Tag Archives: chemist

IR Spectrum of 2,4-Dichlorophenol in different physical states
From The Lab

Gas Chromatography/Infrared Spectroscopy: A Tool For the Analysis of Organic Compounds in Cannabis

By John F. Schneider
1 Comment
IR Spectrum of 2,4-Dichlorophenol in different physical states

Editor’s Note: The author will be teaching a 1/2 day short course on this topic at PITTCON in Philadelphia in March 2019.


The combination of gas chromatography and infrared spectroscopy (GC/IR) is a powerful tool for the characterization of compounds in complex mixtures. (1-5) Gas chromatography with mass spectroscopy detection (GC/MS) is a similar technique, but GC/MS is a destructive technique that tears apart the sample molecules during the ionization process and then these fragments are used to characterize the molecule. In GC/IR the molecules are not destroyed but the IR light produced by molecular vibrations are used to characterize the molecule. IR spectrum yields information about the whole molecule which allows the characterization of specific isomers and functional groups. GC/IR is complementary to GC/MS and the combination results in a powerful tool for the analytical chemist.

A good example of the utility of GC/IR vs GC/MS is the characterization of stereo isomers. Stereo isomers are mirror images such as a left hand and a right hand. In nature, stereo isomers are very important as one isomers will be more active then its mirror image. Stereo isomers are critical to medicinal application of cannabis and also a factor in the flavor components of cannabis.

GC/MS is good at identifying basic structure, where GC/IR can identify subtle differences in structure. GC/MS could identify a hand, GC/IR could tell you if it is a left hand or right hand. GC/MS can identify a general class of compounds, GC/IR can identify the specific isomer present.

Why GC/IR?

Gas chromatography interfaced with infrared detection (GC/IR), combines the separation ability of GC and the structural information from IR spectroscopy. GC/IR gives the analyst the ability to obtain information complementary to GC/MS. GC/IR gives the analyst the power to perform functional group detection and differentiate between similar molecular isomers that is difficult with GC/MS. Isomer specificity can be very important in flavor and medical applications.

 IR Spectrum of 2,4-Dichlorophenol in different physical states

IR Spectrum of 2,4-Dichlorophenol in different physical states

Gas chromatography with mass spectrometry detection (GC/MS) is the state-of-the-art method for the identification of unknown compounds. GC/MS, however, is not infallible and many compounds are difficult to identify with 100 % certainty. The problem with GC/MS is that it is a destructive method that tears apart a molecule. In infrared spectrometry (IR), molecular identification is based upon the IR absorptions of the whole molecule. This technique allows differentiation among isomers and yields information about functional groups and the position of such groups in a molecule. GC/IR complements the information obtained by GC/MS.

Interfaces

Initial attempts to couple GC with IR were made using high capacity GC columns and stopped flow techniques. As GC columns and IR technology advanced, the GC/IR method became more applicable. The advent of fused silica capillary GC columns and the availability of Fourier transform infrared spectrometry made GC/IR available commercially in several forms. GC/IR using a flow cell to capture the IR spectrum in real time is known as the “Light Pipe”. This is the most common form of GC/IR and the easiest to use. GC/IR can also be done by capturing or “trapping” the analytes of interest eluting from a GC and then measuring the IR spectrum. This can be done by cryogenically trapping the analyte in the solid phase. A third possibility is to trap the analyte in a matrix of inert material causing “Matrix Isolation” of the analyte followed by measuring the IR spectrum.

Infrared Spectroscopy

The physical state of the sample has a large effect upon the IR spectrum produced. Molecular interactions (especially hydrogen bonding) broadens absorption peaks. Solid and liquid samples produce IR spectra with broadened peaks that loses much of the potential information obtained in the spectra. Surrounding the sample molecule with gas molecules or in an inert matrix greatly sharpens the peaks in the spectrum, revealing more of the information and producing a “cleaner” spectrum. These spectra lend themselves better to computer searches of spectral libraries similar to the computer searching done in mass spectroscopy. IR spectral computer searching requires the standard spectra in the library be of the same physical state as the sample. So, a spectrum taken in a gaseous state should be searched against a library of spectra of standards in the gaseous state.

IR of various phases:

  • Liquid Phase – Molecular interactions broaden absorption peaks.
  • Solid Phase – Molecular interactions broaden absorption peaks.
  • Gas Phase – Lack of molecular interactions sharpen absorption peaks.
  • Matrix Isolation – Lack of molecular interactions sharpen absorption peaks.

IR Chromatograms

GC/IR yields chromatograms of infrared absorbance over time. These can be total infrared absorbance which is similar to the total ion chromatogram (TIC) in GC/MS or the infrared absorbance over a narrow band or bands analogous to selected ion chromatogram. This is a very powerful ability, because it gives the user the ability to focus on selected functional groups in a mixture of compounds.

Conclusion

Gas chromatography with infrared detection is a powerful tool for the elucidation of the structure of organic compounds in a mixture. It is complementary to GC/MS and is used to identify specific isomers and congeners of organic compounds. This method is greatly needed in the Cannabis industry to monitor the compounds that determine the flavor and the medicinal value of its products.


References

  1. GC–MS and GC–IR Analyses of the Methoxy-1-n-pentyl-3-(1-naphthoyl)-Indoles: Regioisomeric Designer Cannabinoids, Amber Thaxton-Weissenfluh, Tarek S. Belal, Jack DeRuiter, Forrest Smith, Younis Abiedalla, Logan Neel, Karim M. Abdel-Hay, and C. Randall Clark, Journal of Chromatographic Science, 56: 779-788, 2018
  2. Simultaneous Orthogonal Drug Detection Using Fully Integrated Gas Chromatography with Fourier Transform Infrared Detection and Mass Spectrometric Detection , Adam Lanzarotta, Travis Falconer, Heather McCauley, Lisa Lorenz, Douglas Albright, John Crowe, and JaCinta Batson, Applied Spectroscopy Vol. 71, 5, pp. 1050-1059, 2017
  3. High Resolution Gas Chromatography/Matrix Isolation Infrared Spectrometry, Gerald T. Reedy, Deon G. Ettinger, John F. Schneider, and Sid Bourne, Analytical Chemistry, 57: 1602-1609, 1985
  4. GC/Matrix Isolation/FTIR Applications: Analysis of PCBs, John F. Schneider, Gerald T. Reedy, and Deon G. Ettinger, Journal of Chromatographic Science, 23: 49-53, 1985
  5. A Comparison of GC/IR Interfaces: The Light Pipe Vs. Matrix Isolation, John F. Schneider, Jack C. Demirgian, and Joseph C. Stickler, Journal of Chromatographic Science, 24: 330- 335, 1986
  6. Gas Chromatography/Infrared Spectroscopy, Jean ‐ Luc Le Qu é r é , Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2006

Ask the Expert: Q&A with Steve Stadlmann on Cannabis lab Accreditation

By Aaron G. Biros
1 Comment

Steve Stadlmann has an extensive background as an analytical chemist working in laboratories since the early 90’s. He is now a sales specialist at PerkinElmer, an analytical instrument manufacturer that provides instruments for cannabis testing labs, in addition to a host of other industries. With over two decades of experience working in environmental testing labs, food and beverage labs and agricultural testing labs, Stadlmann is extremely familiar with the instruments used in cannabis labs.

Steve Stadlmann, sales specialist at Perkin Elmer

In 2014, he started working in the cannabis space with TriQ, Inc., a technology solutions provider for cannabis growers, where he worked in product development on a line of nutrients. In April of 2016, he started working at Juniper Analytics, a cannabis-testing laboratory in Bend, Oregon. As laboratory director there, he created their quality manual, quality assurance plan, SOP’s and all the technical documentation for ORELAP accreditation. He developed new methodologies for cannabis testing industry for residual solvents, terpene profiles and potency analysis. He worked with PerkinElmer on pesticide methodology for the QSight™ Triple Quadrupole LC/MS/MS system and implemented operational procedures and methods for LC-UV, GCMS and LC-MS/MS, including sample prep for cannabis products.

He left Juniper Analytics about two months ago to work with PerkinElmer as a sales specialist. With extensive experience in helping get Juniper’s lab accredited, he is a wealth of knowledge on all things cannabis laboratory accreditation. PerkinElmer will be hosting a free webinar on September 12th that takes a deep dive into all things cannabis lab accreditation. Ahead of the upcoming webinar, Getting Accreditation in the Cannabis Industry, we sit down with Stadlmann to hear his observations on what instruments he recommends for accreditation, and processes and procedures to support that. Take a look at our conversation below to get a glimpse into what this webinar will discuss.

CannabisIndustryJournal: How can cannabis labs prepare for accreditation with selecting instrumentation?

Steve: Finding the appropriate instrumentation for the regulations is crucial. Ensuring the instrumentation not only has the capabilities of analyzing all the required compounds, but also able to achieve appropriate detection limit requirements. In addition, having an instrument manufacturer as a partner, that is willing and able to assist in method development, implementation and continued changes to the testing requirements at the state level (and potentially national level) is key.

Another consideration is robustness of the equipment. The instrumentation must be capable of high throughput for fast turnaround times of results. Unlike the environmental industry, the cannabis industry has consumer products with expiration dates. Clients demand quick turnaround of results to get product to market as quickly as possible and avoid sitting on inventory for any length of time.

To add to the robustness need, sample matrices in the cannabis industry can be quite challenging in relation to analytical instrumentation. Equipment that is able to handle these matrices with minimal downtime for routine service is becoming a requirement to maintain throughput needs of the industry.

CIJ: What are the most crucial procedures and practices for achieving ISO 17025 accreditation?

Steve: Development and documentation of processes and procedures following Good Laboratory Practices and procedures is essential to a successful accreditation process. Great attention must be paid to the quality objectives of the laboratory as well as associated documentation, including tracking of any errors, deviations, updates, complaints, etc.

Data integrity is a key component to any accrediting body and includes implementation and/or development of appropriate methods with support data proving acceptable results. In addition, documentation of all procedures and processes along with tracking of all steps in the process during routine laboratory work should be a priority. The ability to show a complete, documented trail of all procedures done to any sample is important in ensuring the results can be reproduced and ensuring no deviations occurred, in turn potentially causing questionable results.

Last but not least: training. Laboratory staff should be well versed in any procedures they are involved in to ensure high data quality and integrity. If any laboratory staff does not receive appropriate training in any operating procedures, the data quality becomes suspect.

CIJ: What are some of the biggest obstacles or pitfalls cannabis labs face when trying to get accredited?

Steve: Not fully preparing to meet any agency and testing regulations and requirements will cause delays in the accreditation process and potentially more work for the laboratory. From documentation to daily operations, if any aspect becomes a major finding for an auditor, additional data is usually required to prove the error has been fixed satisfactorily.

Taking the time early on to ensure all documentation, processes and procedures are adhering to any regulatory agency requirements is important for a smooth accreditation process. It is easy to overlook small details when building out the operating procedures that might be essential in the process. Again, going back to data quality, the laboratory must ensure all steps are outlined and documented to ensure high quality (reproducible) data and integrity.

A new employee should be able to come in and read a quality manual and standard operating procedure and produce equivalent data to any laboratory analyst doing the same job. With difficult or challenging operating procedures it becomes even more important that training and documentation are adhered to.


PerkinElmer’s free webinar will dive into these points and others in more detail. To learn more and sign up, click here.

The Practical Chemist

Potency Analysis of Cannabis and Derivative Products: Part 2

By Rebecca Stevens
2 Comments

As mentioned in Part 1, the physiological effects of cannabis are mediated by a group of structurally related organic compounds known as cannabinoids. The cannabinoids are biosynthetically produced by a growing cannabis plant and Figure 1 details the biosynthetic pathways leading to some of the most important cannabinoids in plant material.

Potency figure 1
Figure 1: The biosynthetic pathway of phytocannabinoid production in cannabis has been deeply studied through isotopic labeling experiments

The analytical measurement of cannabinoids is important to ensure the safety and quality of cannabis as well as its extracts and edible formulations. Total cannabinoid levels can vary significantly between different cultivars and batches, from about 5% up to 20% or more by dry weight. Information on cannabinoid profiles can be used to tailor cultivars for specific effects and allows end users to select an appropriate dose.

Routine Analysis vs. Cannabinomics 

Several structurally analogous groups of cannabinoids exist. In total, structures have been assigned for more than 70 unique phytocannabinoids as of 2005 and the burgeoning field of cannabinomics seeks to comprehensively measure these compounds.¹

Considering practical potency analysis, the vast majority of cannabinoid content is accounted for by 10-12 compounds. These include Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabivarian (THCV), cannabidivarin (CBDV) and their respective carboxylic acid forms. The cannabinoids occur primarily as carboxylic acids in plant material. Decarboxylation occurs when heat is applied through smoking, vaporization or cooking thereby producing neutral cannabinoids which are more physiologically active.

Potency Analysis by HPLC and GC

Currently, HPLC and GC are the two most commonly used techniques for potency analysis. In the case of GC, the heat used to vaporize the injected sample causes decarboxylation of the native cannabinoid acids. Derivatization of the acids may help reduce decarboxylation but overall this adds another layer of complexity to the analysis² ³. HPLC is the method of choice for direct analysis of cannabinoid profiles and this technique will be discussed further.

A sample preparation method consisting of grinding/homogenization and alcohol extraction is commonly used for cannabis flower and extracts. It has been shown to provide good recovery and precision² ³. An aliquot of the resulting extract can then be diluted with an HPLC compatible solvent such as 25% water / 75% acetonitrile with 0.1% formic acid. The cannabinoids are not particularly water soluble and can precipitate if the aqueous percentage is too high.

To avoid peak distortion and shifting retention times the diluent and initial mobile phase composition should be reasonably well matched. Another approach is to make a smaller injection (1-2 µL) of a more dissimilar solvent. The addition of formic acid or ammonium formate buffer acidifies the mobile phase and keeps the cannabinoid acids protonated.

The protonated acids are neutral and thus well retained on a C18 type column, even at higher (~50% or greater) concentrations of organic solvent² ³.

Detection is most often done using UV absorbance. Two main types of UV detectors are available for HPLC, single wavelength and diode array. A diode array detector (DAD) measures absorbance across a range of wavelengths producing a spectrum at each point in a chromatogram while single wavelength detectors only monitor absorbance at a single user selected wavelength. The DAD is more expensive, but very useful for detecting coelutions and interferences.

References

  1. Chemical Constituents of Marijuana: The Complex Mixture of Natural Cannabinoids. Life Sciences, 78, (2005), pp. 539
  2. Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis. Journal of AOAC International, 98, (2015), pp. 1503
  3. Innovative Development and Validation of an HPLC/DAD Method for the Qualitative and Quantitative Determination of Major Cannabinoids in Cannabis Plant Material. Journal of Chromatography B, 877, (2009), pp. 4115

Rebecca is an Applications Scientist at Restek Corporation and is eager to field any questions or comments on cannabis analysis, she can be reached by e-mail, rebecca.stevens@restek.com or by phone at 814-353-1300 (ext. 2154)

amandarigdon
The Practical Chemist

Easy Ways to Generate Scientifically Sound Data

By Amanda Rigdon
1 Comment
amandarigdon

I have been working with the chemical analysis side of the cannabis industry for about six years, and I have seen tremendous scientific growth on the part of cannabis labs over that time. Based on conversations with labs and the presentations and forums held at cannabis analytical conferences, I have seen the cannabis analytical industry move from asking, “how do we do this analysis?” to asking “how do we do this analysis right?” This change of focus represents a milestone in the cannabis industry; it means the industry is growing up. Growing up is not always easy, and that is being reflected now in a new focus on understanding and addressing key issues such as pesticides in cannabis products, and asking important questions about how regulation of cannabis labs will occur.

While sometimes painful, growth is always good. To support this evolution, we are now focusing on the contribution that laboratories make to the safety of the cannabis consumer through the generation of quality data. Much of this focus has been on ensuring scientifically sound data through regulation. But Restek is neither a regulatory nor an accrediting body. Restek is dedicated to helping analytical chemists in all industries and regulatory environments produce scientifically sound data through education, technical support and expert advice regarding instrumentation and supplies. I have the privilege of supporting the cannabis analytical testing industry with this goal in mind, which is why I decided to write a regular column detailing simple ways analytical laboratories can improve the quality of their chromatographic data right now, in ways that are easy to implement and are cost effective.

Anyone with an instrument can perform chromatographic analysis and generate data. Even though results are generated, these results may not be valid. At the cannabis industry’s current state, no burden of proof is placed on the analytical laboratory regarding the validity of its results, and there are few gatekeepers between those results and the consumer who is making decisions based on them. Even though some chromatographic instruments are super fancy and expensive, the fact is that every chromatographic instrument – regardless of whether it costs ten thousand or a million dollars – is designed to spit out a number. It is up to the chemist to ensure that number is valid.

In the first couple of paragraphs of this article, I used terms to describe ‘good’ data like ‘scientifically-sound’ or ‘quality’, but at the end of the day, the definition of ‘good’ data is valid data. If you take the literal meaning, valid data is justifiable, logically correct data. Many of the laboratories I have had the pleasure of working with over the years are genuinely dedicated to the production of valid results, but they also need to minimize costs in order to remain competitive. The good news is that laboratories can generate valid scientific results without breaking the bank.

In each of my future articles, I will focus on one aspect of valid data generation, such as calibration and internal standards, explore it in practical detail and go over how that aspect can be applied to common cannabis analyses. The techniques I will be writing about are applied in many other industries, both regulated and non-regulated, so regardless of where the regulations in your state end up, you can already have a head start on the analytical portion of compliance. That means you have more time to focus on the inevitable paperwork portion of regulatory compliance – lucky you! Stay tuned for my next column on instrument calibration, which is the foundation for producing quality data. I think it will be the start of a really good series and I am looking forward to writing it.