Even the most traditionally-minded, tech-averse entrepreneur accepts their success relies on providing customers with a superior online experience in 2023. Trying to succeed without a robust web presence is akin to running the 100-meter with your legs tied together.
On that note, the legal cannabis industry might have a leg up over other sectors in providing superior experiences online. After all, the legal cannabis market is relatively new, meaning no legacy systems require any rehauling. Still, many dispensaries must start their websites from scratch.
A website bolstered by an excellent user experience offers many benefits (e.g., branding and additional revenues), but ground-up projects are daunting. Fortunately, the insights below will make your web design process more manageable.
Design Your Website To Click With Your Customer Base.
The primary commodity of all dispensaries is the same. Yet, each dispensary is different. They all have unique branding, voices, and stories they’re trying to tell.
Moreover, every dispensary wants to provide customers with a brand-specific experience. There’s no one-size-fits-all dispensary website for the above reasons.
Even so, the following general best practices will be conducive to streamlined, successful dispensary website design. While every website designer or agency has their own process, this process has proven to be extremely effective for the dispensary clients we’ve helped:
Develop an outline and wireframe for the website’s structure and content:
A guiding principle during this process is to include the necessary pages and sections to optimize vital brand components and effectively promote products.
Other factors to consider are sections, features and calls to action.
Dispensary websites should contain educational content and resources.
Fluid, straightforward navigation should also be prioritized.
Move onto the front-end design:
Incorporate and harmonize multiple brand elements.
Identify aesthetically pleasing typographies and imagery.
Design each page outside of the content management system. This makes it easier to make changes and adjustments after the first draft has been completed.
Get feedback from relevant parties (e.g., clients, colleagues, management, or other stakeholders):
Transparency and open communication are paramount to this step.
This phase will ensure that all expectations for the new design are met while providing a platform for course correction as needed.
Use the feedback to create a foundational website framework:
Meet for a second feedback session before committing 100% to a web design framework.
Develop the website inside of your content management system of choice:
Now that the front-end design has been created, the website will be built out in the actual CMS platform, ex. WordPress.
Share every page with other relevant parties to maintain and foster the web design process’s fluidity.
By now, you should have a solid base for the website’s final form:
The stage involves fine-tuning as the launch date nears.
Also included at this point are the following:
Ancillary page development.
Dispensary menu integration.
Tablet/mobile optimization.
Speed/performance tests.
Contact form designs.
Lead capture setup.
One last guiding principle in web design is to view your website through a user’s eyes. Continually assess how intuitive and convenient it is to navigate your site as a customer.
Optimize The Customer Experience With Seamless Navigation
Dispensaries benefit by guiding visitors to their website’s most important sections.
It’s an understandable oversight only to prioritize seamless navigation to the menu page. However, customers will be less inclined to order if they can’t access educational content to learn more about your products. Plus, they may want to visit your physical store, so they’ll wish to view your location information.
Furthermore, visitors sometimes need clarification about what they want from your website. Build their pathway with insightfully structured navigation systems with clear prompts, calls to action and an emphasis on the following:
Specifics about store and location
Brand information
Where to find responses to FAQs
Lastly, be mindful of the mobile experience on your website. Your customers expect seamless navigation on their phones and tablets as much as on their laptops and desktops.
More people will visit and shop your menu on the mobile version of the website than the desktop version, so it needs to take priority in the design process.
Create an Intuitive Online Ordering Process
The ordering component of the customer experience is integral to receiving desirable returns on your online investment.
Of course, every visit counts and brands are happy to educate consumers. A steady, always-growing stream of eCommerce transactions paints a winning picture of your site’s navigation. More to the point, success with online orders means you’ve optimized the ordering experience.
Intuitive, easy-to-parse menu systems are a must when optimizing online ordering.
Ensure that your customers are one click away from their preferred menu and location (if you have multiple locations), regardless of where they are on your website. It’s even better if those pages can rank on Google based on local searches (e.g., Pennsylvania dispensary menu).
Online shoppers also respond well to search filters on your menus, such as:
Products with the highest or lowest THC levels
Products with the highest or lowest CBD levels
Specific strain types (i.e., Indica, Sativa and Hybrid)
Product types (e.g., flower, concentrate, oil or edible)
Build A Robust Resources/Information Section
Almost every branded website has a resource/information section. In some instances, it’s a blog. For other brands, it’ll be eBooks, guides, case studies, press releases, videos or news articles.
A resource/information section is uniquely vital to cannabis brands. Many prospective customers will be first-timers and require sure-handed wisdom to guide them through the experience. Also, many seasoned enthusiasts want to learn about the latest trends and the best new strains.
Furthermore, providing resources and information is a form of education. This “teacher” approach helps push back against stigmas by focusing on cannabis’s nuances and benefits.
Consider using a “pillar page” system to organize your informational content (e.g., blogs, videos, eBooks). Doing so will make it seamless for website visitors to learn about strains, terpenes, upcoming community events, consumption methods or information about local cannabis laws.
It helps to customize each pillar page with an icon and create an individual page for every post in a given category. This way, newly published content will automatically appear under its associated pillar page.
Other Considerations
We understand the budgetary challenges many dispensaries face when getting off the ground. You can grow your budget by making decisions and taking educated risks that generate returns.
Your customers’ online experiences are a worthy investment. Nonetheless, are you investing wisely by building (or redesigning) your website in-house? After all, your team’s expertise is in cannabis sales (or cultivation). They’re smart enough to learn as they go, but would this trial-and-error web design process be efficient or ideal for your dispensary’s bottom line?
Conversely, working with a Consulting Group like MOST who specializes in dispensary website design can ensure your website generates the desired returns and results. Contact us today to learn more.
Remedy currently has two locations, one in Baltimore and one in Columbia, Maryland. The first thing you notice at these dispensaries are the large parking areas. When you step inside, you’re greeted by an entrance that is less like a waiting room and more like a lounge.
Their massive open floor plans offer space for brands to have their own area, akin to branded counters in traditional department stores. Remedy has partnerships with big cannabis brands like Cookies, Curio Wellness, Holistic, Rhythm, Trulieve, Green Thumb Industries and others for this reason: to create the “store within a store” feel.
We met Mitch Trellis and Brandon Barksdale, co-CEOs of Remedy, in Las Vegas last year. After hearing about their ideas and vision for the future of cannabis retail, we followed up with them for an interview.
Cannabis Industry Journal: Give us some brief background on your company. How did Remedy get to where it is today?
Mitch Trellis: I have been a patient and consumer since 1994. I have always loved and respected the plant. I spent much of my career on Wall Street, but really I’ve been an entrepreneur most of my life. I started looking at the cannabis space for my next venture. 2014 was a very exciting time for cannabis with a lot of other states were coming online around that time. Colorado had legalized adult use and California had been going for a while. I was looking for an opportunity to jump into the space. Maryland wrote a very progressive law legalizing the plant for medical use, marking the first time on the East Coast where cannabis could be prescribed for pain.
I saw some real business opportunities there so I reach out to my business partner, Blaize Connelly-Duggan, whose family has a long history working with alternative medicine. We were both born and raised in Columbia, Maryland. About a year after coming up with the idea, we submitted an application for a fully vertical license. We did not win the growing or processing license, but we found out we had won a dispensary license.
We decided to move forward in late 2016. We opened in December of 2017 and we just had our five-year anniversary of operating a dispensary in the state of Maryland. We have seen over 30,000 individual patients and we’ve done around 45 million retail sales over that time. We are on a good pace right now with our two stores, each of which we call “superstores” with around 10,000 square feet of space. We have built some pretty interesting retail experiences, what we call our in-store ad network. We are a little different than other dispensaries; we’re not going for the Starbucks or corner store model.
Brandon Barksdale: I came from professional services. I was in a management consulting practice and a leader within our cannabis industry advisory group. We were working with clients on performance management, business improvement and organizational maturity that would help drive operational excellence within complex compliance and legislative landscapes.
The clients that I had spanned over a lot of different states, so I think a lot of my initial experience comes from California in 2015 and 2016. Outside of consultancy, I stepped into operations within a vertically-integrated cannabis operation in Colorado. From there I gained the full breadth of experience in understanding the business from cultivation to manufacturing to retail. We were also operating on both sides of the market, medical and adult use. This put me at a little bit of an advantage for new markets coming online, understanding the economics and how things would play out, you know, history repeats itself, just faster and faster.
I met Mitch and Blaze through a mutual acquaintance and we shared a lot of the same vision and thoughts for where the industry was heading locally in Maryland and nationally. Ultimately, I came on board in an advisory capacity and then joined the team full time.
CIJ: Tell us more about this Nordstrom business model. What brand partnerships are you developing and how is your idea different from the traditional dispensary?
Mitch: We have basically built a platform for the brand and vendors to interact with the patients and the customers. There is a big gap between the two and we operate as a conduit between the two. In that plan, we need to have spaces for each individual brand to interact with the consumer, which is why we have such large floor plans. Brands set up semi-permanent stores within our store, almost like pop ups. Right now, on our floor we have Trulieve, Holisitic, GTI, Curio, Cookies, Sunmed and 2 or 3 more coming. That’s the equivalent of the Sephora and Nike in Nordstrom.
We have a handful of our own brands we are working on bringing to the state of Maryland, which is kind of like those generic brands you see, like Nordstrom Rack or a 365 brand in Whole Foods. So, it is a more traditional retail model than what you might think of in the cannabis market.
People ask us, ‘well, what do you do differently?’ And really, we try not to do things differently. We try to do things like regular retail. At the end of the day, it’s about the experience, the price, the convenience, customer service, simple retail stuff.
Brandon: The differentiator that separates us from other dispensaries is that retail experience. On our floor, we have a massive amount of brand power coming from the strongest Maryland supplies and household brands entering Maryland from other thriving markets. From there, it’s really just about driving the patient and adult consumer experience, helping them come in and learn about brands, what makes them different, what drives their quality, price, etc. Ultimately it allows brands to present themselves the way they intended. That in itself is enough of a unique experience. Then it’s about execution. What we hope as we come into a new adult use market while we continue to support the medical market is that there will be a way for patients and consumers alike to learn about more products, wider brand selection and learn what best aligns with their values, their experience and the overall value proposition.
CIJ: With Maryland legalizing adult-use and the Virginia market expected to open soon, how do you expect your retail business will fare in the new, larger market?
Mitch: We have very large stores in incredible locations that are very well known with tons of parking and the ability to do tremendous volume. I think we are well prepared and our business is built for a larger volume scenario.
Brandon: I am personally very optimistic. Maryland is leading the way in the mid-Atlantic market. We will continue to steamroll forward. Different states and neighboring states will be coming online at some point in the future. That potentially advanced runway will really pull us apart. Our strategy around retail is about growth and operational excellence. We’ll continue to find opportunities to support that broader market vision as it comes into view. We’re constantly seeking how we can expand our market footprint. When I think about Maryland in general, it is a pretty unique market. I don’t think we have seen a newer market come online that was as unique as this region, wrapped around this gray market and other states operating in this limbo.
I think we’ll see an increase in cannabis comfortability with the adult population in Maryland. I also believe that and other unique factors will drive a huge jump in the number of consumers and patients in Maryland as we mature into adult-use. There are a significant number of government employees in Maryland. There are other unique sensitivities to cannabis that will also become normalized. As Maryland moves forward with the rollout of the adult use program, that’ll be something that starts to pull uncomfortable stigmas away which will be increasingly favorable to the market.
CIJ: What are you excited about for 2023? Any new or exciting plans you can share with our readers?
Mitch: We’re definitely watching all of our neighboring states and we’re keeping a close eye on our own state to see how everything shakes out. We will start our adult use sales in the state of Maryland very soon and we are moving forward in that direction. What do we look forward to? The beginning of adult use sales in Maryland. This is the start of our next big chapter and a culmination of a lot of work. 8 years later here we are.
Brandon: Maryland is next up. To Mitch’s point, that is where our main focus remains. We are constantly looking at opportunities within the state and nationally as well. I’d like to think of us as a market leader from a retail perspective. Our primary focus right now is how to capture a lot of the excitement in the Maryland market adult-use program, however, our eyes and ears are always open.
Aeroponic & hydroponic systems grow plants at a highly accelerated rate. A “clean room” type of construction approach is the best way to manage this type of grow operation. Starting with a facility that is completely void of any kind of wood or materials that are porous is a good start. Cellulose materials collect moisture and encourage mold and mildew formation no matter how good the sealant.
We have seen cultivation spaces built out of dry wall over wooden post construction and studs that look sealed and solid on the outside of walls but when repaired for plumbing or other expansion work, they are black inside and covered with nasty mold that no one wants near their grow space.
Panel construction over steel frames or steel studs with skins is a safer, more sterile approach than retrofitting a wooden structure. Panel construction offers the added benefit of rapid assembly and minimal labor costs. We have seen 300 light rooms assembled in a few days so it is both very cost effective and safely sealed for protected growth.
Room Sizes & Count
If you have unlimited space, temperature and humidity management should determine the room sizes in your facility. Room sizes that are square in dimensions tend to be easier to maintain from an environmental standpoint. Long narrow rooms are good for fan airflow but tend to be more expensive from a cooling and dehumidification point of view. The larger the room, the more likely that you will get “microclimates” within the room which can challenge yield optimization.
Now, of course, many grows are retrofits of existing structures so compromises can be necessary. We have found that cultivators that have both very large and mid-size rooms in the same facility (200 lights versus 70 lights) are consistently more successful in the 70 light rooms. These “smaller rooms (~1,500 ft2) out-yielded and out-performed the larger rooms using the same genetics and grow plans. Compartmentalization also minimizes the risk in the case that a calamity (i.e. pest infestation) strikes the room. In a large room scenario, the losses can damage your operation. For this reason, we recommend 70-100 light/tub rooms as a standard.
Rooms should also follow your nursery economics. Structuring your nursery to produce just enough clones/veg plants for your next flower room avoids wasted plant material and resources. Breaking a larger space down into individual rooms means that you need fewer veg plants to fill your flower room that week. The best way to optimize this is to have a number of rooms that are symmetrical with the number 8 (typical 8-week cycle genetics).
With 8 rooms running flower, you are able to plant one room per week for 8 weeks. In the 9th week, you start over on room 1. This continuous harvest process is highly efficient from a labor standpoint and it minimizes the size of your mothers room (cost center). Additional space can be applied to your flower rooms. If you do not have infinite space, even divisors work just as well; 2 or 4 rooms can be planted in sequence for the same optimization (for 2-room structures, harvest and replant 1 room every 4 weeks for example). The optimal structure (8, 16, 24, or more rooms) enables you to optimize your profitability. If any of this needs further explanation, please just ask.
Within your room choice, movable rows or columns of tubs/lights also provides optimal yields. Tubs/plants can be moved together for light usage efficiency and one 3-foot aisle can be opened for plant maintenance. Racking systems or movable trays/tubs make this convenient nowadays.
Floors
Concrete floors offer pockets for bacteria to collect and smolder. As such, they have to be sealed. Proper application of your sealant choice is required so that it does not peal up or crack after sealing. There are many benefits to sealed floors that is discussed in the white paper. Floor drains are the equivalent of a portal to Hell for a sterile grow operation. Avoid them at all costs.
Phased Construction
Tuning or optimizing you grow rooms for ideal flowering operation depends on your location. Our advice is that you build and optimize your facility in phases with the expectation that nothing is perfect and you will learn improvements in every phase of expansion. The immediate benefit is production that you can promote to your sales channels and revenue that starts as soon as possible to improve your profitability. This is also an excellent learning curve to apply to subsequent rooms. Our happiest customers are those that learned construction improvements in early rooms that were able to be applied to following rooms without headache. The ability to focus on one or two rooms also allows you to get the recipe correct rather than just relying on “winging it”.
Don’t Be In A Rush To Go Green
Validate your water supplies and their stability. Verify that the water in your aeroponic or hydroponic feeds that get to your plants are clean and sterile. This is much easier in a step-by-step fashion than in a crisis debug mode once production is in progress. Be very cautious about incoming clone supplies. We will talk about this more in the next chapter on Integrated Pest Management but incoming clones are a top pest vector that can contaminate your entire facility.
Warehouse Versus Greenhouse Cultivation Spaces
As we started out, controlling your environment is your most important concern. We have seen success in both indoor rooms and greenhouses. The defining success factor is controlling humidity and temperature. Modern sealed controlled environment (CEA) greenhouses do this well and CEA is somewhat of a given for indoor grows. More details on this in the white paper.
Packaging these recommendations gets you to the perfect body for your Formula 1 race car. Now, you are ready to look at some of the mechanics of protecting your operation from pesky little critters and biologicals that can derail your operation and weaken your engine.
Before we sign off this week, I wanted to highlight the ultimate build-out that we have seen so far. Of course, there are many challengers that have done this well but at this point, FarmaGrowers in South Africa has the best thought out facility we have seen. They acquired Good Manufacturing Practice (GMP) & Good Agricultural & Collection Practice (GACP) certification early in their operations due to very well-thought-out designs. They are exporting to global markets without irradiation today. Certainly, many successful customers have beautifully thought-out operations and there are several upcoming facilities that offer amazing planning that will challenge for this crown, but for now. FarmaGrowers leads the pack in this aspect. See here for a walkthrough.
Facility layout and design are important components of overall operations, both in terms of maximizing the effectiveness and efficiency of the process(es) executed in a facility, and in meeting the needs of personnel. Prior to the purchase of an existing building or investing in new construction, the activities and processes that will be conducted in a facility must be mapped out and evaluated to determine the appropriate infrastructure and flow of processes and materials. In cannabis markets where vertical integration is the required business model, multiple product and process flows must be incorporated into the design and construction. Materials of construction and critical utilities are essential considerations if there is the desire to meet Good Manufacturing Practice (GMP) compliance or to process in an ISO certified cleanroom. Regardless of what type of facility is needed or desired, applicable local, federal and international regulations and standards must be reviewed to ensure proper design, construction and operation, as well as to guarantee safety of employees.
Materials of Construction
The materials of construction for interior work surfaces, walls, floors and ceilings should be fabricated of non-porous, smooth and corrosive resistant surfaces that are easily cleanable to prevent harboring of microorganisms and damage from chemical residues. Flooring should also provide wear resistance, stain and chemical resistance for high traffic applications. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces22 provides a method for evaluating the antibacterial activity of antibacterial-treated plastics, and other non-porous, surfaces of products (including intermediate products). Interior and exterior (including the roof) materials of construction should meet the requirements of ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Covering7, UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings 8, the International Building Code (IBC) 9, the National Fire Protection Association (NFPA) 11, Occupational Safety and Health Administration (OSHA) and other applicable building and safety standards, particularly when the use, storage, filling, and handling of hazardous materials occurs in the facility.
Utilities
Critical and non-critical utilities need to be considered in the initial planning phase of a facility build out. Critical utilities are the utilities that when used have the potential to impact product quality. These utilities include water systems, heating, ventilation and air conditioning (HVAC), compressed air and pure steam. Non-critical utilities may not present a direct risk to product quality, but are necessary to support the successful, compliant and safe operations of a facility. These utilities include electrical infrastructure, lighting, fire detection and suppression systems, gas detection and sewage.
Water
Water quality, both chemical and microbial, is a fundamental and often overlooked critical parameter in the design phase of cannabis operations. Water is used to irrigate plants, for personnel handwashing, potentially as a component in compounding/formulation of finished goods and for cleaning activities. The United States Pharmacopeia (USP) Chapter 1231, Water for Pharmaceutical Purposes 2, provides extensive guidance on the design, operation, and monitoring of water systems. Water quality should be tested and monitored to ensure compliance to microbiological and chemical specifications based on the chosen water type, the intended use of the water, and the environment in which the water is used. Microbial monitoring methods are described in USP Chapter 61, Testing: Microbial Enumeration Tests3and Chapter 62, Testing: Tests for Specified Microorganisms 4, and chemical monitoring methods are described in USP Chapter 643, Total Organic Carbon 5, and Chapter 645, Water Conductivity6.Overall water usage must be considered during the facility design phase. In addition to utilizing water for irrigation, cleaning, product processing, and personal hygiene, water is used for heating and cooling of the HVAC system, fogging in pest control procedures and in wastewater treatment procedures A facility’s water system must be capable of managing the amount of water required for the entire operation. Water usage and drainage must meet environmental protection standards. State and local municipalities may have water usage limits, capture and reuse requirements and regulations regarding runoff and erosion control that must also be considered as part of the water system design.
Lighting
Lighting considerations for a cultivation facility are a balance between energy efficiency and what is optimal for plant growth. The preferred lighting choice has typically been High Intensity Discharge (HID) lighting, which includes metal halide (MH) and high-pressure sodium (HPS) bulbs. However, as of late, light-emitting diodes (LED) systems are gaining popularity due to increased energy saving possibilities and innovative technologies. Adequate lighting is critical for ensuring employees can effectively and safely perform their job functions. Many tasks performed on the production floor or in the laboratory require great attention to detail. Therefore, proper lighting is a significant consideration when designing a facility.
HVAC
Environmental factors, such as temperature, relative humidity (RH), airflow and air quality play a significant role in maintaining and controlling cannabis operations. A facility’s HVAC system has a direct impact on cultivation and manufacturing environments, and HVAC performance may make or break the success of an operation. Sensible heat ratios (SHRs) may be impacted by lighting usage and RH levels may be impacted by the water usage/irrigation schedule in a cultivation facility. Dehumidification considerations as described in the National Cannabis Industry Association (NCIA) Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification 26 are critical to support plant growth and vitality, minimize microbial proliferation in the work environment and to sustain product shelf-life/stability. All of these factors must be evaluated when commissioning an HVAC system. HVAC systems with monitoring sensors (temperature, RH and pressure) should be considered. Proper placement of sensors allows for real-time monitoring and a proactive approach to addressing excursions that could negatively impact the work environment.
Compressed Air
Compressed air is another, often overlooked, critical component in cannabis operations. Compressed air may be used for a number of applications, including blowing off and drying work surfaces and bottles/containers prior to filling operations, and providing air for pneumatically controlled valves and cylinders. Common contaminants in compressed air are nonviable particles, water, oil, and viable microorganisms. Contaminants should be controlled with the use appropriate in-line filtration. Compressed air application that could impact final product quality and safety requires routine monitoring and testing. ISO 8573:2010, Compressed Air Specifications 21, separates air quality levels into classes to help differentiate air requirements based on facility type.
Electrical Infrastructure
Facilities should be designed to meet the electrical demands of equipment operation, lighting, and accurate functionality of HVAC systems. Processes and procedures should be designed according to the requirements outlined in the National Electrical Code (NEC) 12, Institute of Electrical and Electronics Engineers (IEEE) 13, National Electrical Safety Code (NESC) 14, International Building Code (IBC) 9, International Energy Conservation Code (IECC) 15 and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ).
Fire Detection and Suppression
“Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs.”Proper fire detection and suppression systems should be installed and maintained per the guidelines of the National Fire Protection Association (NFPA) 11, International Building Code (IBC) 9, International Fire Code (IFC) 10, and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ). Facilities should provide standard symbols to communicate fire safety, emergency and associated hazards information as defined in NFPA 170, Standard for Fire Safety and Emergency Symbols27.
Gas detection
Processes that utilize flammable gasses and solvents should have a continuous gas detection system as required per the IBC, Chapter 39, Section 3905 9. The gas detection should not be greater than 25 percent of the lower explosive limit/lower flammability limit (LEL/LFL) of the materials. Gas detection systems should be listed and labeled in accordance with UL 864, Standard for Control Units and Accessories for Fire Alarm Systems16 and/or UL 2017, Standard for General-Purpose Signaling Devices and Systems 17 and UL 2075, Standard for Gas and Vapor Detectors and Sensors18.
Product and Process Flow
Product and process flow considerations include flow of materials as well as personnel. The classic product and process flow of a facility is unidirectional where raw materials enter on one end and finished goods exit at the other. This design minimizes the risk of commingling unapproved and approved raw materials, components and finished goods. Facility space utilization is optimized by providing a more streamlined, efficient and effective process from batch production to final product release with minimal risk of errors. Additionally, efficient flow reduces safety risks to employees and an overall financial risk to the organization as a result of costly injuries. A continuous flow of raw materials and components ensures that supplies are available when needed and they are assessable with no obstructions that could present a potential safety hazard to employees. Proper training and education of personnel on general safety principles, defined work practices, equipment and controls can help reduce workplace accidents involving the moving, handling, and storing of materials.
Facilities Management
Facilities management includes the processes and procedures required for the overall maintenance and security of a cannabis operation. Facilities management considerations during the design phase include pest control, preventative maintenance of critical utilities, and security.
A Pest Control Program (PCP) ensures that pest and vermin control is carried out to eliminate health risks from pests and vermin, and to maintain the standards of hygiene necessary for the operation. Shipping and receiving areas are common entryways for pests. The type of dock and dock lever used could be a welcome mat or a blockade for rodents, birds, insects, and other vermin. Standard Operating Procedures (SOPs) should define the procedure and responsibility for PCP planning, implementation and monitoring.
Routine preventative maintenance (PM) on critical utilities should be conducted to maintain optimal performance and prevent microbial and/or particulate ingress into the work environment. Scheduled PMs may include filter replacement, leak and velocity testing, cleaning and sanitization, adjustment of airflow, the inspection of the air intake, fans, bearings and belts and the calibration of monitoring sensors.
In most medical cannabis markets, an established Security Program is a requirement as part of the licensing process. ASTM International standards: D8205 Guide for Video Surveillance System 23, D8217 Guide for Access Control System[24], and D8218 Guide for Intrusion Detection System (IDS) 25 provide guidance on how to set up a suitable facility security system and program. Facilities should be equipped with security cameras. The number and location of the security cameras should be based on the size, design and layout of the facility. Additional cameras may be required for larger facilities to ensure all “blind spots” are addressed. The facility security system should be monitored by an alarm system with 24/7 tracking. Retention of surveillance data should be defined in an SOP per the AHJ. Motion detectors, if utilized, should be linked to the alarm system, automatic lighting, and automatic notification reporting. The roof area should be monitored by motion sensors to prevent cut-and-drop intrusion. Daily and annual checks should be conducted on the alarm system to ensure proper operation. Physical barriers such as fencing, locked gates, secure doors, window protection, automatic access systems should be used to prevent unauthorized access to the facility. Security barriers must comply with local security, fire safety and zoning regulations. High security locks should be installed on all doors and gates. Facility access should be controlled via Radio Frequency Identification (RFID) access cards, biometric entry systems, keys, locks or codes. All areas where cannabis raw material or cannabis-derived products are processed or stored should be controlled, locked and access restricted to authorized personnel. These areas should be properly designated “Restricted Area – Authorized Personnel Only”.
Future Expansion
The thought of expansion in the beginning stages of facility design is probably the last thing on the mind of the business owner(s) as they are trying to get the operation up and running, but it is likely the first thing on the mind of investors, if they happen to be involved in the business venture. Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs. Thought must be given to how critical systems and product and process flows may be impacted if future expansion is anticipated. The goal should be to minimize down time while maximizing space and production output. Therefore, proper up-front planning regarding future growth is imperative for the operation to be successful and maintain productivity while navigating through those changes.
References:
United States Environmental Protection Agency (EPA) Safe Drinking Water Act (SDWA).
United States Pharmacopeia (USP) Chapter <1231>, Water for Pharmaceutical Purposes.
United States Pharmacopeia (USP) Chapter <61>, Testing: Microbial Enumeration Tests.
United States Pharmacopeia (USP) Chapter <62>, Testing: Tests for Specified Microorganisms.
United States Pharmacopeia (USP) Chapter <643>, Total Organic Carbon.
United States Pharmacopeia (USP) Chapter <645>, Water Conductivity.
ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Coverings.
UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings.
International Building Code (IBC).
International Fire Code (IFC).
National Fire Protection Association (NFPA).
National Electrical Code (NEC).
Institute of Electrical and Electronics Engineers (IEEE).
National Electrical Safety Code (NESC).
International Energy Conservation Code (IECC).
UL 864, Standard for Control Units and Accessories for Fire Alarm Systems.
UL 2017, Standard for General-Purpose Signaling Devices and Systems.
UL 2075, Standard for Gas and Vapor Detectors and Sensors.
International Society for Pharmaceutical Engineers (ISPE) Good Practice Guide.
International Society for Pharmaceutical Engineers (ISPE) Guide Water and Steam Systems.
ISO 8573:2010, Compressed Air Specifications.
ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces.
D8205 Guide for Video Surveillance System.
D8217 Guide for Access Control Syst
D8218 Guide for Intrusion Detection System (IDS).
National Cannabis Industry Association (NCIA): Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification.
NFPA 170, Standard for Fire Safety and Emergency Symbols.
There are many factors that can lead to the challenges people face when scaling up their processes. These challenges are not unique to the cannabis/hemp industry, but they are exacerbated by the consequences generated from decades of Reefer Madness. In my time operating in the cannabis/hemp space, 15+ years, I have seen established equipment vendors and sellers of laboratory supplies, like Sigma-Aldrich (now Millipore-Sigma), Fisher-Scientific, Cerilliant, Agilent, and others, go from reporting individuals inquiring about certified reference materials to setting up entire divisions of their companies to service the needs of the industry. Progress. But we are still a fledgling marketplace facing many challenges. Let’s look at a few specific to process scale up.
Darwin Millard will deliver a presentation on this topic during the Cannabis Extraction Virtual Conference on June 29. Click here to learn more.Equipment Availability: Lack of available equipment at larger and larger process scales can severely impact project timelines. Making not only equipment acquisition difficult, but also limiting the number of reputable equipment manufacturers you can work with.
Non-Linear Expansion: NEVER assume your process scales linearly. Perhaps one of the most avoidable mistakes during process scale up. You will quickly find that for many processes you cannot just put in a larger unit and expect a proportional increase in output. This is because as process equipment increases so to must utilities and other supporting infrastructure, but not only that, process vessel geometry, proportions, and design are contributing factors to process efficiency as your scale of operations increases.
Hazardous Material Quantities: Just as important to the process as the equipment are the solvents and reagents used. As your scale of operations increases so does your demand and production of hazardous materials; solvents including carbon dioxide (CO2), ethanol, and liquid petroleum gases (LPG) like Butane and Propane are obvious hazards, but so too are the refrigerants used in the chillers, fuels used to power generators, steam created to heat critical systems, and effluents and wastewater discharged from the process and supporting systems. Not every municipality wants thousands of gallons of flammable substances and hazardous waste being generated in their backyard…
Contractor/Vendor Misrepresentation: Finding out in the middle of you project that your contractor or equipment vendor has never set up a system at this scale before is never a good feeling. Unfortunately, contractor and vendor misrepresentation of qualifications is a common occurrence in the cannabis/hemp space.
If all this was not bad enough, all too often the consequences of improper planning and execution are not felt until your project is delayed or jeopardized due to misallocation of funds or undercapitalization. This is especially true when scaling up your production capacity. Now let’s look at some ways to avoid these mistakes.
The Rule of 10
When scaling up your process, NEVER assume that a simple linear expansion of your process train will be sufficient. It is often the case that process scale up is non-linear. Using the Rule of 10 is one way of scaling up your process through a stepwise iterative approach. The Rule of 10 is best explained through an example: Say you are performing a bench-top extraction of a few grams and want to scale that up to a few thousand kilograms. Before jumping all the way to your final process scale, start by taking a smaller jump and only increase your bench-top process by a factor of 10 at a time. So, if you were happy and confident with your results at the tens of grams scale, perform the same process at the hundreds of grams scale, then the thousands of grams scale, tens of kilograms scale, and so forth until you have validated your process at the scale of operations you want to achieve. By using the Rule of 10 you can be assured that your process will achieve the same yields/results at larger and larger scales of operation.
Scaling up your process through an iterative approach allows you to identify process issues that otherwise would not have been identified. These can include (but by no means should be considered an exhaustive list) improper heat transfer as process vessels increase in size, the inability to maintain process parameters due to inadequately sized utilities and/or supporting infrastructure, and lower yields than expected even though previous iterations were successful. However, this type of approach can be expensive, especially when considering custom process equipment, and not every processor in the cannabis/hemp space is going to be in the position to use tools like the Rule of 10 and instead must rely on claims made by the equipment vendor or manufacture when scaling up their process.
The Cannabis/Hemp Specific Process Equipment Trap
How many times have you heard this one before: “We have a piece of process equipment tailor-made to perform X,Y,Z task.”? If you have been around as long as I have in the cannabis/hemp space, probably quite a few times. A huge red flag when considering equipment for your expansion project!
Unless the equipment manufacturer is directly working with cannabis/hemp raw materials, or with partners who process these items, during product development, there is no way they could have verified the equipment will work for its purported use.
A good example of this are ethanol evaporation systems. Most manufacturers of evaporators do not work with the volumes of ethanol they claim their systems can recover. So how did they come up with the evaporation rate? Short answer – Thermodynamics, Heat Transfer, and Fluid Mechanics. They modeled it. This much surface area, plus this much heat/energy, with this much pressure (or lack thereof), using this type of fluid, moving through this type of material, at this rate of speed, gets you a 1000-gal/hr evaporator or some other theoretical value. But what is the real rate once an ethanol and cannabis/hemp solution is running through the system?
For a straight ethanol system, the theoretical models and experimental models are pretty similar – namely because humans like alcohol – extensive real-world data for ethanol systems exist for reference in designing ethanol evaporators (more accurately described as distillation systems, i.e. stills). The same cannot be said for ethanol and cannabis/hemp extract systems. While it is true that many botanical and ethanol systems have been modeled, both theoretically and experimentally, due to prohibition, data for cannabis/hemp and ethanol systems are lacking and the data that do exist are primarily limited to bench-top and laboratory scale scenarios.
So, will that 1000-gal/hr evaporator hit 1000-gal/hr once it is running under load? That’s the real question and why utilizing equipment with established performance qualifications is critical to a successful process scale up when having to rely on the claims of a vendor or equipment manufacturer. Except this is yet another “catch 22”, since the installation, operational, and performance qualification process is an expensive endeavor only a few equipment manufacturers servicing the cannabis/hemp market have done. I am not saying there aren’t any reputable equipment vendors out there; there are, but always ask for data validating their claims and perform a vendor qualification before you drop seven figures on a piece of process equipment on the word of a salesperson.
Important Takeaways
Improper design and insufficient data regarding process efficiencies on larger and larger scales of manufacturing can lead to costly mistakes which can prevent projects from ever getting off the ground.
Each aspect of the manufacturing process must be considered individually when scaling your process train because each element will contribute to the system’s output, either in a limiting or expansive capacity.
I go further into this topic in my presentation: Challenges with Process Scale Up in the Cannabis/Hemp Industry, later this month during Cannabis Industry Journal’s Extraction Virtual Conference on June 29th, 2021. Here I will provide real-world examples of the consequences of improper process scale up and the significance of equipment specifications, certifications, and inspections, and the importance of vendor qualifications and the true cost of improper design specifications. I hope to see you all there.
As cannabis legalization becomes more prolific across the United States, entrepreneurs are entering the cultivation business in droves. With so many new companies entering the market and growing cannabis, there are a lot of common errors made when getting started. Here are ten of the biggest mistakes you can make when building a cannabis grow facility:
Failure to consult with experts in the cannabis business – poor planning in floorplan and layout could create deficient workflow causing extra time and costing profits. Bad gardening procedures may result in crop failure and noncompliance could mean a loss of license. Way too often, people will draft a design and begin construction without taking the time to talk to an expert first. Some important questions to ask yourself and your consultant are: What materials should be used in the building of the grow? Is my bed-to-flower ratio correct? How long will it take before I can see my first harvest?
Contractor selection – DO NOT build your own facility; leave it to the experts. Sure, you have experience building things and you have a friend who has worked in construction. Do not make this mistake – Our experience can save you from the mistake’s others have made. To stay lucrative in this competitive industry and to maximize your products’ quality and yields, have the facility built right the first time. Paying an experienced, qualified cannabis professional to build you a facility will produce better yields and will save you time, stress and money in getting you from start of construction to your first crop.
Not maximizing your square footage potential – With today’s fast changing environment, multi-tiered stationary racks, rolling benches and archive style rolling racks help maximize square footage. Without the proper garden layout, you will find yourself pounds short of your potential each harvest.
Inadequate power – Not planning or finding out if there is sufficient power available at the site for your current and future needs. This will stop you from building the overall square footage you want. When finding a building make sure you first know how much power you will need for the size grow you want. With proper engineering you will find out what load requirements will be so you can plan accordingly.
Material selection – The construction material that goes into a cultivation and extraction facility should consist of nonabsorbent anti-microbial finishes. The days of wood grow benches are long gone. Epoxy flooring, metal studs and other materials are mandatory for a quality-built, long-lasting facility.
Hand watering – Once your facility is up and running, many people feel they have spent enough money and they can save by hiring people to water by hand, rather than going with an automated system to handle the watering and nutrients. The problem with this is your employees are not on your plants timetable. What if an employee calls off and can’t come into water at the right time or they mix the wrong amount of nutrients from the formula you have selected? These are issues we see a lot. It is critical to perform precise, scheduled watering and nutrient delivery to increase your yields.
Failure to monitor and automate – Automating your grow is important for controlling the light and fertigation schedules as well as data collection and is crucial to maximizing yields. Being able to do this remotely gives you peace of mind in that you can monitor your grow room temperature and humidity at all times and be notified when something is not right.
Poor climate – This can cause stunted growth, smaller harvests and test failures. Our experience has taken us to facilities that have had mold and mildew issue due to poor climate. Proper air balancing, additional dehumidification along with a proper cleaning procedure can get a facility back in working order. Installing proper climate control systems could save millions of dollars.
Choosing the wrong site or building – Not knowing the history of the building you are choosing to rent or buy can create logistical and monetary nightmares. The wrong site can be a distribution and marketing disaster. In the wrong building, exponentially more money is spent to bring that building up to the standards needed for successful production and yields. For example, bringing in the ceiling and the cleaning of an existing facility can be a great expense. If you do not know what you are looking at when you purchase, you may be in for months of unaccounted expenses and inaccurate timelines. This can be detrimental for companies and individuals that are on restricted timelines and have to start producing successful and continuous yields from a space that has to be converted into a prime grow facility.
Failure to maintain your facility – A dirty site creates an invitation for pests, workplace injuries, unhealthy working environment and equipment failure. Keeping the facility and equipment properly maintained with routine service will ensure efficiency, longevity of equipment life span and reduce mold and bacteria risk. Clean facilities = clean plants and better flower.
The cannabis industry is growing and evolving at an unprecedented pace and regulators, consumers and businesses continually struggle to keep up.
Cannabis businesses: How do you maintain an edge on the market, avoid costly mistakes?
Case Study: Costly Facility Build Out Oversights
David Vaillencourt will be joining a panel discussion, Integrated Lifecycle of Designing a Cultivation Operation, on December 22 during the Cannabis Quality Virtual Conference. Click here to register. A vertically integrated multi-state operator wants to produce edibles. The state requires adherence to food safety practices (side note – even if the state did not, adherence to food safety practices should be considered as a major facility and operational requirement). They are already successfully producing flower, tinctures and other oil derivatives. Their architect and MEP firm works with them to design a commercial kitchen for the production of safe edibles. The layout is confirmed, the equipment is specified – everything from storage racks, an oven and exhaust hoods, to food-grade tables. The concrete is poured and walls are constructed. The local health authority comes in to inspect the construction progress, who happens to have a background in industrial food-grade facilities (think General Mills). They remind the company that they must have three-compartment sinks with hot running water for effective cleaning and sanitation, known as clean-out-of-place (COP). The result? Partial demolition of the floor to run pipeline, and a retrofit to make room for the larger sinks, including redoing electrical work and a contentious team debate about the size of the existing equipment that was designed to fit ‘just right.’
Unfortunately, this is just one more common story our team recently witnessed. In this article, I outline a few recommendations and a process (Quality by Design) that could have reduced this and many other issues. For some, following the process may just be the difference between being profitable or going out of business in 2021.
The benefits of Quality by Design are tangible and measurable:
Reduce mistakes that lead to costly re-work
Mitigate inefficient operational flow
Reduce the risk of cross-contamination and product mix-ups. It happens all the time without carefully laid out processes.
Eliminate bottlenecks in your production process
Mitigate the risk of a major recall.
The solution is in the process
Regardless of whether you fall in the category of a food producer, manufacturer of infused products (MIP), food producers, re-packager or even a cultivator, consider the following and ask these questions as a team.
People
For every process, who is performing it? This may be a single individual or the role of specific people as defined in a job description.
Does the individual(s) performing the process have sufficient education and training? Do you have a diverse team that can provide different perspectives? World class operations are not developed in a vacuum, but rather with a team. Encourage healthy discourse and dialogue.
Process
Is the process defined? Perhaps in a standard operating procedure (SOP) or work instruction (WI). This is not the general guidance an equipment vendor provided you with, this is your process.
How well do you know your process? Does your SOP or WI specify (with numbers) how long to run the piece of equipment, the specification of the raw materials used (or not used) during the process, and what defines a successful output?
Do you have a system in place for when things deviate from the process? Processes are not foolproof. Do not get hung up on deviations from the process, but don’t turn a blind eye to them. Record and monitor them. In time, they will show you clear opportunities for improvement, preventing major catastrophes.
Materials
What are the raw materials being used? Where are they coming from (who is your supplier and how did you qualify them)?
Start with the raw materials that create your product or touch your product at all stages of the process. We have seen many cases where cannabis oils fail for heavy metals, specifically lead. Extractors are quick to blame the cultivator and their nutrients, as cannabis is a very effective phytoremediator (it uptakes heavy metals and toxins from soil substrate). The more likely culprit – your glassware! Storing cannabis oil, both work in process or final product in glass jars, while preferred over plastic, requires due diligence on the provider of your glassware. If they change the factory in which it is produced, will you be notified? Stipulate this in your contract. Don’t find yourself in the next cannabis lead recall that gets the attention of the FDA.
Savings is gained through simple control of your raw materials. Variability in your raw material going into the extractor is inevitable, but the more you can do to standardize the quality of your inputs, the less work re-formulating needs to be done downstream. Eliminate the constant need to troubleshoot why yields are lower than expected, or worst case, having to rerun or throw an entire batch out because it was “hot” (either too much THC in the hemp/CBD space or pesticides/heavy metals). These all add up to significant downstream bottlenecks – underutilized equipment, inefficient staff (increase in labor cost) all because of a lack of upstream controls. Use your current process as a starting point, but implement a quality system to drive improvement in operational efficiency and watch your top line grow while your bottom-line decreases.
Have you tested and confirmed the quality of your raw material? This isn’t just does it have THC and is it cannabis, but is it a certain particle size, moisture level, etc.? Again, define the quality of your raw materials (specifications) and test for it.
Remember – ranges are your friend. It is much better to say 9-13% moisture than “about 10%”. For your most diligent extractor, 11% will be unacceptable, but for a guy that just wants to get the job done, 13% just may do!
Test your final product AFTER the process. Again, how does it stack up against your specifications? You may need to have multiple specifications based on different types of raw material. Perhaps one strain with a certain range of cannabinoids and terpenes can be expected for production.
Review the data and trend it. Are you getting lower yields than normal? This may be due to an issue with the equipment, maybe a blockage has formed somewhere, a valve is loose, and simple preventive maintenance will get you back up and running. Or, it could be that the raw biomass quality has changed. Either way, having that data available for review and analysis will allow you to identify the root cause and prevent a surprise failure of your equipment. Murphy’s law applies to the cannabis industry too.
You are able to predict and prevent most failures before they occur
You increase the longevity of your equipment
You are able to predict with a level of confidence – imagine estimating how much product you will product next month and hitting that target – every time!
Business risks are significantly mitigated – a process that spews out metal, concentrates heavy metals or does not kill microbes that were in the raw material is an expensive mistake.
Your employees don’t feel like they are running around with their hair on fire all the time. It’s expensive to train new employees. Reduce your turnover with a less stressed-out team.
Takeaways
Maintaining a competitive edge in the cannabis industry is not easy, but it can be made easier with the right team, tools and data. Our recommendations boil down to a few simple steps:
Make sure you have a chemical or mechanical engineer to understand, optimize and standardize your process (you should have one of these on staff permanently!)
Implement a testing program for all raw materials
Test your raw materials – cannabis flower, solvents, additives, etc. before using. Work with your team to understand what you should and should not test for, and the frequency for doing so. Some materials/vendors are likely more consistent or reliable than others. Test the less reliable ones more frequently (or even every time!)
Test your final product after you extract it – Just because your local regulatory body does not require a certain test, it does not mean you should not look for it. Anything that you specified wanting the product to achieve needs to be tested at an established frequency (and this does not necessarily need to be every batch).
Repeat, and record all of your extraction parameters.
Review, approve and set a system in place for monitoring any changes.
Congratulations, you have just gone through the process of validating your operation. You may now begin to realize the benefits of validating your operation, from your personnel to your equipment and processes.
Hemp-based construction materials are an attractive option for achieving environmentally friendly goals in construction, including reduced emissions and conservation of natural resources. Hemp construction materials dating back to the 6th Century have been discovered in France and it has long been eyed with interest by hemp growers and manufacturers, as well as environmentalists in the United States and abroad. As the European Union moves forward with its 2019 European Green Deal, United States hemp, construction and limestone industries, as well as regulatory agencies, will be provided with an important preview of the benefits, risks and issues arising out of the use of hemp in construction.
The European Green Deal and Circular Economy Action Plan
Hemp applications in construction are gaining increased interest as the EU seeks to neutralize its greenhouse gas emissions by 2050. Much of the specifics for this transition to zero emissions are outlined in the EU’s “A New Circular Economy Action Plan,” announced on March 11, 2020. According to the EU, “This Circular Economy Action Plan provides a future-oriented agenda for achieving a cleaner and more competitive Europe in co-creation with economic actors, consumers, citizens and civil society organisations.” The plan aims at accelerating the transformational change required by the European Green Deal and tackles emissions and sustainability issues across a number of industries and products, including construction.
Construction in the EU accounts for approximately 50% of all extracted natural resources and more than 35% of the EU’s total waste generation. According to the plan, greenhouse gas emissions from material extraction, manufacturing of construction products and construction and renovation of buildings are estimated at 5-12% of total national greenhouse gas emissions. It is estimated that greater material efficiency could save 80% of those emissions. To achieve those savings, the plan announces various efforts to address sustainability, improve durability and increase energy efficiency of construction materials.
How Hemp Could Help Europe Achieve Neutral Emissions
Hemp, and specifically hempcrete, is being eyed with heightened interest as the EU enacts its plan. Indeed, recent mergers and acquisitions in the European hemp industry signal just how attractive this hemp-based product may be as international, national and local green initiatives gain momentum. But how would hemp be utilized in construction and what types of legal issues will this industry face as it expands?
The primary hemp-based construction material is “hempcrete.” Hempcrete is typically composed of hemp hurds (the center of the hemp plant’s stalk), water and lime (powdered limestone). These materials are mixed into a slurry. The slurry petrifies the hemp and the mixture turns into stone once it cures. Some applications mix other, traditional construction materials with the hempcrete. The material can be applied like stucco or turned into bricks. According to the National Hemp Association, hempcrete is non-toxic, does not release gaseous materials into the atmosphere, is mold-resistant, is fire– and pest-resistant, is energy-efficient and sustainable. To that last point, hemp, which is ready for harvest after approximately four months, provides clear advantages over modern construction materials, which are either mined or harvested from old forests. Furthermore, the use of lime instead of cement reduces the CO2 emissions of construction by about 80%.
Watching Europe with an Eye on Regulation and Liability Risks
Hempcrete indeed sounds like a wünder-product for the construction industry (and the hemp industry). Unfortunately, while it may alleviate some of the negative environmental impacts of the construction sector, it will not alleviate the threat of litigation in this industry, particularly in the litigious United States. The European Union’s experience with it will provide important insights for U.S. industries.
Because hemp was only recently legalized in the United States with the passage of the 2018 Farm Bill, it is not included in mainstream building codes in the United States, the International Residential Code, nor the International Building Code. Fortunately, there are pathways for the consideration and use of non-traditional materials, like hempcrete, in building codes. However, construction applications of any form of hemp, including hempcrete, at this point would likely require extensive discussions with local building authorities and an application showing that the performance criteria for the building are satisfied by the material. Such criteria would include standards and testing relating to structural performance, thermal performance, and fire resistance. Importantly, the ASTM does have a subcommittee working on various performance standards for hemp in construction applications. European progress on this front would pave an important regulatory pathway for the United States, as well as provide base-line standards for evaluating hempcrete materials.
Insights into regulation and performance standards are not the only reason to watch the EU construction industry in the coming decades. Introduction of hempcrete and hemp-based building materials in the United States will likely stoke litigation surrounding these materials. Although there is no novel way to avoid the most common causes of construction litigation, including breach of contract, quality of construction, delays, non-payment and personal injury, the lessons learned in Europe could provide risk management and best-practice guidance for the U.S. industry. Of particular concern for the hemp industry should be the potential for product liability, warranty, and consumer protection litigation in the United States. The European experience with hempcrete’s structural performance, energy efficiency, mold-, pest- and fire-resistant properties will be informative, not just for the industry, but also for plaintiff attorneys. Ensuring that hempcrete has been tested appropriately and meets industry gold-standards will be paramount for the defense of such litigation and EU practices will be instructive.
The United States construction industry, and particularly hempcrete product manufacturers, should pay close attention as the EU expands green construction practices, including the use of hempcrete. The trials and errors of European industry counterparts will inform U.S. regulations, litigation and risk management best practices.
Hiring an experienced cultivation consultant is yet another cost, amongst the laundry list of never-ending expenses in the setup of a regulated, recreational grow. However, in the big picture it can actually save you a significant amount of time and money by providing you with the information you need to formulate a realistic budget, profitable cultivation site and a well-trained workforce. This article will explore just some of the many benefits a cultivation consultant can provide to your company.
An experienced consultant will have a vast array of knowledge to ensure the success of your company. One important area they can advise you on is budgeting. With years of experience cultivating, in both medical and recreational markets, an experienced consultant will have knowledge of not only start-up costs, but also hidden costs you must prepare for in advance. They will also be able to advise you on strategies to avoid future costs and problems. There may also be expenses in the build-out of your cultivation site you have not considered. For example, you may need a waste water treatment plan if you have any fertilizer run off that will flow to a sewage drain. It is important to know all possible costs when securing your investment or planning out your budget for the year.
Setting up a large-scale cultivation site in a regulated market can be extremely costly. Gone are the days of putting up a few lights in a closet; growing in a regulated market requires a larger scale, and therefore, larger costs and more complications. A consultant experienced in design and implementation of such large-scale, intricate cultivation plans will provide you with the knowledge you need to properly set-up and maintain your facility in order to ensure your company’s success. They will also know the tips and tricks to save you money along the way.
A good consultant will be able to advise you on the design of your facility to ensure that the layout supports productivity, and that there is a proper workflow. It is important to hire a consultant before you get started with the build out of your facility, as it will be much more costly to have to correct mistakes in your design later on down the road. An experienced consultant will implement superior facilities layout and design to avoid future problems at the outset. Something as simple as a centralized irrigation distribution zone can save you a lot of time and money.
Once you have created the proper space, cultivation planning is important to avoid unnecessary problems from arising, which will ultimately delay profit. A well thought out cultivation plan will help you plan for success. A consultant will know what does and doesn’t work. For example, some equipment will run off an app on your phone; while convenient, there are some that don’t perform well which could end up costing the entire crop. These are things you want to know and work around, before you spend money unnecessarily.
An experienced consultant will have previously worked in various types and scales of cultivation sites, and from that experience will be able to teach you which processes and techniques work, and which ones don’t. Someone with less experience may believe that watering plants by hand would be an easy method to keep your garden irrigated, but it is actually the most time-consuming labor task (and therefore extremely costly), while an automated watering system can be very simple and cost-effective to install.
A skilled consultant can provide necessary training for your employees. Let’s face it, this is an entirely new industry, and therefore, most people applying for entry-level jobs at a cultivation site are unskilled. However, the best path to success when dealing with large-scale cannabis cultivation is to have skilled, happy employees. Educating and properly training your employees is essential. It helps to teach employees not only how to complete a task, but to help them understand why they are doing a given task. This will give your staff the skills and confidence they need to complete the task properly. Unskilled hands in your garden can jeopardize the success of your cultivation.
Don’t make the same mistakes others have made. Hiring a cultivation consultant can help you to avoiding problems before they occur. A professional consultant has the knowledge required to predict issues and problems before they occur, or implement a solution when corrective measures are necessary. Oftentimes issues can be avoided just by knowing the cause and effect of decisions and the potential outcomes they will have.
A cultivation consultant should also have a wide network of professional contacts to help you address any issues or problems that arise. Having a network of professionals to employ when necessary is critical for ensuring the success of every project. For example, wholesale contacts for cultivation equipment can help you not only to get the best price, but also ensure you are using the best equipment possible for your situation.
If you are still unsure about whether or not you need a cultivation consultant to help plan out your grow, or fix your grow if you’ve encountered problems, feel free to contact me to discuss your needs. I assure you there are ways I can save you money, improve your yields, and help your company be more successful in this ever-changing market.
There’s a better way to design HVAC for cannabis grow rooms, and it may seem a little odd at first.
Central chillers are a tried-and-true solution for projects requiring large refrigeration capacity. They’re found in college campuses, hospitals, office buildings and other big facilities.
While central chillers are a good default for most large-scale applications, they fall short in this industry. Grow rooms, with their need for tight, variable conditions and scalable, redundant infrastructure, have HVAC requirements that the central chiller model simply can’t deliver on.
Let’s unpack the shortcomings with the central chiller in this niche and explore some possible solutions.
What’s Wrong With Chillers?
Building a scalable HVAC system is essential for the cannabis industry as it continues to ramp up production in the U.S. and Canada.
Many growers are building their large facilities in phases. In Canada, this is common because growers must have two harvests before they can receive a production permit, so they build just one phase to satisfy this requirement and then build out the facility after the government’s approval.
This strategy of building out is less feasible with a central chiller.
A chiller and its supporting infrastructure are impractical to expand, which means it and the rest of the facility needs to be built to full size for day one, even though the facility will be in partial occupancy for a long time. This results in high upfront capital costs.
If the facility needs to expand later down the road, to meet market demand for example, that will be difficult because, as mentioned, it’s expensive to add capacity to a central chiller.
Additionally, the chiller creates a central point of failure for the facility. When it goes down, crops in every room are at risk of potentially devastating loss. Grow rooms are unusual because of their requirement for strict conditions and even a slight change could have big impact on the crop. Losing control due to mechanical failure could spell disaster.
One Southern Ontario cannabis grower met with some of these issues after constructing their facility, which uses a central chiller for cooling and dehumidification. The chiller was built for full size, but the results were disappointing as early as phase one of cultivation. While sensible demands in the space are being easily met, humidity levels are out of control – flowering rooms are up to 75% RH.
Humidity is one of the most important control aspects to growers. Without a handle on it, growers risk losing their entire crop either because there’s not enough and the plants dry out, or there’s too much and the plants get mold disease. This facility has fortunately not yet reported serious crop issues but is mindful of the potential impact on harvest quality.
By going unitary, capital costs scale on a linear basis.If tight control over humidity is what you need, then a chilled water system needs very careful consideration. That’s because typical chiller system designs get the coils cold enough to lower the air temperature, but not cold enough to condense water out of the air as effectively as a properly designed dehumidifier coil.
A chilled water system capable of achieving the coil temperatures needed for adequate dehumidification in a typical flower room will also require full-time reheat to ensure that air delivered to the plants isn’t shockingly cold — either stunting their growth or killing them altogether. This reheat source adds complexity, cost and inefficiency which does not serve growers well, many of whom are under pressure from both utilities and their management to minimize their energy usage.
How Do Unitary Systems Solve These Problems?
Compared to central chillers, a unitary setup is more agile.
A facility can commence with the minimum capacity it needs for start-up and then add more units in the future as required. They’re usually cheaper to install than a central system and offer several reliability and efficiency benefits as well.
The real business advantage to this approach is to open up the grower’s cash flow by spreading out their costs over time, rather than a large, immediate cost to construct the entire facility and chiller for day one. By going unitary, capital costs scale on a linear basis.
Growers can have more control over their crop by installing multiple units to provide varying conditions, room-by-room, instead of a single system that can only provide one condition.
For example, flowering rooms that each have different strains of crop may require different conditions – so they can be served by their own unit to provide variability. Or, rooms that need uniform conditions could just be served by one common unit. The flexibility that growers can enjoy with this approach is nearly unlimited.
Some growers have opted for multiple units installed for the same room, which maximizes redundancy in case one unit fails.
A cannabis facility in the Montreal area went this direction when building their HVAC system. Rather than build everything in one shot, this facility selected a unitary design that had flowering rooms served independently by a series of units, while vegetation rooms shared one. The units were sized to provide more capacity than currently required in each room, which allows the grower to add more plants and lighting in the future if they choose.
This facility expects to build more grow rooms in a future phase, so it was important to have an intelligent system that could accommodate that by being easy to add capacity to. This is accomplished by simply adding more units.Multiple, small systems also have a better return-on-investment.
The grower, after making a significant investment in this facility, was also averse to the risk of losing crop due to mechanical failure, which is why they were happy to go with a system of independent grow room control.
Multiple, small systems also have a better return-on-investment. Not only are they easier to maintain (parts are easier to switch out and downtime for maintenance is minimal) but they can actually be more efficient than a large, central system.
Some units include heat recovery, which recycles the heat created by the dehumidification process to efficiently reheat the unit’s cold discharge air and keep the space temperature consistent, without needing expensive supplementary heaters. There’s also economizer cooling, which can be used to reduce or even eliminate compressor usage during winter by running the unit on dry outside air only.
Demand for cannabis continues to increase and many growers are looking to expand their businesses by adding new facilities or augmenting existing ones. Faced with the limitations of the traditional chiller system, like the lack of flexibility, scalability and redundancy, they’re looking for an intelligent alternative and the unitary approach is earning their trust. It’s expected this option will soon become the leading one across North America.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.