Tag Archives: vegetative

The Beginner’s Guide to Integrated Pest Management

By David Perkins
1 Comment

Formulating a Plan

In this article you will learn how to control pests and improve the health of your cannabis plants using integrated pest management, commonly referred to as IPM. This involves a multi-point strategy – there is no quick fix, nor is there one solution that will wipe out all your pest problems. Proper pest management requires patience, consistency and determination.

It is important to understand that not all pesticides are bad. While many are incredibly harmful not only to pests, but also humans, in this article I will educate you about some of the safer alternatives to traditional pesticides. It is possible to safely control unwanted pests in your cannabis garden without harming yourself, your employees or the natural habitat around you.

Every cultivation facility should have a well-thought-out plan for their pest management program. This program should account for the prevention, and if necessary, eradication of: spider mites, russet mites, fungus gnats, root aphids, thrips and caterpillars. These are just a few of the more common pests you’ll find in a cannabis garden. There could also be many other less commonly known bugs, so you have to be vigilant in looking closely at your plants, and the soil, at all times. Complete eradication of a targeted pest can be difficult. Once a pest has established itself, decimating or decreasing the population will require an aggressive regimen that includes spraying daily to control populations and prevent other pests from getting established.

Spraying or applying pesticides to the foliage of plants isn’t the only way to control or eradicate pest populations. There are many other ways that you can minimize the spread of pests without the use of pesticides. In greenhouse and outdoor grows, growing specific types of plants around the cultivation area will attract both beneficial and predator bugs that will naturally control pest populations. Some plants that attract these bugs are: mint, peppers, and marigold. Beneficial and predator bugs, such as ladybugs, predator wasps and predator mites, can control unwanted pest populations in the area before they even have a chance to become a problem in your garden. Plants and flowers that attract bees, birds and insects will also create helpful bio- diversity, making it more difficult for the unwanted pests to thrive.

For indoor cultivation, it is imperative that you have your cultivation facility set up for a proper workflow. If you already have pests, you need to make sure you are not contaminating the rest of your facility when going from one area to the next. Make sure that you only go to contaminated areas at the very end of your day, and when you’re done working in that area, you must immediately exit the building. Do not ever walk back through the uncontaminated parts of your facility or the pests will spread quickly.

An aphid on a plant in a greenhouse

When most people think of pests in their cannabis garden they think of the more common varieties: spider mites, russet mites, aphids and thrips. However, there are also soil-dwelling pests that can exist, without your knowledge. These will decrease the health and vigor of your plants, without you even knowing they’re there, if you’re not careful to check for them. Some of the soil dwelling pests that plague cannabis plants are: root aphids, fungus gnat larvae and grubs. It is just as important to control the pests below the soil, feeding on your roots, as it is to control the pests that feed above soil on your plants.

Maintaining healthy plants is essential to controlling pest populations, both on the foliage and below the soil. Healthy plants will have an easier time fighting off pests than unhealthy plants. Plants have immune systems just like humans, and the stronger the plant’s immune system, the more likely it will be able to ward off pests and diseases. Allowing a plant to reach its full potential, by minimizing pests, means your plants will also have a better quality, smell and flavor, not to mention a bigger yield.

Worker Safety, Regulation and REI times

The application of pesticides requires certification from the state agricultural department. In certain situations, depending on the type of pesticide and method of application, a license may even be required. The application of pesticides without proper certification is against the law. Applying pesticides in a manner that is not in accordance with the label and instructions is also a violation of law.

The proper personal protective equipment (PPE) is required for anybody handling, mixing or applying pesticides. Employees can be a liability to your company if they are applying pesticides improperly. Make sure you and your entire staff are well educated about pesticide use requirements and limitations, prior to usage, and that only a properly certified person is handling the mixing and application at your facility.

The author, David Perkins, In his greenhouse after using insect killing soap.

After a pesticide is applied, you must abide by the re-entry interval (REI). This is the required time period limiting all workers from re-entry into areas where pesticides have been applied. This time period will vary depending on the type of pesticide used and the method of application. In some instances, pesticides applied in the last 30 days may require employee training before work can be done in those areas.

The misuse of or improper handling of pesticides is not only unlawful and dangerous to human health, but can also cause environmental damage to waterways and wildlife. The direct effects of pesticides on wildlife include acute poisoning, immunotoxicity, endocrine disruption, reproductive failure, altered morphology and growth rates and changes in behavior. Pesticides can indirectly impact wildlife through reduction of food resources and refuses, starvation due to decreased prey availability, hypothermia and secondary poisoning. Section 1602 of the California Fish and Game Code governs requirements for permitting of any project where pesticides will be used, and strictly regulates the disposal of all waste and run-off. It is imperative to know the regulations and to abide by them, or heavy fines will ensue!

Using Pesticides in a Regulated Market

Knowing which pesticides you can’t use, to avoid failing mandatory state testing, is just as important as knowing which ones you can use safely to pass required testing. Most states with regulated markets have strict limitations on the pesticides that can be used in cannabis cultivation. Pesticide use in the cultivation of cannabis is the most strictly regulated in the agriculture industry; the pesticides allowed for use in cannabis cultivation are far more limited than any other crop.

Photo: Michelle Tribe, Flickr

Just because a product is certified organic does not mean that it can be used, or that it is safe to be consumed or ingested. Oftentimes when cannabis flower alone is tested it will not fail or show a detectable amount of pesticides or heavy metals. However, when that flower is turned into concentrates, banned substances are then detected in testing, leading to test failures.

Cannabis cultivation facilities that are located on land that was previously used for conventional agriculture, or located near vineyards or other agricultural crops that are heavily sprayed with harmful pesticides, run a very high-risk failing testing. This is because of either spray drift from nearby agriculture, or residual pesticides and heavy metals left in the soil from previous crops that were using pesticides banned for cannabis cultivation. Accordingly, if you’re going to be growing outdoors or in a greenhouse, it is imperative that you get a soil and water test prior to cultivation, so you can determine if there is any potential for test failures due to pesticides or heavy metals in the soil or water in that area. 

Proper Application – Using the Right Tools in the Right Way at the Right Time

One of the most important factors in pest management is proper identification of pests and proper application and coverage of pesticides. It does not require an entomology degree to identify insects, these days there is a lot of information online that can help you identify cannabis pests. Proper identification of insects can make the difference between success and failure. With a good eye and a microscope, if you do your research, you can control most insects in your garden.

In order to control pests in your garden you must get proper coverage of the foliage of the plant when you are applying pesticides. There are different types of equipment that are commonly used to apply pesticides in cannabis cultivation: backpack sprayers, foggers, and airless paint sprayers are the most common. An alternative method involves using an automated dosing system such as a dosatron, which injects fertilizer or pesticides at a specific ratio into your water lines, allowing you to use only the exact amount of pesticide you need. That way you avoid wasting money on unused pesticides. It is also safer for employees because it minimizes employee exposure, since there is no mixing required, and it allows for a large volume to be sprayed, without refilling a tank or a backpack sprayer.

No matter what you are using you must ensure you get the proper coverage on your plants in order to control pests. The temperature and humidity of your cultivation area, as well as the PH and temperature of the pesticide solution, all factor into the success of your IPM. For example, PFR 97 needs to be applied at a higher humidity range, around 70% to be most effective. In some areas this is not possible so repeated applications may be required to ensure the application is effective. A high PH or alkaline PH can cause alkaline hydrolysis which will make your pesticide solution less effective and will dictate how long your pesticides remain effective after they are mixed. It is therefore important to use your pesticide solution as soon as you make it; don’t let it sit around for long periods of time before use or it will be less effective.

In cannabis cultivation there are two different primary growth cycles: vegetative and flower. These cycles require different IPM strategies. In general, during the flowering cycle, pesticides should not be applied after the second week, with some limited exceptions i.e. for outdoor cultivation there is a longer window to spray since the flower set takes longer than a plant being grown inside, or in a light deprivation greenhouse, where there is a 12/12 flowering cycle.

Starting with an immaculate vegetation room is crucial to maintaining pest and mold free plants in the flowering cycle.

For the vegetative (non-flowering) cycle, a strict rotation of foliage spray applications targeting not only pests, but also molds and pathogens, will be necessary to avoid a quick onset of infestation. Starting with an immaculate vegetation room is crucial to maintaining pest and mold free plants in the flowering cycle. Preventative sprays that are safe for use include: safer soap (contact kill) for soft bodied chewing insects; Regalia (biological control) for powdery mildew; and PFR 97 (biological control) for soft bodied chewing insects. It is also helpful to spray kelp, which strengthens the cell walls of plants, making the plant healthier, and thus enabling the plant to better defend itself from pests and diseases. Also, Bacillus thuringiensis (Bt) is useful to prevent or kill caterpillars.

The best way to control a pest infestation in the flowering cycle is at the very beginning on day one. You must start aggressively, with a three-way control consisting of a contact kill and preventative during days 1-14; preventative and biological control during days 10-18; and then release predator bugs on day 25, for optimal results. Knocking back the population with an effective contact kill pesticide early on is essential to ultimately lowering populations throughout the grow cycle, so that you can spray a biological control to preclude them from returning, before you release the predatory bugs at the end of the cycle.

Biological controls can take anywhere from 3 to 10 days before they are effective. Biological pesticides are selected strains of bacteria or fungus. When the plant tissue is eaten by a targeted pest, the bacteria kills the pest from the inside providing control without having to spray pesticides repeatedly. Predator bugs are the last line of defense, used in late flowering. They can be used indoors, outdoors and in greenhouses. An example of a common predator bug is Amblyseius californicus used to control low populations of spider mites, but there are many different varieties and they are specific depending on the type of pest population you seek to control.

A common concern with the use of predatory bugs, is whether they will be present when the flowers are harvested. However, if there is no food for the bugs (i.e. pests) the predator bugs will leave in search of food elsewhere. Further, indoor predator bugs are usually very small in size and difficult to see to an untrained eye. It is very unlikely to see any signs of predator bugs near the end of the flowering cycle, or in the finished flower product. Even when using bigger predator bugs, the bugs will leave the plants when harvested and dried.

Having pests can be very stressful. It is not uncommon to have bugs, pests, rodents, animals and birds cause damage in cannabis gardens. Making an informed decision based on science and not on unproven assumptions can determine how successful you are at pest management. There are many factors that go into pest management and no one situation is the same. You must be dedicated and consistent; pest management never stops. You will always have something ready to invade your garden. Prepare, plan, prevent and repeat!

Image 2: Temperature display provides quick view of sensor data

10 Questions To Ask Before Installing a Remote Monitoring System

By Rob Fusco
No Comments
Image 2: Temperature display provides quick view of sensor data

No matter the size of your cannabis greenhouse operation, keeping your plants alive and healthy requires the best possible growing environment. This means greenhouse managers and personnel must frequently monitor the status of environmental conditions and equipment. The sooner someone discovers extreme temperature fluctuations, rising humidity or equipment failure, the more inventory you can save.

Image 1: Cloud-based remote monitoring system in protective enclosure
Cloud-based remote monitoring system in protective enclosure

That’s why integrating a remote monitoring system into your greenhouse operation can save you time, money and anxiety. Monitoring systems that use cloud-based technology let you see real-time status of all monitored conditions and receive alerts right on your mobile device.

Installing a monitoring system and sensors can be easier than you might think. Here are answers to ten questions to ask before installing a cloud-based monitoring system:

  1. What is required to use a remote monitoring system?

Most remote monitoring systems require an internet or WiFi connection and access to an electrical outlet. Programming is done through a website, so it’s easiest to use a computer for the initial setup. If you don’t have an internet connection at your location, you’ll want to choose a cellular system. Make sure that there’s sufficient signal strength at your site, and check the signal quality in the area before purchasing a cellular device.

2. How do we determine what kind of monitoring system and sensors we need?

A reputable manufacturer will have a well-trained support team that can assess your needs even without a site visit to determine which products are best for your application. If you feel you need them to check out your greenhouse operation,many companies can set up a video conference or FaceTime chat to substitute for being on site.

You will want to provide details about the scope and purpose of your cannabis growing operation. Important factors to discuss include:

  • Skeletal structure of the greenhouse (metal, plastic, wood, etc.) and the covering material (glass or plastic).
  • Floor space square footage and height of each of your greenhouses.
  • Number of greenhouse structures in your operation.
  • Outdoor climate to determine if you rely more on heating or air conditioning and the level of humidity control needed.
  • Space dedicated to phases of growth (cloning and propagation, vegetative, flowering) and the microclimates needed for each.
  • Types of lighting, ventilation and irrigation systems.
  • Level of technological automation versus manual operation in place.

The monitoring system representative will then determine the type of system that would best serve your operation, the number of base units you will need and the types of sensors required.

Image 2: Temperature display provides quick view of sensor data
Temperature display provides quick view of sensor data

The representative should also be able to provide tips on the placement of the sensors you’re purchasing. For example, to ensure thorough air temperature coverage, place sensors throughout the greenhouse, next to the thermostat controlling the room temperature and in the center of the greenhouse out of direct sunlight.

Note that there shouldn’t be a cost for a demo, consultation or assistance throughout the sales process. Be sure to ask if there are any fees or licenses to keep using the monitoring equipment after you purchase it.

3. Are sensors included with the monitoring system?

In most cases, sensors are sold separately. The sensors you select depend upon the conditions you want to monitor and how many you can connect to your base unit. Certainly, temperature is critical, but there are many other factors to deal with as well, such as humidity, CO2, soil moisture, water pH, power and equipment failure, ventilation and physical security.

For example, humidity has a direct impact on the photosynthesis and transpiration of plants. High humidity can also cause disease and promote the growth of harmful mold, algae and mildew. Sensors can detect changes in humidity levels.

Image 3: Water pH sensor
Water pH sensor

Like any other plant, cannabis needs COto thrive, so it’s a good idea to include a COsensor that will signal to the monitoring device when readings go out of the preset range. There are even sensors that you can place in the soil to measure moisture content to help prevent over- or underwatering, budget water usage costs, promote growth and increase crop yield and quality.

Of course, all the critical systems in your growing facility—from water pumps to irrigation lines to louvers—rely on electrical power. A power outage monitoring sensor detects power failure. It can also monitor equipment for conditions that predict if a problem is looming, such as power fluctuations that occur at specific times.

Ventilation systems not only help control temperature, they also provide fresh air that is critical to plant health. Automated systems include features like vented roofs, side vents and forced fans. Sensors placed on all these systems will send personnel an alert if they stop running or operate outside of preset parameters.

To monitor the physical security of your greenhouses, you can add sensors to entrance doors, windows, supply rooms and equipment sheds. During off hours, when no staff is on duty, you can remain vigilant and be alerted to any unauthorized entry into your facility.

4. Do monitoring systems only work with the manufacturer’s sensors?

Not necessarily. For example, certain monitoring units can connect with most 4-20mA sensors and transmitters regardless of the brand. When selecting sensors, you might have a choice between ones that are designed by the manufacturer to work specifically with the monitoring system or universal components made by a third party. If the components aren’t made by the system manufacturer, you’ll want to find out if they have been tested with the monitor you are choosing and if you need to work with another vendor to purchase the parts.

A humidity sensor mounted in a weatherproof enclosure
A humidity sensor mounted in a weatherproof enclosure

5. Is a monitoring system easy to set up, or do we need to hire an electrician?

Many monitoring systems are quick and easy to install, and users can often set them up without hiring an outside expert. Look for one that requires only a few simple physical installation steps. For example:

  1. Mount the device to the wall or somewhere secure;
  2. Plug it into an electrical outlet and an internet connection;
  3. Connect the sensors.

You connect the sensors to the base unit’s terminal strip using wire, which is included with many sensors. The range of many wired sensors can be extended up to 2,000 feet away from the base unit by adding wire that can be easily purchased at any home store. It’s a good idea to hire an electrician if you need to run wires through walls or ceilings.

Usually, once you plug in the device and connect the sensors, you then create an account on the manufacturer’s designated website and begin using your device. There should be no fee to create an account and use the site.

If the manufacturer doesn’t offer installation services, ask if they can recommend a local representative in your area who can set up your system. If not, make sure they provide free technical support via phone or email to walk you through the installation and answer any questions you might have about programming and daily usage.

6. Is there a monthly fee to access all the functionality of a monitoring device?

Many web- or cloud-based systems provide free functionality with some limitations. You might have to purchase a premium subscription to unlock features such as text messaging, phone call alerts and unlimited data logging access.

 7. Should we get a system that is wired or wireless? Will we need to have a phone line, cable, internet or something else?

Wireless can mean two different things as it relates to monitoring: how the system communicates its data to the outside world and how the sensors communicate with the system.

The most popular systems require an internet or WiFi connection, but if that’s not an option, cellular- and phone-based systems are available.

A hardwired monitoring system connects the sensors to the base device with wires. A wireless system uses built-in radio transmitters to communicate with the base unit. Some monitoring systems can accommodate a combination of hardwired and wireless sensors.

8. Can one system monitor several sensor inputs around the clock?

Once the monitoring system is installed and programmed, it will constantly read the information from the sensors 24/7. Cloud-based systems have data logging capabilities and store limitless amounts of information that you can view from any internet-connected device via a website or app.

If the system detects any sensor readings outside of the preset range, it will send an alarm to all designated personnel. The number of sensors a base unit can monitor varies. Make sure to evaluate your needs and to select one that can accommodate your present situation and future growth.

When a monitoring system identifies a change in status, it immediately sends alerts to people on your contact list. If you don’t want all your personnel to receive notifications at the same time, some devices can be programmed to send alerts in a tiered fashion or on a schedule. Multiple communications methods like phone, email and text provide extra assurance that you’ll get the alert. It’s a good idea to check the number of people the system can reach and if the system automatically cycles through the contact list until someone responds. Some systems allow for flexible scheduling, so that off-duty personnel don’t receive alerts.

9. Do monitoring systems have a back-up power system that will ensure the alarming function still works if the power goes out or if someone disconnects the power?

The safest choice is a cloud-based system that comes with a built-in battery backup that will last for hours in the event of a power failure. Cloud-based units constantly communicate a signal to the cloud to validate its online status. If the communication link is interrupted—for example by a power outage or an employee accidently switching off the unit—the system generates an alarm indicating that the internet connection is lost or that there is a cellular communications problem. Users are alerted about the disruption through phone, text or email. All data collected during this time will be stored in the device and will be uploaded to the cloud when the internet connection is restored.

If you opt for a cloud-based monitoring system, make sure the infrastructure used to create the cloud platform is monitored 24/7 by the manufacturer’s team. Ask if they have multiple backups across the country to ensure the system is never down.

10. What should we expect if we need technical support or repairs to the system?

Purchase your system from a reputable manufacturer that provides a warranty and offers full repair services in the event the product stops working as it should. Also, research to make sure their tech support team is knowledgeable and willing to walk you through any questions you have about your monitoring system. Often, support specialists can diagnose and correct unit setup and programming issues over the phone.

It helps to record your observations regarding the problem, so the tech team can look for trends and circumstances concerning the issue and better diagnose the problem. Ideally, the manufacturer can provide loaner units if your problem requires mailing the device to their facility for repair.