤ 0.3 %, and cannabis (Cannabis spp.), which is any cannabis plant with THC measured above 0.3 %3. Potency testing is typically performed by liquid chromatography (LC) with UV detection to determine the quantity of major cannabinoids.

In addition to reporting THC and CBD, their respective precursors are also important for reporting total potency. Tetrahydrocannabinolic acid (THCA) is the inactive precursor to THC while cannabidiolic acid (CBDA) is the precursor to CBD.4,5

Methods and Materials

Sample Preparation

All samples were homogenized using an immersion blender with a dry material grinder. The nominal sample amounts were 200 mg of flower, 500 mg of edibles, and 250 mg of candy samples.

Potency Extraction Method (1)

Twenty milliliters (mL) of methanol (MeOH) was added to each sample. The samples were mechanically shaken for 10 minutes and centrifuged for 5 minutes.

Potency Extraction Method (2)

Ten mL of water was added to each sample. The samples were mechanically shaken for 10 minutes. 20 mL of acetonitrile (ACN) was then added to each sample and vortexed. An EN QuEChERS extraction salt packet was added to the sample. The samples were placed on a mechanical shaker for 2 minutes and then centrifuged for 5 minutes.

Each extract was split and evaluated with two filtration/cleanup steps: (1) a regenerated cellulose (RC) syringe filter (Agilent Technologies, 4 mm, 0.45 µm); (2) a PFTE syringe filter (Agilent Technologies, 4 mm, 0.45 µm). The final filtered extracts were injected into the ultra-performance liquid chromatograph coupled with a photodiode array detector (UPLC-PDA) for analysis.

Figure 1: Calibration curve for THC potency

Calibration

Standards were obtained for the following cannabinoids at a concentration of 1 mg/mL: cannabidivarin (CBDV), tetrahydrocannabivarin (THCV), cannabidiol (CBD), cannabigerol (CBG), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabinol (CBN), tetrahydrocannabinol (9-THC), cannabichromene (CBC), tetrahydrocannabinol acid (THCA). Equal volumes of each standard were mixed with MeOH to make a standard stock solution of 10 ug/mL. Serial dilutions were made from the stock to make concentrations of 5, 1, and 0.5 ug/mL for the calibration curve (Figure 1).

Instrumental Method

All instrument parameters were followed from Agilent Application Note 5991-9285EN.8 A UPLC with a PDA (Waters Corp, Milford, MA) detector was employed for potency analysis. An InfinityLab Poroshell 120 EC-C18, 3.0 x 50 mm, 2.7 um column (Agilent Technologies, Wilmington, DE) was utilized for compound separation. The organic mobile phase composition was 0.05 % (v/v) formic acid in HPLC grade MeOH and the aqueous mobile phase composition was 0.1 % (v/v) formic acid in HPLC grade water. The mobile phase gradient is shown in Table 1. The flow rate was 1 mL/min (9.5 minute total program), injection volume was 5 uL, and column temperature was 50 °C.

Table 1: LC mobile phase gradient for potency samples6

Discussion and Results

Table 2 summarizes the relative standard deviations (% RSD) were found for the THC calibrator (at 1 ug/mL) and one extract of a homogeneous sample (utilizing 7 replicates).

Table 2- %RSD values for the instrument response precision for THC in both the calibrations and the homogeneous extract.

The cannabinoid potency of various cannabis plant and cannabis product samples were determined for the various extraction techniques In the chromatograms THC was observed ~8.08 minutes and CBD was observed ~4.61 minutes (Figure 2).

Figure 2: Chromatogram of the 10ug/mL calibrator for potency/cannabinoid analysis

Total potency for THC & CBD were calculated for each sample using the equations below. Equation 1 was used because it accounts for the presence of THCA as well as the specific weight difference between THC and THCA (since THCA will eventually convert to THC, this needs to be accounted for in the calculations).

Table 3 shows the % THC and the total THC potency values calculated for the same flower samples that went through all four various potency sample preparation techniques as described earlier. Figure 3 also provides LC chromatograms for flower sample 03281913A-2 and edible sample 03281912-1.

Table 3-THC and Total THC potency values for the same cannabis flower sample processed through the combination of extractions and cleanups.
Figure 3: Potency/Cannabinoid analysis chromatogram for flower sample 03281913A-2 (red trace) and edible sample 03281912-1 (green trace).

The results indicated that with the “Potency Extraction Method 2” (ACN/QuEChERS extraction) coupled with the RC filter provided a bias of 7.29 % greater for total THC % over the other extraction techniques. Since the other 3 techniques provided total THC values within 2% of each other, the total THC of the sample is more likely ~14%.

Since the sample dilution for the above data set reduced the CBD content, an undiluted sample was run and analyzed. This data is reported in Table 4.

Table 4- CBD and Total CBD potency values for the same cannabis flower sample processed through different sample preparation techniques.

The CBD results indicated that with the “Potency Extraction Method 1” (methanol extraction) coupled with RC filter, allowed for a greater CBD recovery. This may indicate the loss of CBD with an ACN/QuEChERS extraction.

With an average ~14% total THC and 0.06% total CBD for a homogenous cannabis flower sample, the optimal sample preparation extraction was determined to be a methanol extraction coupled with filtration using a regenerated cellulose filter. Since potency continues to remain at the forefront of cannabis regulatory testing it is important to utilize the right sample prep for your cannabis samples.


References

  1. Wang M, Wang YH, Avula B, Radwan MM, Wanas AS, Mehmedic Z, et al. Quantitative Determination of Cannabinoids in Cannabis and Cannabis Products Using Ultra-High-Performance Supercritical Fluid Chromatography and Diode Array/Mass Spectrometric Detection. Journal of Forensic Sciences 2016;62(3):602-11.
  2. Matthew Curtis, Eric Fausett, Wendi A. Hale, Ron Honnold, Jessica Westland, Peter J. Stone, Jeffery S. Hollis, Anthony Macherone. Cannabis Science and Technology, September/October 2019, Volume 2, Issue 5.
  3. Sian Ferguson. https://www.healthline.com/health/hemp-vs-marijuana. August 27, 2020.
  4. Taschwer M, Schmid MG. Determination of the relative percentage distribution of THCA and 9-THC in herbal cannabis seized in Austria- Impact of different storage temperatures on stability. Forensic Science International 2015; 254:167-71.
  5. Beadle A. CBDA Vs CBD: What are the differences? [Internet]. Analytical Cannabis. 2019 [cited 2020 Apr 22]; https://www.analyticalcannabis.com/articles/cbda-vs-cbd-what-are-the-differences-312019.
  6. Storm C, Zumwalt M, Macherone A. Dedicated Cannabinoid Potency Testing Using the Agilent 1220 Infinity II LC System. Agilent Technologies, Inc. Application Note 5991-9285EN

From CBD to THCV: Clinical Trials & ECS Brands

By Aaron Green
No Comments

The cannabinoid industry has faced an uphill battle from the beginning due to a lack of reliable scientific awareness about cannabinoids, fueled by decades of the hemp plant’s status as an illegal Schedule 1 drug. Today, scientists finally are free to explore the hemp plant’s 115+ cannabinoids and their relationships with the body’s endocannabinoid system. One cannabinoid, THCV, is currently undergoing scrupulous research.

ECS Brands is an established provider of whole-plant extracts. In the first-ever clinical trial for an organic THCV-rich extract, ECS received support from the National Institutes of Health and guidance from the Mayo Clinic to assess its potential for weight loss, anxiety treatment and other therapies using Nitro-V Hemp Extract, an ECS Brands product containing high concentrations of THCV, CBDV and other cannabinoids. Early outcomes of the 90-day, randomized, double-blind placebo-controlled human study were recently released. 100 out of 100 people lost weight, making no changes to exercise while taking the product for 90 days.

We interviewed Arthur Jaffee, Founder & CEO of ECS Brands. Prior to founding ECS, Arthur was co-founder of Elixinol, a company manufacturing and distributing industrial hemp-based products. Arthur took Elixinol public on the Australian stock exchange in 2018.

Aaron Green: How did you get involved in the cannabis industry?

Arthur Jaffee, Founder & CEO of ECS Brands

Arthur Jaffee: I originally was planning on starting a fitness equipment company. I got introduced to my partner at Elixinol, Gabriel, who my old physical therapist at University of Colorado said I had to meet. By the end of our lunch meeting, we shook hands in agreement to partner up on the fitness equipment concept. The timing happened where he got this opportunity to distribute CBD just following our handshake partnership. I didn’t know what it was at the time. He asked me if I wanted to join and get involved. I did my research into the benefits and discovered CBD’s anti-inflammatory and neuro-protective benefits, which for me was relevant given my football experience. I quickly realized what the vast potential CBD could offer with inflammation, neuroprotection and so many of the health and safety concerns arising from contact sports at the time. So, ultimately the opportunity presented itself through a friend of a friend in Australia who had a supply chain in Europe. This was right when CBD first appeared in the media in 2014. It was almost like it just fell into my lap.

I’ve been fortunate to really see that transition, and the evolution of the industry. Back then was probably the most valuable time because growth was so slow. Nobody knew what CBD was back in 2014. The primary demographic was cancer patients and epilepsy patients which presented a significant challenge to develop sales and marketing materials and communicate compliantly. Our first hire was a Medical Doctor to communicate in a more compliant fashion. I had to learn everything there was about the science and the medical research that existed at that time. For me, that was very valuable.

The valuable learning experiences from the early days of the industry is what laid the foundation today with ECS brands where we are focused on education promoting awareness of the endocannabinoid system to take it a step beyond just CBD because in order to understand what constitutes a quality product, or why CBD can have all these various benefits for people, you must first understand how the body is naturally configured to receive and respond to these amazing phytochemicals such as CBD. CBD is just one of hundreds of phytonutrients that the human body is designed to use. The endocannabinoid system is so significant in the grand scheme of things, because once you start accepting that the system is your overarching regulatory system in the body, we can start to look at the endless therapeutic potential.

Green: Being an early player in the CBD space, how would you say you’ve evolved over time to where you’re at today?

Jaffee: Innovation. That’s what really drove me to start ECS brands. Back in 2014, I originally co-founded Elixinol. After we took Elixinol public on the Australian exchange in the very beginning of 2018, there was a shift in direction away from innovation. Nearly all emphasis was placed on just doing what we’re doing better – meaning improving margins. In such a new and young industry and being a pioneer, you don’t get many opportunities to discover and create something for the first time. So, the past three years with ECS brands is with a heavy focus on innovation and technology.

Green: How do you think about innovation for the endocannabinoid system?

Jaffee: One of the early discoveries for me that was most inspiring, was research that evaluated endocannabinoid receptor sites, basically little keyholes for cannabinoids to perfectly fit in – that are made for cannabinoids. When evaluating the number of receptor sites in different individuals experiencing stress and illness it showed there was a higher concentration of receptor sites in those that were sick and experiencing systemic stress. To me, that was that was powerful because if that doesn’t communicate the body’s need for cannabinoid nourishment to heal and restore back to homeostasis as a natural and involuntary response really motivated me to play a part in getting quality cannabinoid products out to the masses and specifically those in most critical need. Our first interaction with cannabinoids is in mother’s breast milk, the cannabinoids that our bodies naturally produce. After breastfeeding, our diets are completely stripped of virtually all cannabinoids, leaving the endocannabinoid system starving, and likely leading to many of the most common and chronic health deficiencies that causes detriment to so many. Rather than cannabinoids, we then get introduced to pharmaceuticals. The writing is on the wall – this must get accepted and integrated into our society.

The Nitro-V Hemp Extract, an ECS Brands product

When it comes to innovation surrounding the public system it requires research and requires scientific evidence. It requires functional products because you can have all these great benefits, but if you don’t have efficient and effective ways of delivering these chemicals to the body, it can almost be meaningless. It’s a delicate balance between consumer appeal, functionality and efficiency when it comes to the delivery into the body. We’re focusing on delivery systems, making things more bioavailable and integrating other natural botanicals that react and influence the system in similar ways as there are more than just cannabis-derived cannabinoids that can create positive impact and ultimately alter the way that the endocannabinoid system can regulate.

Green: An important aspect of innovation is clinical validation. How do you think about clinical trials and designing clinical trials for products?

Jaffee: Clinical trials are instrumental and required to validate claims because otherwise, it’s just speculation. Directional application without the clinical evidence to support in the appropriate way is setting yourself up for failure. Designing a clinical trial is just as important as performing the trial. If it’s not set up right, it can be a waste of time and money. Trials really need to be held to the gold standard of double-blind placebo controlled and thoughtfully organized.

We did organize a clinical trial at the beginning of this year, and it was incredible. We learned so much about a unique extract of ours that’s naturally rich in THCV and CBDV. We intentionally set it up to be a very broad and encompassing study. I personally wanted to see the different mechanisms and how the endocannabinoid system responded and worked together with other systems in the body. We evaluated a broad range of measurements, with complete safety tox study – blood panels to test every organ – measuring kidney enzymes, liver enzymes, ALT, AST, ALP, bilirubin, albumin, creatinine as well as cholesterol – with HDL, LDL and triglycerides, GFR and Complete Blood Count. We also measured blood sugar hemoglobin A1C and five major inflammatory markers of IL-1, IL-6, C-Reactive protein, Homocysteine and TNF. In addition to performing a full safety run-up of the product, we also measured weight, BMI, girth, questionnaires for anxiety, appetite, pain, mood and finally – we bought brand new Fitbit Versa 3’s for all 125 study participants which gave us objective measurements for REM sleep, deep sleep, awake time, systolic/diastolic BP, SpO2 blood oxygen levels and daily caloric output values – which was really cool because it provided tangible objective evidence that participants weren’t going out and secretly exercising. So, we had 100 people taking the product and then 25 on placebo.

Green: Was this a safety trial?

Jaffee: Yes. The primary endpoint study was safety. That’s how we enrolled participants – as a general product safety study for a natural product. I decided to include a lot of additional efficacy measurements, including weight loss, measuring body mass index as well as heart rate for all the blood markers that we looked at. In addition to that we purchased brand new Fitbit Versa 3’s for the entire study group, which was great because they gave us objective measurements for three different sleep readings, deep sleep, REM sleep and rest asleep as well as lower output and blood oxygen levels.

We saw everything kind of working together. We saw deep sleep improve 300% within two weeks. We saw blood sugars come down significantly from those that are considered high, pre-diabetic ranges of hemoglobin A1C. You saw inflammatory markers reduce to normal levels, with 92% efficacy, which basically just means that those who were experiencing inflammation by means of these major inflammatory markers, after 90 days, 92% of subjects were reduced to nominal ranges. So, it was really fascinating to see how, with all the different measurements. that we can correlate different objective measurements. Then, we did subjective measurements too. We had standardized questionnaires for anxiety and pain, as well as an internally developed appetite and cravings questionnaire.

Green: Based on the results of that safety study, are there particular disease states you want to target going forward?

Jaffee: Moving forward, we are interested to look at each blood sugar and Hb A1C. I think one of the most exciting and popular successes of the study was the fact that we had 100 out of 100 participants lose weight without diet and exercise. Because we incorporated the Fitbit, we were able to obtain objective evidence that participants weren’t going and secretly working out. The Fitbit provided a caloric output value. It is basically an algorithm taking the number of steps taken, stairs climbed, heart rate, movement, etc. to populate a caloric expenditure value, which remained completely stable in our study population. Subjects were specifically instructed NOT to change any lifestyle behavior – specifically diet, exercise, and sleep, and that if any changes were to occur naturally that was acceptable. What this ultimately told us is that diets changed, and metabolisms increased, and we were able to support that notion with the appetite and cravings questionnaire that we had participants fill out where cravings did reduce and desire for sugary foods reduced 63%. These were questions that we internally developed for the appetite and cravings questionnaire, which were based on feedback that we received prior to the study.

Green: What are in your personal life or in cannabis are you most interested in learning about?

Jaffee: It’s changed a little bit over the years. My biggest passion I would say is performance. I think the hemp plant has so much to offer when it comes to superior nutrition and healing. Once I learned about the benefits and the potential of hemp with its food applications and specific protein composition – the powerful oxygenating properties of Hemp Seed Oil, the brain health properties it encompasses, and of course the cannabinoid potential… It got me very motivated to commit myself to this plant. It wasn’t long before learning all the incredible industrial applications and solution the plant also offers – such as plastics, textiles, biofuel, building materials – and as an environmental science major – learning about these amazing applications got me that much more excited, but knowing and trusting that CBD would be the first stepping stone in an industry that needs to evolve into all the amazing sustainable applications because it’s all it’s all very real. It will get there, but it won’t be easy.

Green: Thanks Arthur, that concludes the interview.

Jaffee: Thanks Aaron

Soapbox

How Rare Cannabinoids Will Impact Investing

By Maxim Mikheev, Dennis O’Neill
No Comments

There is a significant increase in demand for all cannabinoid products across the board—including CBD, THC, CBG and THCV—from recreational users, consumer packaged goods and pharmaceutical companies. And the next great race is on for the hottest arrival to scientific cannabis therapeutics: rare cannabinoids.

Research shows rare cannabinoids are poised to be the future of cannabis investing, providing better health benefits in addition to impacting the pharmaceutical, CPG, nutraceuticals, cosmetics and pet care markets significantly. According to recent reports, the biosynthesis of rare cannabinoids will be a $25 billion market by 2025 and $40 billion by 2040.

The companies that will revolutionize this market are ones with the highest quality and lowest prices, which means that biosynthetic cannabinoid companies will be the leaders in investment and capturing market share. We will also see a major consolidation in this market amongst the grow, harvest and extraction companies, increasing efficiencies and driving down costs.

What are rare cannabinoids and why should we care?

Tetrahydrocannabivarin (THCV)

Rare cannabinoids such as CBG, CBN, THCV, THCA and others have significantly better and more specific health benefits than just CBD on its own. Biotech companies like ours, Biomedican, which has a patent-pending biosynthesis platform, can produce pharmaceutical grade, non-GMO, bioidentical, synthetic cannabinoids with 0.0% THC at 70-90% less cost. Producing 0.0% THC means that rare cannabinoids can be added into nutraceuticals, CPG and cosmetics/lotions with zero changes in current cannabis regulations. Also, we produce the same exact product every time (not possible through plants), which is extremely important for pharmaceutical companies conducting clinical trials.

Why are rare cannabinoids important?    

The human body contains different cannabinoid receptors that help regulate critical processes, including learning, memory, neuronal development, appetite, digestion, inflammation, overall mood, sleep, metabolism and pain perception. This considerable involvement of cannabinoid receptors, critical to many physiological systems, underscores their potential as pharmaceutical targets.

Tetrahydrocannabinol (THC), just one of hundreds of cannabinoids found in cannabis.

Pharmacological research has uncovered several medical uses for cannabinoids, which bind to cannabinoid receptors. They’ve been shown to help with pathological conditions such as pediatric epilepsies, glaucoma, neuropathic pain, schizophrenia and have anti-tumor effects as well as promote the suppression of chemotherapy-induced nausea. This ongoing research is becoming more prevalent and has the potential to uncover therapeutic uses for an array of cannabinoids.

In addition to the medical field, other prominent sectors have adopted the use of cannabinoids. There is an increasing demand for cannabinoids in inhalables, the food industry and in hygienic and cosmetic products. Veterinary uses for cannabinoids are also coming to light. The use of naturally occurring cannabinoids reduces the need for synthetic alternatives that may produce harmful off-target effects. 

So how does this affect the investing market?

Where there is demand, significant and growth investments follow. All the major players from nutraceuticals, CPG, cosmetics and pet care companies are driving the demand for rare cannabinoids. We are seeing a major investment shift from commodity-based prices for cannabis and CBD to the new biosynthesis technology which offers significantly better health benefits and higher profit margins. Those unique qualities of rare cannabinoids open an enormous opportunity to create new drugs and food supplements for treating various medical conditions and improving the quality of life. This creates a massive global opportunity for all companies in these categories differentiating their products from competitors.

The structure of cannabidiol (CBD)

There will be big winners and losers in these markets, but at the end of the day, the highest quality and lowest cost producers will capture most of these markets. Biomedican has the highest quality, highest yields and lowest cost of production in the industry. Which we believe will make us the clear leader in the biosynthesis rare cannabinoid markets.

Which rare cannabinoid to invest in first?

Early reports indicate THCV (not to be confused with THC) could contain a variety of health benefits: it may help with appetite suppression/weight loss, possibly treat diabetes as well the potential to reduce tremors and seizures caused by conditions like multiple sclerosis, Parkinson’s disease and ALS.

There has been an explosion of interest in THCV due to its potential health benefits. We are seeing major players in the nutraceutical, health food and pharmaceutical industries clamoring to add THCV to their product lines. Companies can now produce THCV through biosynthesis, creating a pharmaceutical-grade, organic, bioidentical compound at 70-90% less than wholesale prices. This is exactly what the largest players in the market want: a pharmaceutical-grade, consistent product at significantly less cost. The current prices and quality have limited THCV production, but new breakthroughs in biosynthesis have solved those issues, so we expect a tsunami of orders for THCV in 2021.

Leaders in Infused Products Manufacturing: Part 2

By Aaron Green
No Comments

Editor’s Note: Part 3 will be an interview with Liz Conway, Regional President of Florida at Parallel. In part 4 we’ll sit down with Stephanie Gorecki, vice president of product development at Cresco Labs. 


Cannabis infused products manufacturing is quickly becoming a massive new market. With companies producing everything from gummies to lotions, there is a lot of room for growth as consumer data is showing a larger shift away from smokable products to ingestible or infused products.

This is the second article in a series where we interview leaders in the national infused products market. You can find the first piece here. In this second piece, we talk with Mike Hennesy, vice president of innovation at Wana Brands. Mike started with Wana in 2014 after moving to Colorado and leveraged his science background to transition into product development and innovation where he has helped develop one of the best-known brands in Colorado.

Next week, we’ll sit down with Liz Conway, Regional President of Florida at Parallel. Stay tuned for more!

Aaron Green: Thank you for taking the time today. Just to start off, can you walk me through how you got involved at Wana Brands?

Mike Hennesy: Thanks Aaron. I got involved in the cannabis industry pretty intentionally. After graduating college in 2012, I was determined to get involved. I moved to Colorado from the east coast. I’m originally from Virginia. I moved out here in 2013 and started with Wana in 2014.

Mike Hennesy, Vice President of innovation at Wana Brands

I got involved in the sales side of the business originally – as the company was just starting to emerge into the legal recreational market – and oversaw growth here at Wana during significant changes in the industry. Over time, my role transitioned into innovation and R&D where I am leaning on my background in science.

I now lead new product development and education as Vice President of Innovation, and I’m also completing a master’s degree in cannabis science and therapeutics.

Aaron: So, what does innovation mean to you?

Mike: Innovation for the cannabis industry is pretty unique and interesting. We are just beginning to unpack the pharmacopeia of the cannabis plant as well as starting to understand our own bodies endocannabinoid system.

Innovation spans from genetics of plants and how they are grown to how you deliver cannabinoids to the body and what different ratios and blends of cannabinoids and terpenes you are actually putting in there. So, innovation is not a one size fits all category for cannabis.

Aaron: Sounds like an interesting role! At Wana Brands, and in your role in innovation, how do you think about differentiating in the market with your products?

Mike: I would describe the way we perceive differentiation as going beyond simple developments, such as product forms or new flavors. We see the future of product development trending towards what active ingredients and in what ratios we are putting into products. For example, what kinds of cannabinoids and terpenes are we using? What kinds of drug delivery systems might we be harnessing? How do we put all of these ingredients and technologies into a product to make it more effective?

A simple way to think about all of this is: how is our product going to work better for the consumer? Because that is really the key here. Tasting great is important, but we are delivering a product that provides an experience. We want to continue to make a better experience and a better way for customers to enhance their life.

Aaron: I think that leads nicely into our next question, which is, when you’re thinking about creating a new product for the consumer, what’s your process for creating a new product?

Mike: We have a very full pipeline of new products, and many of these ideas come from networking and speaking with innovators and following the research and science for inspiration and direction. We take this information and start brainstorming as a team. We have a decade of experience in the cannabis space that provides us with a unique lens on how we apply new research to our product development.

From there, we build a product development pipeline of potential ideas and start to prioritize, looking at the feasibility of each of these ideas and their market readiness. Sometimes we have a great idea for a product, but a lack of consumer knowledge may mean we don’t move forward with launching.

Aaron: Can you expand a bit on what you mean by education and how you guys think about education to the end consumer?

Mike: Since product innovation must move with consumer knowledge and cannabis is so new, education is critical. We have a very robust education platform with topics that range from cannabis 101 to the endocannabinoid system, to lessons on terpenes and CBD, as well as trainings on our products themselves. We have both bud tender-facing and consumer-facing trainings. The consumer trainings are on our website, and bud tender trainings are hosted through dispensaries.

Aaron: Is that training electronic training or written material?

Mike: Both, but the primary platform is online in the form of interactive training courses. We also have printed flip book training material in dispensaries and offer in-person presentations, but with the pandemic, we’ve been heavily leaning on the online training content.

Aaron: Alright. So, we’re going to take a different direction here on questions. From your perspective, at the innovation level, can you walk me through your experience with your most recent product launch?

Mike: Most recently, we launched the line of Wana Quick Fast-Acting Gummies. I am extremely excited and proud of this line. They have absolutely exploded in popularity!

The idea for these products started a few years ago as we were learning cannabinoids are not very bioavailable. This means most of the cannabinoids that you consume from an edible do not end up in the bloodstream. Edibles also have a delayed onset and undergo a conversion of THC in the liver, called first pass metabolism, that gives a heavier sedating high. This slow onset and difference in effects with edibles can be a turn off for some consumers, leading us to the idea of developing a fast acting gummie that works differently.

It was about two years of research looking at technologies developed by pharma and nutraceutical companies to improve bioavailability and bypass first pass metabolism. We started looking into nano-emulsions and encapsulation of cannabinoids that help with bioavailability and reduce the onset time. These technologies envelop the cannabinoids like a disguise that tricks the body into absorbing the oily compounds more easily. The encapsulation bypasses the liver and is absorbed into the bloodstream quickly, so their effect starts within five to fifteen minutes. Since they are not processed in the liver, they deliver delta-9 THC instead of 11-hydroxy-THC, giving an effect I describe as a “smoker’s high.”

We trialed and tweaked many technologies before we landed on one that is truly effective and worked with our line of gummies. With this revolutionary technology inside, we then crafted delicious flavors and a new triangular shape to differentiate them from our classic gummies. Because they take effect so quickly and only last about three hours, we thought the Quick Fast-Acting Gummies were the perfect product to use during happy hour. So, we have Happy Hour inspired flavors like Pina Colada, Strawberry Margarita and Peach Bellini.

We launched in March, and already right now, these SKUs in Colorado are #4, #7 and #11 out of all edibles sold in Colorado. And overall, Wana produces eight out of the ten top SKUs in Colorado. That’s according to BDSA, so a pretty impressive achievement!

Aaron: Okay, great, I’d say so! The next question here goes deeper in the supply chain. How do you go about sourcing for the ingredients?

Mike: I am going to start with the cannabis side of things. As I mentioned earlier, cannabis is unique. It is not just one ingredient. It’s many different compounds like the cannabinoids THC, CBD and others, but also terpenes and other beneficial compounds. To make the most effective edibles we partner with growers that care about their genetics, how they are growing, and how they are extracting to create high quality cannabis extracts.

We also understand terpenes are so important in the entourage effect, and that different terpene blends synergize with cannabinoids to produce different effects. Some can be energizing while others are more relaxing. Wana has innovated the terpenes we use by formulating proprietary blends of thirty terpenes or more that replicate indica, sativa and hybrid strains.

We did this by strain hunting the best cannabis in each class and analyzing the strains to understand their profiles. Then using organic, botanically derived terpenes, we build blends in the ratios they are found in the plant and reintroduce them into our edibles. This means Wana edibles match the terpenes that you will find in cannabis, unlike other products that just use distillates where the terpenes are degraded and lost in extraction. This also means we can replicate these blends with our partners in other states, so when you consume a Wana indica or sativa product you’re going to have the same terpene blends and the same experience and feeling every time.

Beyond cannabis and terpenes, we are extremely selective in all of our ingredients. And in the near future we’re implementing an optimized recipe that is all-natural, with no high-fructose corn syrup, as well as moving towards organic ingredient sourcing.

Aaron: Can you give me an example in your role of a challenge that you run into frequently?

Mike: I think that is the exciting thing about working in R&D and new products: there is always a new challenge. I guess I would say if you are not making mistakes, you are not really trying to push the envelope in product development.

We are working with plant matter, terpenes and encapsulation technologies, things that don’t always taste good, and putting them all into edibles. That means we frequently run into the challenge of figuring out how to put the right ingredients for effect in a product, but still make it taste delicious. We are very selective in what ingredients we use and how we’re introducing them to make sure the product still tastes good. We oftentimes come across a great technology—such as a terpene blend or a quick onset delivery system—that does the job, but is not optimal for a gummie recipe, such as the resulting consistency or taste.“These developments are all heading in the direction of delivering consistent repeatable experiences for consumers, which is what I see as the future of cannabis.”

Aaron: Would it be correct to say that formulation is a common thing you run up against in terms of challenges?

Mike: Yes, especially because a lot of the ingredients and technologies we are working with are new. There isn’t a guidebook for how to incorporate encapsulated cannabinoids into a gummy, for example.

That’s the novel aspect of a lot of this: how do you take a terpene blend that’s designed to mimic the cannabis plant and put it in your gummies? What’s the right way to introduce it so they’re not degraded by heat? Formulating with cannabis is about problem solving, and is the backbone to what we do in R&D

Aaron: We’re getting towards the end of the conversation here. And these questions are more geared towards you individually. So, what trends are you following in the industry right now?

Mike: I’ve got to have my eyes on a lot of things. That’s how you innovate in this industry!

I would say No. 1 is still terpenes. We are already innovating there, but I think we’re just scratching the surface of where we’re going to go. I think terpenes are going to unlock a lot of potential in cannabis products in the future, and Wana is going to be innovating there, leading the pack.

Next is minor cannabinoids. Through decades of an illicit black-market, the genetics have skewed towards high THC strains, but the cannabis genome actually allows for many other cannabinoids to be formed. Through the right cultivation and breeding programs, we are going to see a lot more CBG, CBN, CBC, and even more rare cannabinoids like THCV and others.  These currently rare cannabinoids are going to be important for new product development as we learn more about their therapeutic effects.

Then there is continued innovation on delivery systems and bioavailability, functional ingredient blends and more natural products. These developments are all heading in the direction of delivering consistent repeatable experiences for consumers, which is what I see as the future of cannabis.

Aaron: Awesome. What are you interested in learning more about? This could be cannabis related or business related.

Mike: Well, fortunately, I am working on a master’s degree right now and so I get to learn a lot every day. I am most curious to see where science takes us with the endocannabinoid system. It was pretty much unheard of until a few decades ago, and now we understand that it interacts with almost every other system in the body. It is like missing the elephant in the room when you are talking about human biology. The amount of information that we’re going to unlock about how the ECS interacts and regulates our body is going to continue to revolutionize the industry There’s a lot more to be understood around how different compounds interact with the ECS and affect us, and I think we are going to learn how we can use it to tailor other products for  outcomes such as sleep, pain, anxiety, energy and focus.

Aaron: Just a clarification there. What are you working on for your master’s?

Mike: I’m getting a Master’s in Medical Cannabis Science and Therapeutics from the School of Pharmacy at the University of Maryland. It is the very first master’s level program of its kind, and is taught by doctors and pharmacists, so we discuss cannabis as a drug and how it effects the brain and the body. It has been really exciting and I’m looking forward to continuing learning more about this amazing plant!

Aaron: Okay, that concludes our interview!

Beyond THC: Encouraging Cannabinoid and Terpene Production with LEDs

By Andrew Myers
No Comments

For years, tetrahydrocannabinol (THC) got all the attention. While THC certainly delivers its own benefits (such as relaxation and pain relief), there’s a whole host of other – and often overlooked – compounds found in cannabis with important benefits as well. THC is truly only the tip of the iceberg when it comes to cannabis’s potential.

As the cannabis industry evolves with changing consumer tastes and developing medical research, growers may employ techniques to boost cannabinoid and terpene profiles in their harvests – beyond merely focusing on THC. Advanced LEDs allow growers to elicit specific biological responses in cannabis crops, including increased concentrations of these naturally occurring chemical compounds.

The Foundation of Cannabis’s Effects
Whether used medicinally or otherwise, cannabis has changed our society and many of our lives – and there’s a collection of naturally occurring chemical compounds, known as cannabinoids and terpenes, to thank.

  • The cannabinoids THC and CBD are the most common and well-researched, however they are accompanied by more than 200 additional compounds, including cannabinol (CBN), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), among others.
  • The cannabis plant also contains terpenes. These structures are responsible for giving flowers (including cannabis), fruits and spices their distinctive flavors and aromas. Common terpenes include limonene, linalool, pinene and myrcene.

Both cannabinoids and terpenes are found in the cannabis plant’s glandular structures known as trichomes. Look closely, and you’ll notice trichomes coating the cannabis flowers and leaves, giving the plant an almost frosty appearance.

macropistil/trichome
A macro view of the trichomes and pistils on the plant

Trichomes – which are found across several plant species – are a key aspect of a cannabis plant’s survival. The specific combination of metabolites produced by trichomes may attract certain pollinators and repel plant-eating animals. Moreover, trichomes (and specifically THC) may act as the plant’s form of sunscreen and shield the plant from harmful ultraviolet rays.

While they play an essential part in the cannabis plant’s lifecycle, trichomes are volatile and easily influenced by a range of environmental factors, including light, heat, physical agitation and time. Therefore, environment is a defining variable in the development of these important structures.

How LEDs Support Cannabinoid and Terpene Development in Crops
Spectrally tunable LEDs give indoor cannabis growers unparalleled control over their crops. As research has expanded about plants’ responses to the light spectrum, growers have discovered they are able to elicit certain physiological responses in the plant. This phenomenon is called photomorphogenesis. At its root, photomorphogenesis is a survival tactic – it’s how the plant responds to miniscule changes in its environment to increase the chances of reaching full maturity and, eventually, reproducing. While cultivated cannabis plants won’t reproduce at an indoor setting, growers can still use the light spectrum to encourage strong root and stem development, hasten the flowering process and the development of bigger, brightly colored flowers.

It makes sense that using the proper light spectrums may also have an impact on the production of specific cannabinoids and terpenes – an important factor when responding to highly specific consumer needs and desires, both within medical and adult-use markets.

Here are a few more reasons why utilizing full-spectrum LEDs can lead to higher quality cannabis:

  • Lower Heat, but the Same Intensity.
    When compared to HPS, fluorescent and other conventional lighting technologies, LEDs have a much lower heat output, but provide the same level of intensity (and often improved uniformity). This represents an enormous advantage for cannabis cultivators, as the lights can be hung much closer to the plant canopy without burning trichomes than they would be able to with other lighting technologies.
  • UV Light. Cannabinoids and terpenes are part of the cannabis plant’s natural defense mechanism, so it makes sense that lightly stressing plants can boost cannabinoid and terpene numbers. Some studies illustrate an increase in UV-B and UV-A light can lead to richer cannabinoid and terpene profiles.1 It’s a fine line to walk, though – too much UV can result in burned plants, which leads to a noticeable drop in cannabinoids.
  • Full-Spectrum Capabilities. The cannabis plant evolved over millions of years under the steady and reliable light of the sun. Full-spectrum is the closest thing to natural sunlight that growers will be able to find for indoor growing – and they’ve been shown to perform better in terms of cannabinoid development. A 2018 study titled “The Effect of Light Spectrum on the Morphology and Cannabinoid Content for Cannabis Sativa L.,” explored how an optimized light spectrum resulted in increased expression of cannabinoids CBG and THCV.2

This is the most important tip for indoor growers: your plants’ environment is everything. It can make or break a successful harvest. That means cultivators are responsible for ensuring the plants are kept in ideal conditions. Lights are certainly important at an indoor facility, but there are several other factors to consider that can affect your lights’ performance and the potency of your final product. This includes your temperature regulation, humidity, the density of plants within the space, CO2 concentration and many other variables. For the best results, your lights should be fully aligned with other environmental controls in your space. Nothing sabotages a once-promising crop like recurrent issues in the indoor environment.

solsticegrowop_feb
Indoor cultivation facilities often use high powered lights that can give off heat

Cannabinoids and terpenes take time to develop – so cultivators will want to avoid harvesting their plants too early. On the other hand, these compounds begin to degrade over time, so growers can’t wait too long either.

Cultivators seeking potent cannabinoid and terpene profiles must find a happy medium for the best results – and the best place to look is where cannabinoids and terpenes develop: the trichomes. With a microscope, cultivators can get up close and personal with these sparkly structures. Younger plants begin with clear trichomes, which eventually become opaque and change to amber. Once your plants show amber-hued trichomes, they’re ready for harvest.

The truth here is that there’s no perfect formula to elicit show-stopping cannabinoids and dizzying terpenes with every harvest. A lot of cannabis cultivation is based around trial-and-error, finding what works for your space, your business and your team. But understanding the basics around indoor environmental controls like lighting and temperature – and how they can affect the development of cannabinoids and terpenes – is an excellent place to start. Using high quality equipment, such as full-spectrum LED lighting can boost both cannabinoid and terpene production, resulting in richer, more potent and higher quality strains.


References:

  1. Lyndon, John, Teramura, Alan H., Coffman, Benjamin C. “UV-B Radiation Effects on Photosynthesis, Growth and Cannabinoid Production of Two Cannabis Sativa Chemotypes.” August 1987. Photochemistry and photobiology. Web. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1987.tb04757.x?&sid=nlm%3Apubmed
  2. Magagnini G., Grassi G., Kotiranta, S. “The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L.” 2018. Medical Cannabis and Cannabinoids. Web: https://www.karger.com/Article/FullText/489030

Shimadzu Launches Cannabis Analyzer for Potency

By Aaron G. Biros
2 Comments

On Monday, March 6th, Shimadzu Scientific Instruments, a leading laboratory analytical instrumentation manufacturer, announced the launch of a new product focused on cannabis, according to a press release. Their Cannabis Analyzer for Potency is essentially a high-performance liquid chromatograph (HPLC) packaged with integrated hardware, software, workflows and all the supplies. The supplies include an analytical column, guard columns, mobile phase and a CRM standard mixture.canAnalyzerImg1

The instrument is designed to test for 11 cannabinoids in less time and with greater ease than traditional HPLC instruments. In the press release, they claim “operators are now able to produce accurate results with ease, regardless of cannabis testing knowledge or chromatography experience.” One very unique aspect of the instrument is the lack of experience required to run it, according to Bob Clifford, general manager of marketing at Shimadzu. “We have our typical chromatography software [LabSolutions] with an overlay that allows the user to analyze a sample in three simple steps,” says Clifford. Those in the cannabis industry that have a background in plant science, but not analytical chemistry, could run potency analyses on the instrument with minimal training. “This overlay allows ease of use for those not familiar with chromatography software,” says Clifford.

An overlay of a flower sample with the standards supplied in the High-Sensitivity Method package.
An overlay of a flower sample with the standards supplied in the High-Sensitivity Method package.

The instrument can determine cannabinoid percentages per dry weight in flower concentrates and edibles. “Once you open the software, it will get the flow rate started, heat the column up and automatically begin to prep for analysis,” says Clifford. Before the analysis begins, information like the sample ID number, sample name, sample weight, extraction volume and dilution volume are entered. After the analysis is complete all the test results are reported for each sample.

Because laboratories wouldn’t have to develop quantitative testing methodology, they argue this instrument would save a lot of time in the lab. “After one day of installation and testing, users are equipped with everything they need to obtain cannabis potency results,” states the press release. According to Clifford, method development for potency analysis in-house can take some labs up to three months. “We can bring this instrument to the lab and have it ready for testing almost immediately,” says Clifford. “The methods for this instrument were developed by a team of twenty scientists working on different platforms at our Innovation Center and was tested for ruggedness, repeatability and quantitative accuracy.”

Screenshots from the software on the instrument
Screenshots from the software on the instrument

The instrument’s workflow is designed to meet three methods of analysis depending on testing needs. The High Throughput method package can determine quantities of ten cannabinoids with less than eight minutes per sample. The method was developed in collaboration with commercial testing laboratories. The High Sensitivity method package adds THCV to that target analyte list with ten minutes per analysis. The method provides the sharpest chromatographic peaks and best sensitivity. The High Resolution method package offers full baseline resolution for those 11 cannabinoids in less than 30 minutes per analysis and the ability to add cannabinoids to that target list if regulations change.

The press release states the interface should allow users to reduce the number of steps needed in the analysis and simplify the workflow. The instrument comes with a three-year warranty, preventative maintenance plan and lifetime technical support.

The Practical Chemist

Potency Analysis of Cannabis and Derivative Products: Part 2

By Rebecca Stevens
3 Comments

As mentioned in Part 1, the physiological effects of cannabis are mediated by a group of structurally related organic compounds known as cannabinoids. The cannabinoids are biosynthetically produced by a growing cannabis plant and Figure 1 details the biosynthetic pathways leading to some of the most important cannabinoids in plant material.

Potency figure 1
Figure 1: The biosynthetic pathway of phytocannabinoid production in cannabis has been deeply studied through isotopic labeling experiments

The analytical measurement of cannabinoids is important to ensure the safety and quality of cannabis as well as its extracts and edible formulations. Total cannabinoid levels can vary significantly between different cultivars and batches, from about 5% up to 20% or more by dry weight. Information on cannabinoid profiles can be used to tailor cultivars for specific effects and allows end users to select an appropriate dose.

Routine Analysis vs. Cannabinomics 

Several structurally analogous groups of cannabinoids exist. In total, structures have been assigned for more than 70 unique phytocannabinoids as of 2005 and the burgeoning field of cannabinomics seeks to comprehensively measure these compounds.¹

Considering practical potency analysis, the vast majority of cannabinoid content is accounted for by 10-12 compounds. These include Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabivarian (THCV), cannabidivarin (CBDV) and their respective carboxylic acid forms. The cannabinoids occur primarily as carboxylic acids in plant material. Decarboxylation occurs when heat is applied through smoking, vaporization or cooking thereby producing neutral cannabinoids which are more physiologically active.

Potency Analysis by HPLC and GC

Currently, HPLC and GC are the two most commonly used techniques for potency analysis. In the case of GC, the heat used to vaporize the injected sample causes decarboxylation of the native cannabinoid acids. Derivatization of the acids may help reduce decarboxylation but overall this adds another layer of complexity to the analysis² ³. HPLC is the method of choice for direct analysis of cannabinoid profiles and this technique will be discussed further.

A sample preparation method consisting of grinding/homogenization and alcohol extraction is commonly used for cannabis flower and extracts. It has been shown to provide good recovery and precision² ³. An aliquot of the resulting extract can then be diluted with an HPLC compatible solvent such as 25% water / 75% acetonitrile with 0.1% formic acid. The cannabinoids are not particularly water soluble and can precipitate if the aqueous percentage is too high.

To avoid peak distortion and shifting retention times the diluent and initial mobile phase composition should be reasonably well matched. Another approach is to make a smaller injection (1-2 µL) of a more dissimilar solvent. The addition of formic acid or ammonium formate buffer acidifies the mobile phase and keeps the cannabinoid acids protonated.

The protonated acids are neutral and thus well retained on a C18 type column, even at higher (~50% or greater) concentrations of organic solvent² ³.

Detection is most often done using UV absorbance. Two main types of UV detectors are available for HPLC, single wavelength and diode array. A diode array detector (DAD) measures absorbance across a range of wavelengths producing a spectrum at each point in a chromatogram while single wavelength detectors only monitor absorbance at a single user selected wavelength. The DAD is more expensive, but very useful for detecting coelutions and interferences.

References

  1. Chemical Constituents of Marijuana: The Complex Mixture of Natural Cannabinoids. Life Sciences, 78, (2005), pp. 539
  2. Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis. Journal of AOAC International, 98, (2015), pp. 1503
  3. Innovative Development and Validation of an HPLC/DAD Method for the Qualitative and Quantitative Determination of Major Cannabinoids in Cannabis Plant Material. Journal of Chromatography B, 877, (2009), pp. 4115

Rebecca is an Applications Scientist at Restek Corporation and is eager to field any questions or comments on cannabis analysis, she can be reached by e-mail, rebecca.stevens@restek.com or by phone at 814-353-1300 (ext. 2154)

The C4 Cannabinomics Collaborative: Q&A with Dr. Zacariah Hildenbrand

By Aaron G. Biros
1 Comment

Dr. Zacariah Hildenbrand, chief scientific officer and partner at C4 Laboratories, is currently researching some of the lesser-known molecules in cannabis, and he’s on to something. His research focuses on discovering new molecules, determining their therapeutic effects and expanding our understanding of the constituents of cannabis.

Dr. Zacariah Hildenbrand, chief scientific officer and partner at C4 Laboratories.
Dr. Zacariah Hildenbrand, chief scientific officer and partner at C4 Laboratories.

Dr. Hildenbrand received his Ph.D. from the University of Texas at El Paso where he researched the molecular architecture involved in hormone-dependent cancers. At the University of Texas Southwestern Medical Center in Dallas, his post-doctoral research contributed to the development of a novel therapy for the treatment of chronic myeloid leukemia, a blood-borne cancer that afflicts small children. He has published over 25 peer-reviewed scientific journal articles and hopes to do the same with his research in cannabis.

After a career of scientific consulting, Dr. Hildenbrand met Ryan Treacy, founder and chief executive officer of C4 Laboratories, in 2015 when Treacy launched the company. In June of 2015, the laboratory began operations, providing Dr. Hildenbrand the opportunity to embark on a new and exciting field of research- cannabis.

Ryan Tracy, founder and chief executive officer at C4 Labs.
Ryan Treacy, founder and chief executive officer at C4 Laboratories.

They currently collaborate with Dr. Kevin Schug of the Shimadzu Center for Advanced Analytical Chemistry (SCAAC) at the University of Texas, Arlington and together Drs. Schug and Hildenbrand are pursuing a DEA license to expand their current cannabis research. The SCAAC is a $10.0+ million analytical laboratory with instrumentation that only a handful of people in the world has access to.

C4 Laboratories, based in Mesa, Arizona, currently offers a range of services for cannabis analysis including terpene and cannabinoid analytics, microbial, pesticide, fungicide and insecticide testing. In addition to the standard gamut of tests, they also specialize in cultivation analytics like mold and mildew culture testing, viral detection with sentinel plants and comprehensive analysis of environmental conditions.

What makes their company unique is their multidisciplinary effort to characterize the therapeutic compounds found in cannabis, the C4 Cannabinomics Collaborative. We sit down with Dr. Zac Hildenbrand to talk cannabis science, his research and what they hope to accomplish with the C4 Cannabinomics Collaborative.

CannabisIndustryJournal: What is the C4 Cannabinomics Collaborative?

Dr. Zacariah Hildenbrand: The C4 Cannabinomics Collaborative is an open collaboration between growers and scientists to discover new molecules in cannabis and to have a better characterization of individual cannabis strains based on the active constituents found in each sample. We are facilitating the collaboration of some of the world’s best cannabis growers with world-class scientists to find new information about the plant.

What we want to accomplish in this work is identifying novel molecules. Because of the [federal government’s] restrictions in researching cannabis, there is very little peer-reviewed literature on many of the compounds found in cannabis. We want to secondarily find out what those molecules do in the human body and thus make recommendations for strains targeting specific conditions.c4 logo

We also want to understand the strains currently out there by determining the most established cannabinoids and terpenes via chemotyping. You hear a lot of people talking about the effects of an Indica or Sativa and making recommendations based on that. We want to find chemical signatures based on cannabinoids and terpenes and make recommendations based on that. There are a lot of problems at hand when discussing strain names scientifically. There are nomenclature issues- people calling the same strain different names, people giving multiple names to the same strain to make it appear that their strain portfolios are more diverse.

We can identify the chemical signatures in strains based on the major cannabinoids and terpenes. Based on the terpenes and chemical profile we can determine more accurate recommendations for patients as well as in recreational applications. All of this, again, discovering the new molecules, identifying the current strains, is so we can make more informed decisions regarding cannabis use. It is not a panacea but it is a very robust plant. There are a lot of terpenes with anti-inflammatory responses. Other molecules help with blood flow, sleep, regulating blood glucose, and we all know the cases of CBD helping children with convulsions and epilepsy. We want people to make sure they have the most up-to-date information.

CIJ: How is your collaboration with the SCAAC at UT Arlington contributing to this work?

Dr. Hildenbrand: One of the instruments we use there is a supercritical-fluid-extraction supercritical-fluid-chromatography mass-spectrometer (SFE-SFC-MS). With that instrument, we can do the extraction on the machine with an extreme level of sensitivity. It is ideal for drug discovery and identifying molecules in the parts-per-quadrillion range. This particular instrument allows us to detect molecules with an extreme level of sensitivity without volatizing them during the sample extraction process.

The Shimadzu Center for Advanced Analytical Chemistry
The Shimadzu Center for Advanced Analytical Chemistry

We want to acquire samples of unique cannabis from growers that will work with us to discover new cannabis constituents. We are in the process of getting a DEA license so that we can send products across state lines to the center at UT Arlington to perform the advanced characterization. They have instrumentation that only a handful of people in the world have access to, which gives us the best opportunity to explore the unknown. When we discover new molecules, find out what they do on the molecular level, we can then isolate these compounds and ultimately use this newfound knowledge for the development of effective nutraceuticals.

CIJ: What molecules are you researching right now?

Dr. Hildenbrand: Some of the low-hanging fruit in our research looks at identifying compounds similar to the better-studied compounds such as THC and CBD. THCV has a very similar structure to THC, but has a shorter acyl carbon chain (3 carbons vs. 5).

Tetrahydrocannabivarin (THCV)
Tetrahydrocannabivarin (THCV)

THCV doesn’t induce a psychoactive response (like THC), but it does improve fat utilization, so it has remarkable potential for medicine. We are looking at what conditions are required for it to occur naturally. Cannabis doesn’t produce THCV in a high amount. 0.7% by weight is the most we have seen in Arizona. In Oregon, where craft cannabis has been refined to a much higher degree, we have heard rumblings of some strains containing up to 3% THCV. We want to find out if this is a possible weight loss tool. Our research in CBDV is very much the same.Cannabinoid Biogenesis

CBL is the breakdown product of CBC when it is treated with ultraviolet light. We know absolutely nothing about what CBL does. If we find a strain that produces high amounts of CBC, we can then treat it with UV light and force the conversion to CBL, and then ultimately determine what it does. This is a good example of low-hanging fruit and the versatility of cannabis. Based on the biogenesis of the cannabinoids, we can alter the profile of cannabis products using a series of biochemical reactions.

Cannabicyclol (CBL)
Cannabicyclol (CBL)

For example, we have been helping clients in Arizona look for a quality sleep aid in cannabis. Certainly, Indica strains will help, but the molecule CBN helps specifically with sleep abnormalities. As CBN is formed as a byproduct when CBD or THC are oxidized, we see some producers using liquid nitrogen to oxidize CBD, leading to higher CBN levels. I would like to think we are in the age of understanding CBD, THC and the major terpenes,but there are a whole milieu of compounds that require our attention and THCV, CBDV and CBL are just a few that we want to devote our efforts to right away.

CIJ: What are your plans in the immediate future?

Dr. Hildenbrand: We are in the process of finalizing the documents to bring a C4 laboratory into Oregon where we can do quite a bit of research and where we’ll have access to some very unique cannabis. We will offer full compliance testing per ORELAP and OLCC regulations, but we also want to acquire samples (free of charge) from growers that want to collaborate with us to discover new molecules. We’ve been lucky enough to start working with growers like Adam Jacques and Chris West in Eugene, but we also want to be available to other growers who want to contribute to this research.

CIJ: What are your long-term goals with this project?

Dr. Hildenbrand: At a basic level, we hope to expand the current understanding of the cannabis plant. There is a lot of “bro science” and anecdotal claims out there. There is so much that we don’t know about cannabis that we cannot simply rely on anecdotal claims for each strain. We want to bring cannabis into the same light as any pharmaceutical-grade or biomedical research.

We need to be characterizing this plant with the same level of detail as other pertinent molecular therapies. In doing so there are a lot of potential discoveries to be made and we might be able to unlock the future of medicine. A drug like Marinol, for example, has been met with mixed reviews because its only one dimensional. Furthermore, we find that the terpene molecules are tremendously beneficial and this interplay between cannabinoids and terpenes is something that we want to explore further. All and all we wish to further illustrate the therapeutic capacities of cannabis within the contexts of specific ailments and medical conditions, while discovering the medicine of the future.