Tag Archives: clean

Designing Precision Cannabis Facilities: A Case Study

By Phil Gibson
No Comments

With data forecasting expert BDSA predicting that the global cannabis market will reach $56B by 2026, there is no time to waste. Whether it’s Oklahoma, New York or even Macedonia, the frenzy is on. Investment decisions are immediate, and you have to be correct out of the box. This is where an expert like Andrew Lange and his company, Ascendant Management, come in. Andrew has designed more than 1.5 million square feet of cannabis facilities and moved them into profitable production in North America and Europe. One of his active customers is Onyx Agronomics in Washington. Bailee Syrek is the director of operations at Onyx and this is the story of the key points in designing a precision cannabis facility with state-of-the-art efficiency.

Background

Andrew Lange, a navy veteran, runs a global cannabis consulting business based in Washington. With a “prove it to me” approach, he regularly tests the best new technologies in the facilities he designs. He integrates his knowledge of what works in practice into his subsequent facilities. One of his previous projects, Onyx Agronomics in Washington, started in 2014 and moved quickly into production in a retrofitted warehouse. Many of his best ideas started with Onyx, including some new innovations in the latest expansion there this month. Onyx is a tier 3 cannabis cultivator.

Bailee Syrek’s operation at Onyx currently produces 9,000 lbs. of dry trim bud per year in 8,000 square feet of canopy. She operates the state-of-the-art, clean room style, indoor grow facility around the clock, delivering 2.7 grams/watt from every square foot of canopy in her building. She runs a highly efficient facility.

Onyx has had an ongoing relationship with Ascendant Management and chose to leverage them again with their current expansion to increase their capacity further. Onyx uses a range of advanced technologies including aeroponic cultivation equipment and control software from AEssenseGrows to hit their metrics.

Precision, Quality & Consistency

“I look for ways that my clients can differentiate themselves,” says Lange. Maybe it’s his military background, but Andrew demands precision, quality and consistency in the operations he designs. “Cannabis is a just a plant really so we look for the highest performance grow methodology. I find that to be AEssenseGrows aeroponics,” says Lange. “The AEtrium Systems provides a good foundation to manipulate for grow recipes and business process. I add teamwork, communications, and operations procedures to that foundation.”

At Onyx, Bailee Syrek works closely with her channels. She invites her customers in regularly to review the Onyx cultivars and to cover their ideal requirements. These can range from bud size for their packaging to THC or terpene profiles (Yes, channels do want both higher and lower THC content for different consumers and price points). Based on that feedback, Bailee and Andrew work together to dial in the ideal grow recipe in the AEssenseGrows Guardian Grow Manager central control software. They push their target strains to optimize the results in the direction requested by their customers. For example, “How do you get the highest possible THC out of 9lb Hammer?” You’ll have to ask Andrew and Ascendant Management.

Driven by customer requests, Onyx is adding new strains to build on their innovative brand. Bailee expects to reach new levels of terpene bundles with Cheeseburger Jones, Koffee Breath, Shangri-La and OK Boomer. Utilizing Andrew’s expert knowledge, they can take typical sub-20% cannabinoid bundles and improve them using aeroponics and better controls, into standout aeroponic 30% packages.

The Onyx Vision

Andrew Lange, Ascendant Management

Bailee Syrek believes this is the most exciting time yet for Onyx. Delivering premium grade cannabis as a white label flower supplier for years, Onyx is a profitable and successful business. But even with doubling capacity every year, they are still having trouble keeping up with customer demand. Bailee wants to get to the point where she can always say yes and accept an order from their white label customers. With this objective, she again engaged Ascendant and Andrew to get beyond 15,000 lbs. of output in 2021 to make her customers happier. Beyond that basic expansion, she is also ambitious and is preparing plans for additional lines of revenue with their own proprietary flower, oil and derivative products.

“This expansion will be a new challenge,” says Syrek. “Flower production is in our wheelhouse. We have tighter operations, with the most consistent bud size, terpenes and test results in our state. These new products will require that same quality but now in new areas.”

Her Path to Leadership

Bailee started with Onyx in a compliance position that grew out of the constant demands for government licensing and reporting. In that compliance role, she had the opportunity to work a bit in every department, giving her a good understanding of all of the facility operations and workflows. All of that experience led her to eventually take over the operations leadership role. She instills care and effort to maintain the cleanest and most efficient operations possible. “With aeroponics, we don’t have to lug soil from room to room or in and out of the facility. This saves us a ton of work that we can redirect to plant health and maintenance,” says Syrek. “Medical precision and GMP quality is a given. Each room on average is 105 lights and one room manager and one cultivation technician take the room from clone/veg transfer to harvest as a two-person team.”

Bailee Syrek, director of operations at Onyx Agronomics

Bailee prides herself with results. “Medical grade precision is normal for us. We use medical grade SOPs for every aspect of our production.” Bailee has designed these guides into their control system that runs on the Guardian Grow Manager software. From sensor tracking, to performance graphs to time cards; everything is integrated in her performance monitoring.

A quality focus is very apparent in every Onyx flower room. Every watt of light energy is transferred to the pristinely manicured canopy. Naked stems feed nutrients up to the fat buds at the trained canopy surface. Fan leaves are removed and all possible energy turns into bud weight and potency. The room technician has a passion for plant health, table care and plant maintenance all the way through to the harvest bonanza.

What is the biggest challenge for Bailee as she drives the operation? Even at 105-110 grams per square foot per harvest, they are sold out. “Every customer wants to buy beyond our capacity. It is a good problem to have,” Bailee says. “Customers want our quality and love the consistency. This is the most exciting thing about our expansion. We will finally be able to make additional channels happy with high quality supply.”

This is where Andrew credits Onyx’s performance. “Most well running operations deliver 1.1-1.8 grams of dry trim bud per watt of electricity used in powering a grow room,” says Andrew. The Onyx grow formula results leave this in the dust. Running Fluence SPYDR 2i grow lights and the AEtrium System aeroponics, Onyx plants are delivering just shy of 4 lbs. per light with every harvest cycle. At 630 watts max output, that delivers ~2.7 grams/Watt, the most efficient operation he has seen. The Onyx process and execution works.

“Bailee is a great example as a professional. She builds a motivated team that executes better than her competition,” says Andrew.

At the same time, Onyx runs a highly space efficient nursery with just enough mother plants feeding energetic cuttings into the 4-layer stacked AEtrium-2.1 SmartFarms in their environmentally controlled clone room. They produce more than enough healthy clones to jump from veg to flower in the span of a week. Grow time, harvest turn time and no veg space, results in very efficient use of power in the complete operation.

Mirroring Onyx for Medical Grade Cannabis in Europe

Andrew Lange’s current passion is a green-field project in Portugal. Self-funded, Andrew says that this facility will be one of the first that is pure enough in operations to supply non-irradiated clean-room-level-quality cannabis beyond the precise standards required by European regulators. Current importers have not been able to clear the European standards for cleanliness without irradiating their buds. Other companies like Aurora have abandoned efforts to access the market due to the precision requirements. Typical methods used for fruit imports use gamma radiation to get bacterial counts down. This was tried with cannabis to sterilize buds, but the problem with cannabis is this degrades the quality of the flower.

Andrew’s Portugal facility will be using a sterile perimeter surrounding his grow space (mothers, clones/veg, flower rooms) and harvest and processing areas (dry, trim, packaging). Andrew creates a safe environment for healthy production. A steady harvest cleaning regimen is built into his operational designs from the beginning. All operators are trained in procedures to exclude pathogens and limit all possible transmission (airborne, physical/mechanical touching, or water carried). Every area is cleaned during and between harvests. Andrew is confident he will reach a consistent level of accuracy and purity beyond European requirements because it is routine in all of his designs.

Certified Efficiency is the Message

Good Manufacturing Practices (GMP) and Good Agricultural and Collection Practices (GACP) are required for certification and access to European markets. Andrew always builds tight operations, but in this case, his Portugal facility is designed with the fit and finish to be GMP and GACP compliant from day one with advanced air filtration and air management throughout.

Automated aeroponics is a foundation technology that Andrew recommends for his facility designs. The automatic data logging, report generation, cloud access and storage make this a foundational technology. Andrew does get some resistance from cultivators that are used to the classic soil media approaches but he explains that software configurable grow recipes, precision controls, zero soil/no pests and hyper-fast growth makes aeroponics the foundation of competitive advantage. Precisely controlled medical quality precision operations are built on top of this foundation.

The initial phase of the Portugal facility is 630 lights and this facility is Andrew’s latest personal investment. From secure perimeters to modular grow rooms and highly automated equipment, this location will be state-of-the-art in terms of grams/watt yields and renewable energy with an output of 6 metric tons per year. Solar powered electricity from a 4-megawatt farm will use Tesla megapacks for storage and be grid independent.

Technology & Innovation, Onyx & Ascendant

From his first experience with AEssenseGrows aeroponics, Andrew has been able to design complete grow recipes in the Guardian Grow Manager software with very tight precision on dosage. This makes it possible to create ideal recipes for each strain (nutrition, irrigation cycles, lighting and environmental management). This frees up the operations teams to focus on plant health and execution. The nutrients, pH, CO2, temperature and humidity, follow the Guardian directions that he sets.

Working with Bailee at Onyx, Andrew is now consulting on the post-harvesting side of operations (drying, trimming, extracts and packaging). In parallel with his efforts, Bailee is optimizing THC & terpene production on the cultivation side with UV lighting (considering far-right red frequency light recipe enhancements).

That is the Ascendant Management approach to innovation. Trial, test constantly, perfect ideas in practice. Optimize the results for consistent, high-quality results. Even while driving for the personal craft touch, use automation to increase efficiency of mundane, but important tasks. With these methods, Andrew believes that the Onyx labor cost is one third of typical soil media grow operations. Zero soil aeroponics offers many benefits. Bailee’s team is able to give each plant more attention and delivery better quality. Automation is a win-win for them.

Bailee finds that constant testing is useful for two things: one, great results, and two, surface the best talent with their hand’s-on approach.

Always Finish with People

Bailee says that her staff works incredibly hard. “We are a different grow, with better ergonomics on the job, aeroponics for precision and yields, and advanced technology at the leading edge in every part of our grow. No dirt up and down stairs. People are proud to work here. We are not your dad’s grow operation.”

“We promote from within. Everyone starts as a room tech and has the opportunity to move up. Teams are isolated by rooms so there is no contamination between rooms or humans. Put in the work, and you will get promoted with expansions, and grow with the company as we take a bigger share in the market.” Female employees make up almost half of the current staff, and Bailee encourages employees to refer their friends. “Good people invite good people,” she says.

Her training program introduces the technical aspects of their unique operation, the positive expectations and career path for every new employee. The social environment is friendly with good pay and regular raises. Each new employee fills a range of roles during their 1-month training circuit and are assigned to a cultivation space under a lead as an official cultivation tech at the end of 30 days. “One thing that we do more than at other grows is constant cleaning,” says Bailee. “This is an ever-present mantra for the staff.”

Facility Considerations for Cultivation & Manufacturing: A Case Study

By David Vaillencourt
1 Comment

The cannabis industry is growing and evolving at an unprecedented pace and regulators, consumers and businesses continually struggle to keep up.

Cannabis businesses: How do you maintain an edge on the market, avoid costly mistakes?

Case Study: Costly Facility Build Out Oversights

David Vaillencourt will be joining a panel discussion, Integrated Lifecycle of Designing a Cultivation Operation, on December 22 during the Cannabis Quality Virtual Conference. Click here to register. A vertically integrated multi-state operator wants to produce edibles. The state requires adherence to food safety practices (side note – even if the state did not, adherence to food safety practices should be considered as a major facility and operational requirement). They are already successfully producing flower, tinctures and other oil derivatives. Their architect and MEP firm works with them to design a commercial kitchen for the production of safe edibles. The layout is confirmed, the equipment is specified – everything from storage racks, an oven and exhaust hoods, to food-grade tables. The concrete is poured and walls are constructed. The local health authority comes in to inspect the construction progress, who happens to have a background in industrial food-grade facilities (think General Mills). They remind the company that they must have three-compartment sinks with hot running water for effective cleaning and sanitation, known as clean-out-of-place (COP). The result? Partial demolition of the floor to run pipeline, and a retrofit to make room for the larger sinks, including redoing electrical work and a contentious team debate about the size of the existing equipment that was designed to fit ‘just right.’

Unfortunately, this is just one more common story our team recently witnessed. In this article, I outline a few recommendations and a process (Quality by Design) that could have reduced this and many other issues. For some, following the process may just be the difference between being profitable or going out of business in 2021.

The benefits of Quality by Design are tangible and measurable:

  1. Reduce mistakes that lead to costly re-work
  2. Mitigate inefficient operational flow
  3. Reduce the risk of cross-contamination and product mix-ups. It happens all the time without carefully laid out processes.
  4. Eliminate bottlenecks in your production process
  5. Mitigate the risk of a major recall.

The solution is in the process

Regardless of whether you fall in the category of a food producer, manufacturer of infused products (MIP), food producers, re-packager or even a cultivator, consider the following and ask these questions as a team.

People

Food processing and sanitation
By standardizing and documenting safety procedures, manufacturers mitigate the risk of cannabis-specific concerns

For every process, who is performing it? This may be a single individual or the role of specific people as defined in a job description.

Does the individual(s) performing the process have sufficient education and training? Do you have a diverse team that can provide different perspectives? World class operations are not developed in a vacuum, but rather with a team. Encourage healthy discourse and dialogue.

Process

Is the process defined? Perhaps in a standard operating procedure (SOP) or work instruction (WI). This is not the general guidance an equipment vendor provided you with, this is your process.

How well do you know your process? Does your SOP or WI specify (with numbers) how long to run the piece of equipment, the specification of the raw materials used (or not used) during the process, and what defines a successful output?

Do you have a system in place for when things deviate from the process? Processes are not foolproof. Do not get hung up on deviations from the process, but don’t turn a blind eye to them. Record and monitor them. In time, they will show you clear opportunities for improvement, preventing major catastrophes.

Materials

What are the raw materials being used? Where are they coming from (who is your supplier and how did you qualify them)?

Start with the raw materials that create your product or touch your product at all stages of the process. We have seen many cases where cannabis oils fail for heavy metals, specifically lead. Extractors are quick to blame the cultivator and their nutrients, as cannabis is a very effective phytoremediator (it uptakes heavy metals and toxins from soil substrate). The more likely culprit – your glassware! Storing cannabis oil, both work in process or final product in glass jars, while preferred over plastic, requires due diligence on the provider of your glassware. If they change the factory in which it is produced, will you be notified? Stipulate this in your contract. Don’t find yourself in the next cannabis lead recall that gets the attention of the FDA.

Savings is gained through simple control of your raw materials. Variability in your raw material going into the extractor is inevitable, but the more you can do to standardize the quality of your inputs, the less work re-formulating needs to be done downstream. Eliminate the constant need to troubleshoot why yields are lower than expected, or worst case, having to rerun or throw an entire batch out because it was “hot” (either too much THC in the hemp/CBD space or pesticides/heavy metals). These all add up to significant downstream bottlenecks – underutilized equipment, inefficient staff (increase in labor cost) all because of a lack of upstream controls. Use your current process as a starting point, but implement a quality system to drive improvement in operational efficiency and watch your top line grow while your bottom-line decreases.

Consistency in quality standards requires meticulous SOPs

Have you tested and confirmed the quality of your raw material? This isn’t just does it have THC and is it cannabis, but is it a certain particle size, moisture level, etc.? Again, define the quality of your raw materials (specifications) and test for it.

Rememberranges are your friend. It is much better to say 9-13% moisture than “about 10%”. For your most diligent extractor, 11% will be unacceptable, but for a guy that just wants to get the job done, 13% just may do!

Test your final product AFTER the process. Again, how does it stack up against your specifications? You may need to have multiple specifications based on different types of raw material. Perhaps one strain with a certain range of cannabinoids and terpenes can be expected for production.

Review the data and trend it. Are you getting lower yields than normal? This may be due to an issue with the equipment, maybe a blockage has formed somewhere, a valve is loose, and simple preventive maintenance will get you back up and running. Or, it could be that the raw biomass quality has changed. Either way, having that data available for review and analysis will allow you to identify the root cause and prevent a surprise failure of your equipment. Murphy’s law applies to the cannabis industry too.

  1. You are able to predict and prevent most failures before they occur
  2. You increase the longevity of your equipment
  3. You are able to predict with a level of confidence – imagine estimating how much product you will product next month and hitting that target – every time!
  4. Business risks are significantly mitigated – a process that spews out metal, concentrates heavy metals or does not kill microbes that were in the raw material is an expensive mistake.
  5. Your employees don’t feel like they are running around with their hair on fire all the time. It’s expensive to train new employees. Reduce your turnover with a less stressed-out team.

Takeaways

Maintaining a competitive edge in the cannabis industry is not easy, but it can be made easier with the right team, tools and data. Our recommendations boil down to a few simple steps:

  1. Make sure you have a chemical or mechanical engineer to understand, optimize and standardize your process (you should have one of these on staff permanently!)
  2. Implement a testing program for all raw materials
    1. Test your raw materials – cannabis flower, solvents, additives, etc. before using. Work with your team to understand what you should and should not test for, and the frequency for doing so. Some materials/vendors are likely more consistent or reliable than others. Test the less reliable ones more frequently (or even every time!)
  3. Test your final product after you extract it – Just because your local regulatory body does not require a certain test, it does not mean you should not look for it. Anything that you specified wanting the product to achieve needs to be tested at an established frequency (and this does not necessarily need to be every batch).
  4. Repeat, and record all of your extraction parameters.
  5. Review, approve and set a system in place for monitoring any changes.

Congratulations, you have just gone through the process of validating your operation. You may now begin to realize the benefits of validating your operation, from your personnel to your equipment and processes.

Cannabis Retailers Considered Essential: Safety Tips for Running Dispensaries During COVID19

By Aaron Green
No Comments

Dispensary sales in key US markets (CA, CO, WA, NV) remain up in Q1 2020 over Q1 2019, though the end of March saw sharp declines in sales according to a recent Marijuana Business Daily report. Massachusetts is also on track for record Q1 sales despite the closure of recreational stores, according to a recent BDS Analytics report.

budtenderpic
A bud tender helping customers at a dispensary

While it is still early to say what the impact of COVID-19 will be on dispensary sales into April, it is clear that the cannabis industry’s position as an ‘essential business’ is likely to help. States like Massachusetts are just allowing medical use businesses to remain open while states like California and Washington are allowing cultivators, producers and dispensaries to remain open. Meanwhile, according to Locate.AI’s analysis of retail traffic, the rest of the retail sector is down between 44% and 99% recently, depending on the category.

On March 24, the Washington State Liquor and Cannabis Board declared cannabis an essential industry including producers, processors and retailers. For dispensaries, they are now allowing curbside pick-ups for all adult customers. Colorado has gone further to restrict adult sales to curbside pick-ups only for recreational cannabis. Medical customers are still allowed to enter stores, but must practice social distancing. Across the states, dispensaries are offering curbside and in-store pick-up. In addition, at some dispensaries, delivery fees are being waived for larger purchases.

The International Chamber of Commerce recently published “Coronavirus Guidelines for Business,” summarizing actions businesses can take to reduce risks for operations and employees. Going further, The New England Complex Systems Institute (NECSI) recently published practical business safety guidelines detailing how these essential businesses can stay open and ensure safety. The guidelines, which are typically one to two pages and easily readable, are applicable to dispensaries. Certain suggestions, such as avoiding crowded spaces and maintaining 6ft distance will be familiar. Other suggestions go beyond common advice offering sensible recommendations to reduce risk of transmission as much as possible, such as the following:

Consider setting up one or more ‘necessities only’ sections that enable a short shopping trip for most of the customers. Setting up such short shopping areas outside when weather permits, or at remote locations, can dramatically reduce the shopping density inside the store.” or

Use floor markings or other visual system to indicate a one-way loop (with short cuts, but no back way) inside the store to promote a dominant walking direction and avoid customers crossing paths or crowding.

While many cannabis businesses have already gone beyond recommendations from the local health authorities, there are some that would still benefit from adopting the NECSI Guidelines to further protect their customers and employees. The guidelines are written for laypeople and are easy to print and share.

NECSI’s coronavirus guidelines can be found on the group’s volunteer website endcoronavirus.org.

endCoronavirus.org is a volunteer organization with over 6,000 members built and maintained by the New England Complex Systems Institute (NECSI) and its collaborators. The group specializes in networks, agent-based modeling, multi-scale analysis and complex systems and provides expert information on how to stop COVID-19.

The New England Complex Systems Institute (NECSI) is an independent academic research and educational institution with students, postdoctoral fellows and faculty. In addition to the in-house research team, NECSI has co-faculty, students and affiliates from MIT, Harvard, Brandeis and other universities nationally and internationally.

Canadian Cannabis 2.0: Going Beyond GPP

By Lindsay Glass
No Comments

One year after Canadian recreational cannabis’s historic date of October 17th, 2018, in comes Cannabis 2.0, which will see edibles containing cannabis and cannabis concentrates enter the legal recreational market. As of October 17th, 2019, there are seven classes of legal cannabis products in the marketplace, making Canada an innovative leader in this evolving industry.

The launch of cannabis edibles and concentrates into the legal market has also led to changes in the regulatory framework and the introduction of new best practices in terms of Good Production Practices (GPP). This should not come as a surprise, as these products are introducing the inclusion of cannabis and food products.

Since Oct 17th, 2019, we have seen a significant amendment to the Cannabis Regulations through the addition of sections 88.93 and 88.94, stating that holders of a license to process cannabis edibles or extracts must identify and analyze all potential hazards and have control measures in place to prevent, eliminate or reduce these hazards from occurring. Any license holder that conducts activities related to cannabis edibles, extracts or produces an ingredient used in an edible or extract must also prepare, retain, maintain and implement a preventive control plan (PCP). To indicate that cannabis edibles and extracts regulations resemble other regulated food commodities, would not be an understatement.

By having license holders establish food safety practices similar to the ones being used by federally regulated food commodities, it is allowing cannabis producers to implement a preventive approach by focusing on safety and reducing hazards in their operation.

According to the Cannabis Regulations a license holder’s PCP must include the following:

  • Identify all of the biological, chemical and physical hazards that could contaminate or could be at risk of contaminating any cannabis product or anything that could be used as an ingredient in producing a cannabis product. Once all of the hazards have been identified, you need to determine the likelihood of that hazard occurring
  • The measures to be taken to control each identified hazard. Each control measure must then describe the task involved, how the monitoring task is carried out, who will be performing the monitoring task and how often the monitoring task is carried out
  • A description of the critical control points, which are the steps in the process where a control measure is applied and is essential to eliminating a hazard. Next are the measures to be taken to monitor a critical control point
  • A description of each cannabis product produced or ingredient that will be used in a cannabis product, including extract contents, permitted & prohibited ingredients, exceptions, naturally occurring substances and uniform distribution
  • A description of corrective action procedures for every critical control point
  • A description of verification procedures

What else comes with the collaboration of these two commodities in a regulatory environment? The need for industry to adapt and move beyond the basic GPP and pharmaceutical requirements and start thinking in terms of preventative controls and food safety. By encompassing the GPP requirements, traceability, employee training and now a complete hazard analysis and preventive control plan, you have the makings of a full food safety plan. However, food safety plans can be comprehensive and difficult to manage by utilizing a manual system.

HACCPCompanies that are serious about the integration of cannabis edibles and extracts into their operations, will need to implement compliance and traceability technology that will facilitate an automated system. In return, you will streamline all monitoring processes throughout the production, packaging and storage stages of the system. This is crucial to a preventive control plan. An automated solution will also help with record keeping, document management and corrective actions, as license holders deal with failures in real time to avoid negative impacts on their products.

There are many compliance software platforms available in the industry and choosing the right one for your operation is a task in itself, as not all software platforms for the cannabis industry are created equally. Although many seed-to-sale platforms handle regulatory requirements and some document management, these platforms do not see cannabis as food products, and therefore, are leaving companies with a void in this aspect of their operation. When looking for a software platform that will encompass all of your regulatory needs, pay particular attention to systems that are designed for the food industry but have adapted to cannabis. These systems will be the most dynamic when it comes to implementing preventive control plans, handling in-depth traceability with recall plans and the ability to become completely digital.

For more information on how to automate your food safety plan for cannabis edibles and extracts, please contact Iron Apple QMS to learn about our online Cannabis QMS.

Soapbox

3 Food Safety Precautions for Edibles

By Cindy Rice
No Comments

You’ve survived seasons of cannabis cultivations, bringing in quality plants in spite of mold, mites, drought and other challenges that had to be conquered. Extraction methods are sometimes challenging, but you are proud to have a cannabinoid extract that can be added into your own products for sale. Edibles are just waiting to be infused with the cannabinoids, for consumers demanding brownies, gummies, tinctures and almost any food and beverage imaginable. You’ve been through the fire, and now the rest is easy peasy, right?

Food processing and sanitation
Avoiding cross contamination should be a priority for edibles manufacturing

Actually, producing edibles may not be so seamless as you think. Just as in the rest of the food industry, food safety practices have to be considered when you’re producing edibles for public consumption, regardless of the THC, CBD, terpene or cannabinoid profile. Once you’ve acquired the extract (a “food grade ingredient”) containing the active compounds, there are three types of hazards that could still contribute to foodborne illness from your final product if you’re not careful- Biological, Chemical and Physical.

Biological hazards include pathogenic bacteria, viruses, mold, mildew (and the toxins that they can produce) that can come in ingredients naturally or contaminate foods from an outside source. Chemical hazards are often present in the kitchen environment, including detergents, floor cleaners, disinfectants and caustic chemicals, which can be harmful if ingested- they are not destroyed through cooking. Physical objects abound in food production facilities, including plastic bits, metal fragments from equipment, staples or twist ties from ingredient packages, and personal objects (e.g., buttons, jewelry, hair, nails.)

There are three main safety precautions that can help control these hazards during all the stages of food production, from receiving ingredients to packaging your final products:

1. Avoid Cross Contamination

  • Prevent biological, chemical or physical hazards from coming into contact with foods
  • Keep equipment, utensils and work surfaces clean and sanitized.
  • Prevent raw foods (as they usually carry bacteria) from coming into contact with “Ready-to-eat” foods (foods that will not be cooked further before consuming).
  • Keep chemicals away from food areas.

2. Personal Hygiene

  • Don’t work around foods if you’re sick with fever, vomiting or diarrhea. These could be signs of contagious illness and can contaminate foods or other staff, and contribute to an outbreak.
  • Do not handle ready-to-eat foods with bare hands, but use a barrier such as utensils, tissues or gloves when handling final products such as pastries or candies.
  • Wash hands and change gloves when soiled or contaminated.
  • Wear hair restraints and clean uniforms, and remove jewelry from hands and arms.

3. Time & Temperature control

  • Prevent bacterial growth in perishable foods such as eggs, dairy, meats, chicken (TCS “Time and Temperature Control for Safety” foods according to the FDA Model Food Code) by keeping cold foods cold and hot foods hot.
  • Refrigerate TCS foods at 41˚ F or below, and cook TCS foods to proper internal temperatures to kill bacteria to safe levels, per state regulations for retail food establishments.
  • If TCS foods have been exposed to room temperature for longer than four hours (Temperature Danger Zone 41˚ F – 135˚ F,) these foods should be discarded, as bacteria could have grown to dangerous levels during this time.

As cannabis companies strive for acceptance and legalization on a federal level, adopting these food safety practices and staff training is a major step in the right direction, on par with standards maintained by the rest of the retail food industry. The only difference is your one specially extracted cannabinoid ingredient that separates you from the rest of the crowd… with safe and healthy edibles for all.

Cannabusiness Sustainability

Designing More Sustainable Cannabis Facilities

By Sophia Daukus
1 Comment

The topic of sustainability has grown in importance and priority for both consumers and regulators. From reducing emissions to lowering energy and water consumption, cannabis growing facilities face unique challenges when it comes to designing sustainable operations. Moreover, as the cannabis market grows and usage becomes more accepted, regulatory bodies will continue to increase the number of directives to help ensure the safety and quality of cannabis products.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

Ubiquitous throughout cannabis grow rooms and greenhouses, flooring can be easily overlooked, yet offers an economical way to create more sustainable facilities. Many of today’s grow rooms are located in old retrofitted warehouses or former industrial buildings that were designed without sustainability or environmental concerns in mind.

Combined with energy efficient lighting and more thoughtful water usage, flooring can help create a more efficient facility that not only improves business operations, but also contributes to a better bottom line.

Sustainability Challenges Facing Cannabis Facilities

Whether in an old warehouse space or a new structure designed from the ground up, cannabis businesses face unique operational challenges when it comes to sustainable best practices.

  • Energy Consumption: Like any indoor farm, lighting plays an important role in cannabis growing facilities. Traditional grow lights can utilize a large amount of electricity, putting a strain on the company budget as well as regional energy resources. Switching to highly-efficient LED lighting can help facilities reduce their consumption, while still maximizing crop yield.
  • Water Consumption: Among the thirstiest of flora, cannabis plants require consistent and plentiful watering for healthy and fruitful crop production.
  • Carbon Dioxide (CO2) Enrichment: In many cases, carbon dioxide is introduced into facilities to help enhance the growth of crops. However, this practice may pose safety and health risks for workers, the surrounding community and the planet at large. CO2 is a greenhouse gas known to contribute to climate change.

In order to head off upcoming regulatory restrictions, as well as to alleviate the mounting safety and health concerns, it behooves cannabis grow room managers and owners to explore alternatives for improving sustainability in their facilities.

Flooring Requirements for More Sustainable Cannabis Facilities

Spanning thousands or even hundreds of thousands of square feet throughout a facility, flooring can be a unique way to introduce and support sustainable practices in any grow room or greenhouse.

When seeking to improve operational efficiency and implementing the use of sustainable practices in cannabis facilities, look for flooring systems with the following characteristics:

  • Impervious Surfaces— Fertilizers, fungicides, and other chemicals can infiltrate porous unprotected concrete to leach through the slab matrix and into the soil and groundwater below. Non-porous flooring options, such as industrial-grade, fluid-applied epoxies and urethanes, are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.
  • Light-Reflective Finishes— Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms. By mirroring overhead lighting back upward, bright, light-reflective flooring can help minimize facilities’ reliance on expensive ceiling fixtures and electricity usage.
  • USDA, FDA, EPA, OSHA and ADA Compliancy— With cannabis industry regulations currently in flux, grow facilities that select food- and pharmaceutical-compliant flooring will be ahead of the game. Governing bodies in some states have already begun expanding the facility requirements of these sectors to the cannabis market.
  • Durable and Easy Care— Having to replace flooring every couple of years imposes high costs on businesses as well as the environment. Installation of many traditional types of flooring produces cut-off waste and requires landfill disposal of the old floor material. In contrast, by installing industrial-grade flooring systems that are highly durable and easy-to-maintain, facilities can count on long-term performance and value, while helping to minimize disposal costs and concerns.
Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Optimal flooring can help cultivation facilities reduce waste, improve the efficacy of existing lighting and lengthen floor replacement cycles for a better bottom line and a healthier environment. Additionally, having the right grow room floor can assist facilities in meeting regulatory requirements, help ensure production of quality products and improve the safety for consumers and staff.

Flooring Benefits for Employees and Consumers

Safety is paramount in any workplace. When it comes to the manufacture of foodstuffs and other consumed products, government oversight can be especially stringent. With the right compliant flooring in place, cultivation facilities can focus on the rest of their business, knowing that what’s underfoot is contributing to the safety of employees and their customers.

Here’s how:

  • Chemical Resistance— Floors can be exposed to a high concentration of chemicals, acids and alkalis in the form of fertilizers, soil enhancers and other substances. In processing locations, the proper disinfecting and sanitizing of equipment can require harsh solvents, detergents and chemical solutions, which can drip or spill onto the floor, damaging traditional flooring materials. It pays to select cannabis facility flooring with high chemical resistance to help ensure floors can perform as designed over the long term.
  • Thermal Shock Resistance— Optimal cannabis facility flooring should be capable of withstanding repeated temperature cycling. Slab-on-grade structures in colder climates may be especially vulnerable to floor damage caused by drastic temperature differences between a freezing cold concrete slab and the tropical grow room above. This extreme contrast can cause certain floor materials to crack, delaminate and curl away from the concrete substrate. The resulting crevices and uneven surfaces present trip and fall hazards to employees and leave the slab unprotected from further degradation. As an alternative, thermal shock-resistant floors, such as urethane mortar systems, furnish long-lived functionality even when regularly exposed to extreme temperature swings.
  • Humidity and Moisture Resistance— Traditional floor surfaces tend to break down in ongoing damp, humid environments. Cannabis facility flooring must be capable of withstanding this stress and more.
  • Pathogen Resistance— Undesirable microbes, fungi and bacteria can thrive in the moist, warm environments found in grow rooms. Floors with extensive grout lines and gaps provide additional dark, damp locations for pathogen growth. Fluid-applied flooring results in a virtually seamless surface that’s directly bonded to the concrete. Integral floor-to-wall cove bases can further improve wash down and sanitation.
  • Proper Slope and Drainage— Where food and/or pharmaceutical facility regulations have already been extended to cannabis operations, flooring is required to slope properly toward a floor drain. This prevents puddling, which can be a slip hazard as well as a microbe breeding ground. Unlike more typical materials, resinous flooring offers an economical solution for correcting floor slope wherever needed.

The Problems Presented by Traditional Flooring Options

Previously, cannabis growers often relied on traditional greenhouse-type flooring, including tamped down dirt floors, gravel or bare concrete. However, current and upcoming regulations are curtailing the use of these simple flooring options.

Growers often compare and contrast the benefits and value of traditional greenhouse flooring with more modern solutions, such as fluid-applied epoxy and urethane floors.

Dirt and gravel flooring offers little opportunity to properly sanitize, thus potentially inviting microorganism and pathogen invasion, contamination and costly damage. Growers who have turned to bare concrete floors face other concerns, including:

  • Unprotected concrete is inherently porous and therefore able to quickly absorb spilled liquids and moisture from the air. In addition, organic and synthetic fertilizers, fungicides, and chemicals can leach through the concrete floors, contaminating the groundwater, injuring the surrounding environment and wildlife.
  • Older slabs often lack an under-slab vapor barrier. Even in new construction, a single nail hole can render an under-slab barrier ineffective. In these situations, moisture from underneath the floor slab can move upward osmotically through the alkaline slab, leading to blistering and damage to standard commercial floor coverings.
  • Bare concrete floors can stain easily. These dark stains tend to absorb light instead of reflecting it, contributing to a potential increase in energy usage and cost.
  • The mold proliferation encouraged by the warmth and humidity of grow rooms can easily penetrate into the depths of unprotected slab surfaces, eventually damaging its structural integrity and shortening the usable life of the concrete.

While traditional greenhouse flooring options can initially seem less expensive, they frequently present long-term risks to the health of cannabis grow businesses. In addition, the performance of dirt, gravel and bare concrete floors runs counter to the industry’s commitment to reducing the carbon footprint of growing facilities.

Choosing Sustainable Grow Room Flooring

It’s no secret that the cannabis industry is undergoing enormous change and faces numerous environmental challenges. Luckily, optimal flooring options are now available to help growers economically increase their eco-friendly practices on many fronts. By focusing on quality resinous flooring, cannabis growers can get closer to meeting their sustainability goals, while simultaneously contributing to improved operation efficiency, enhanced yields and an increased bottom line.

Soapbox

California Banned Ozone Generator “Air Purifiers”

By Jeff Scheir
2 Comments

California was the first state to step up to defend consumers from false marketing claims that ozone generators are safe, effective air purifiers. In reality, ozone is a lung irritant, especially harmful to allergy and asthma sufferers. In 2009, California became the first state in the nation to ban ozone generators. The Air Resources Board of the California Environmental Protection Agency states:

Not all air-cleaning devices are appropriate for use — some can be harmful to human health. The ARB recommends that ozone generators, air cleaners that intentionally produce ozone, not be used in the home or anywhere else humans are present. Ozone is a gas that can cause health problems, including respiratory tract irritation and breathing difficulty.

The regulation took effect in 2009 along with a ban on the sale of air purifiers that emit more than 0.05 parts per million of ozone. The ARB says that anything beyond this is enough to harm human health; however, some experts say that there is no safe level of ozone.

The National Institute for Occupational Safety and Health recommends an exposure limit to ozone of 0.1 ppm and considers levels of 5 ppm or higher “immediately dangerous to life or health.”

If you’re shopping for an air purifier, it’s best to avoid ozone generators, especially if you have a respiratory condition. Ozone generators, and ionic air cleaners that emit ozone, can cause asthma attacks in humans while doing little to nothing to clean the air.

O3 is a free radical, an oxidizer; when it meets any organic molecule floating around it bonds to it and destroys it. In a grow room, organic molecules include the essential oils in cannabis which produce the fragrance. When using ozone within your grow room, too much will not only all but eliminate the smell of your flowers but with prolonged exposure, it begins to actually degrade the cell walls of trichomes and destroy the structure of the glands.

Despite the claims of some manufacturers, ozone does not have an anti-microbial effect in air unless levels far exceed the maximums of the regulation and is therefore harmful humans.

Keeping the grow room clean of mold and bacteria is important, but ozone is not the technology you want to employ to satisfy this goal. Looking into a combination of UVC and Filtration will better meet the goal while keeping both your plants and staff healthy.

Food processing and sanitation

Key Points To Incorporate Into a Sanitation Training Program

By Ellice Ogle
2 Comments
Food processing and sanitation

To reinforce the ideas in the article, Sanitation Starting Points: More Than Sweeping the Floors and Wiping Down the Table, the main goal of sanitation is to produce safe food and to keep consumers healthy and safe from foodborne illness. With the cannabis industry growing rapidly, cannabis reaches a larger, wider audience. This population includes consumers most vulnerable to foodborne illness such as people with immunocompromised systems, the elderly, the pregnant, or the young. These consumers, and all consumers, need and deserve safe cannabis products every experience.

GMPSanitation is not an innate characteristic; rather, sanitation is a trained skill. To carry out proper sanitation, training on proper sanitation practices needs to be provided. Every cannabis food manufacturing facility should require and value a written sanitation program. However, a written program naturally needs to be carried out by people. Hiring experienced experts may be one solution and developing non-specialists into an effective team is an alternative solution. Note that it takes every member of the team, even those without “sanitation” in their title, to carry out an effective sanitation program.

Sanitation is a part of the Food and Drug Administration’s Code of Federal Regulations on current Good Manufacturing Practices (GMPs) in manufacturing, packing or holding human food (21 CFR 110). Sanitation starts at the beginning of a food manufacturing process; even before we are ready to work, there are microorganisms, or microbes, present on the work surfaces. What are microbes? At a very basic level, the effects of microbes can be categorized into the good, the bad, and the ugly. The beneficial effects are when microbes are used to produce cheese, beer or yogurt. On the other hand, microbes can have undesirable effects that spoil food, altering the quality aspects such as taste or visual appeal. The last category are microbes that have consequences such as illness, organ failure and even death.In a food manufacturing facility, minimizing microbes at the beginning of the process increases the chance of producing safe food.FDAlogo

Proper sanitation training allows cannabis food manufacturing facilities to maintain a clean environment to prevent foodborne illness from affecting human health. Sanitation training can be as basic or as complex as the company and its processes; as such, sanitation training must evolve alongside the company’s growth. Here are five key talking points to cover in a basic sanitation training program for any facility.

  1. Provide the “why” of sanitation. While Simon Sinek’s TEDx talk “Start with why” is geared more towards leadership, the essential message that “Whether individuals or organizations, we follow those who lead not because we have to, but because we want to.” Merely paying someone to complete a task will not always yield the same results as inspiring someone to care about their work. Providing examples of the importance of sanitation in keeping people healthy and safe will impart a deeper motivation for all to practice proper sanitation. An entertaining illustration for the “why” is to share that scientists at the University of Arizona found that cellphones can carry ten times more bacteria than toilet seats!
  2. Define cleaning and sanitizing. Cleaning does not equal sanitizing. Cleaning merely removes visible soil from a surface while sanitizing reduces the number of microorganisms on the clean surface to safe levels. For an effective sanitation system, first clean then sanitize all utensils and food-contact surfaces of equipment before use (FDA Food Code 2017 4-7).
  3. Explain from the ground up. Instead of jumping into the training of cleaning a specific piece of equipment, start training with the foundational aspects of food safety. For example, a basic instruction on microbiology and microorganisms will lay down the foundation for all future training. Understanding that FATTOM (the acronym for food, acidity, temperature, time, oxygen and moisture) are the variables that any microorganism needs to grow supplies people with the tools to understand how to prevent microorganisms from growing. Furthermore, explaining the basics such as the common foodborne illnesses can reinforce the “why” of sanitation.

    Food processing and sanitation
    PPE for all employees at every stage of processing is essential
  4. Inform about the principles of chemistry and chemicals. A basic introduction to chemicals and the pH scale can go a long way in having the knowledge to prevent mixing incompatible chemicals, prevent damaging surfaces, or prevent hurting people. Additionally, proper concentration (i.e. dilution) is key in the effectiveness of the cleaning chemicals.
  5. Ensure the training is relevant and applicable to your company. Direct proper sanitation practices with a strong master sanitation schedule and ensure accountability with daily, weekly, monthly and annual logs. Develop sanitation standard operating procedures (SSOPs), maintain safety data sheets (SDS’s) and dispense proper protective equipment (PPE).

Overall, sanitation is everyone’s job. All employees at all levels will benefit from learning about proper sanitation practices. As such, it is beneficial to incorporate sanitation practices into cannabis food manufacturing processes from the beginning. Protect your brand from product rework or recalls and, most importantly, protect your consumers from foodborne illness, by practicing proper sanitation.

Food processing and sanitation

Sanitation Starting Points: More Than Sweeping the Floors and Wiping Down the Table

By Ellice Ogle
No Comments
Food processing and sanitation

Sanitation is not just sweeping the floors and wiping down the table – sanitation has a wide-ranging function in a cannabis food manufacturing facility. For example, sanitation covers the employees (and unwanted pests), food-contact equipment (and non-food-contact equipment), trash disposal (including sewage), and more. Ultimately, sanitation systems maintain a clean environment to prevent foodborne illness from affecting human health. Fortunately, there are resources and tools to ease into establishing a robust sanitation program.

Overall, the main goal of sanitation is to produce safe food, to keep consumers healthy and safe from foodborne illness. With the cannabis industry growing and gaining legalization, cannabis reaches a larger, wider audience. This population includes consumers most vulnerable to foodborne illness such as people with immunocompromised systems, the elderly, the pregnant, or the young. These consumers, and all consumers, need and deserve safe cannabis products every experience.

FDAlogoTo produce safe food, food manufacturing facilities in the United States must at least follow the Food and Drug Administration (FDA)’s Code of Federal Regulations Title 21 Chapter I Subchapter B Part 117, current good manufacturing practice, hazard analysis, and risk-based preventive controls for human food. Although cannabis is currently not federally regulated, these regulations are still relevant for a cannabis food manufacturing facility since the same basic principles still apply. Also, these regulations are a good resource to simplify a comprehensive sanitation program into more manageable components, between sanitary operations and sanitary facilities. With more manageable components, the transition is smoother to then identify the appropriate tools that will achieve a thorough sanitation program.

Sanitary operations

1) General maintenance of the facilities: The buildings and fixtures of the food manufacturing facility cover a lot of ground – hiring a maintenance team will divide the responsibility, ensuring the entire facility can be maintained in a clean and sanitary condition. Furthermore, a team can build out a tool like a preventative maintenance program to restrict issues from ever becoming issues.

Figure 1: Dirty Cloth Towel in Dirty “Sanitizer” Solution
Dirty Cloth Towel in Dirty “Sanitizer” Solution (an example of what NOT to do)

2) Control of the chemicals used for cleaning and sanitizing: Not all chemicals are equal – select the appropriate cleaning and sanitizing chemicals from reputable suppliers. Obtain the right knowledge and training on proper use, storage, and proper protective equipment (PPE). This ensures the safe and effective application of the chemicals in minimizing the risk of foodborne illness.

3) Pest control: Understand the environment within the facility and outside the facility. This will aid in identifying the most common or likely pests, in order to focus the pest control efforts. Keep in mind that internal pest management programs can be just as successful as hiring external pest control services.

4) Procedures for sanitation of both food-contact and non-food-contact surfaces: Developing sanitation standard operating procedures (SSOPs) provides guidance to employees on appropriate cleaning and sanitizing practices, to balance effective and efficient operations. A master sanitation schedule can control the frequency of indicated sanitation procedures.

5) Storage and handling of cleaned portable equipment and utensils: Cross contamination in storage can be minimized with tools such as controlled traffic flow, signage, training, color coding, and more.

Sanitary facilities

6) Water supply, plumbing, and sewage disposal: Routine inspections of plumbing, floor drainage, and sewage systems prevent unintended water flow and damage.

7) Toilet facilities: Clearly defining standards for the toilet facilities and setting accountability to everyone who uses them will ensure that the toilet facilities are not a source of contamination for the food products.

Food processing and sanitation
PPE for all employees at every stage of processing is essential

8) Hand-washing facilities: Good manufacturing practices (GMPs) include proper hand washing and proper hand washing starts with suitable hand-washing facilities. For example, frequent checks on running water, hand soap, and single use towels ensure that all hands are clean and ready to produce safe food.

9) Trash disposal: While trash can be a source of cross contamination, trash can also attract and harbor pests. Scheduling regular trash disposal and controlling traffic flow of waste are two ways to minimize the risk of cross contamination from trash.

Bonus

Even after meeting these requirements, sanitation programs can be more sophisticated. An example is to institute an environmental monitoring program to verify and validate that the sanitation program is effective. Another example is in identifying and measuring key performance indicators (KPIs) within the sanitation program that can improve not just the sanitation processes, but the operations as a whole. Principally, sanitation is cleanliness on the most basic level, but waste management can encompass sanitation and grow into a larger discussion on sustainability. All in all, sanitation programs must reshape and evolve alongside the company growth.

Sanitation is interwoven throughout the food manufacturing process; sanitation is not a single task to be carried out by a sole individual. As such, it is beneficial to incorporate sanitation practices into cannabis food manufacturing processes from the beginning. Protect your brand from product rework or recalls and, most importantly, protect your consumers from foodborne illness, by practicing proper sanitation.

#whatsinmyweed campaign

CCC Launches #WhatsInMyWeed Campaign

By Aaron G. Biros
No Comments
#whatsinmyweed campaign

“Your tomatoes are organic. What about your weed?” The language on their homepage is clear: Consumers should seek the same high standards in their cannabis just as they do with food.

Earlier in the month, The Cannabis Certification Council (CCC), a nonprofit that promotes organic and fair trade practices in the cannabis industry, announced the launch of their #WhatsInMyWeed campaign. The consumer education initiative is designed to draw parallels between what buying choices people make in food and cannabis.

#whatsinmyweed campaignThe consumer-facing idea is to produce videos and ads that make people question the ethics and environmental sustainability of their cannabis, just as they do when purchasing organic, fair trade-certified produce. According to Amy Andrle, owner of L’Eagle Services in Denver and board member with the CCC, the campaign should benefit cannabis companies that produce ethical and sustainable products. “This campaign is long overdue and much needed to alert consumers about the quality of their cannabis and begin to reward producers of organic, fair trade, sustainable and other high quality and integrity products just as they are in other consumer categories,” says Andrle. “We believe the campaign and accompanying website will drive demand and increase transparency in the cannabis industry.”

According to the press release, the website has a listing of cannabis certifications currently available now, information about them and where consumers can find certified products. Companies can sign up for the #WhatsInMyWeed Pledge as well to let consumers know they produce clean products.