Tag Archives: contamination

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 5

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Protection in the Court of Public Opinion

In the last four articles, I have outlined areas that impact your operations as they apply to laboratory quality programs. But this article will take a different path. It will focus on protecting your crop and brand along with any business that utilizes your crop, such as dispensaries or edible manufactures in the court of public opinion.

Now, the elephant in the room for cannabis companies is the difference between rules written by the state and their enforcement by the state. There are many anecdotal stories out there that can be used as case studies in identifying ways to protect your brand. Remember, consumers and the media caught them, not the regulators.

Cheating in the cannabis industry: growers, dispensaries, edibles manufactures, etc. This includes:

  1. Finding laboratories that will produce results that the client wants (higher potency numbers)
  2. Not testing for a particular contaminant that may be present in the cannabis product.
  3. Selling failed crops on the gray or black market.
  4. Claiming to regulators that the state rules are unclear and cannot be followed (e.g. So, give me another chance, officer)

So why should you be worried? Because, even if the state where you operate fails to enforce its own rules, the final end-user of your product will hold you accountable! If you produce any cannabis product and fail to consider these end-users, you will be found out in the court of public opinion by either the media or by the even more effective word of mouth (e.g. Social Media).

So, let’s take a look at some recent examples of these problems:

  1. “Fungus In Medical Marijuana Eyed As Possible Cause In California Man’s Death”
  2. “Pesticides and Pot: What’s California Smoking?”
  3. Buyers beware: California cannabis sold Jan. 1 could be tainted”

Each of these reports lists contamination by microbial stains or pesticides as being rampant within the California market whose products are used for medical or recreational use. Just imagine the monetary losses these cannabis businesses faced for their recalled cannabis product when they got caught. Remember, consumers and the media caught them, not the regulators.Institute a quality program in your business immediately.

How can you be caught? There are many different ways:

  1. Consumer complaints to the media
  2. Secret shopper campaigns (more to come on that in the next article)
  3. Media investigations
  4. Social media campaigns

What are the effects on your business? Product recalls such as these two to hit the California market recently.

So, what should you do to produce an acceptable product and provide reasonable protection to your cannabis business? Institute a quality program in your business immediately. This quality program will include areas of quality assurance and quality control for at least these areas.

  1. Growing
  2. Processing or formulating
  3. Shipping
  4. Dispensing
  5. Security
  6. Training of staff
  7. Laboratory services

Setting up and supporting these programs requires that your upper management impose both a rigorous training program and make employee compliance mandatory. Otherwise, your business will have an unreasonable risk of failure in the future.

Further information on preparing and instituting these types of quality assurance and quality control programs within your business can be found at the author’s website.

FSC logo

Food Safety Consortium To Address Cannabis Safety, Edibles Manufacturing

By Aaron G. Biros
1 Comment
FSC logo

The 6thAnnual Food Safety Consortium Conference & Expo will feature an entire track dedicated to cannabis. As announced in May of this year, the Cannabis Quality series will feature presentations by subject matter experts in the areas of regulations, edibles manufacturing, cannabis safety & quality as well as laboratory testing.FSC logo

The Food Safety Consortium is hosted by our sister publication, Food Safety Tech, and the Cannabis Quality series will be co-hosted by Cannabis Industry Journal. A number of cannabis-focused organizations will participate in the series of talks, which are designed to help attendees better understand the cannabis edibles market, regulations surrounding the industry and standards for manufacturers. Some highlights include the following:

  • Ben Gelt, board chairman at the Cannabis Certification Council (CCC), will moderate a panel where leaders in the edibles market discuss supply chain, production and other difficulties in manufacturing infused products. Panelists include Leslie Siu, Founder/CEO Mother & Clone, Jenna Rice, Director of Operations at Gron and Kristen Hill, MIP Director, Native Roots Dispensary, among others. “The Cannabis Certification Council believes consumer education campaigns like #Whatsinmyweed are critical to drive standards and transparency like we see in food,” says Gelt. “What better place to discuss the food safety challenges the cannabis industry faces than the Food Safety Consortium”
  • Radojka Barycki, CEO of Nova Compliance, will discuss the role of food safety in the cannabis industry and identify some biological and chemical hazards in cannabis product testing in her talk, “Cannabis: A Compliance Revolution.”
  • Larry Mishkin, counsel to Hoban Law Group and partner at the law firm, Silver & Mishkin, which serves cannabis businesses in Illinois, will provide insights during the conference.
  • Cameron Prince, vice president of regulatory affairs at The Acheson Group, will help attendees better understand key market indicators and current trends in edibles manufacturing during his talk on November 15. “With the current trend of legalizing cannabis edibles, medicinal and recreational suppliers alike are looking to quickly enter the edibles market,” says Prince. “Understanding the nuances of moving to food production relative to food safety, along with navigating the food industry’s regulatory environment will be critical to the success of these companies.”
  • Tim Lombardo and Marielle Weintraub, both from Covance Food Solutions, will identify common pathogens and areas where cross contamination can occur for edibles manufacturers.

The Food Safety Consortium will be held November 13–15 in Schaumburg, Illinois (just outside of Chicago). To see the full list of presenters and register for the conference, go the Food Safety Consortium’s website.

Two Recalls Hit California Cannabis Market

By Aaron G. Biros
No Comments

Just weeks ago, the first voluntary cannabis product recall occurred under California’s new regulations. According to an article on MJBizDaily.com by John Schroyer, the recall for their vaporizer cartridges affects almost 100 dispensaries in California.

Bloom Brands, the company issuing the voluntary recall, mentioned in a press release that batches sold between July 1-19, 2018 were contaminated with the pesticide Myclobutanil and therefore does not meet the Bureau of Cannabis Control (BCC) standards. Below is an excerpt from the press release:

We are working closely with the BCC to remedy this issue and expect clean, compliant products to be back on shelves in three weeks…. At Bloom, we are continuing to work with the BCC and other partners to ensure that the space is properly regulated and safe for all customers. Transparency and safety remain our top concerns and we will provide updates as additional information becomes available. We apologize for any concern or inconvenience this serious misstep has caused. We thank you for your continued trust and confidence in our products.

Then, just days later, Lowell Herb Co. issued a voluntary recall on their pre-rolls. First reported by MJBizDaily.com, it appears the products initially passed multiple lab tests and was cleared for retail sales. Weeks after the batch passed tests, a laboratory reversed its decision, saying the products failed to pass the state’s testing standards. The contaminant in question was not mentioned.

The CCIA post calling out the BCC
The CCIA post calling out the BCC

Many seem to think these recalls are a product of the BCC’s unrealistic expectations in their lab testing rules. In a Facebook post days ago, the California Cannabis Industry Association called out the BCC for their unworkable rules. “The BCC has set testing standards that are nearly impossible to meet,” reads the post. “As a result recalls like this will be the norm and the industry will suffer a bottleneck in supply. Testing standards need to be realistic, not impossible.”

On July 13, California issued the first draft of their proposed permanent regulations, which would update and change the current emergency regulations. The proposed action levels for a batch to pass a pesticide test can be found on pages 105 and 106. The state’s regulatory bodies are holding public meetings on the proposed rules throughout August and stakeholders can also submit comments via email.

Radojka Barycki picture

Food Safety: Do You Know What Is In Your Water?

By Radojka Barycki
No Comments
Radojka Barycki picture

Water is essential for life and it is an important part of agriculture and food manufacturing. Water has many uses in the cannabis industry. Among the most common uses are irrigation, ingredient/product processing and cleaning processes.

Water can be the carrier of pathogenic microorganisms and chemicals that can be transferred to food through agriculture and manufacturing practices. Poor quality water may have a negative impact in food processing and potentially on public health. Therefore, development and implementation of risk management plans that ensure the safety of water through the controls of hazardous constituents is essential to maintain the safety of agricultural and manufactured food or cannabis products.

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans.Although there no current regulations regarding the water used in cannabis cultivation and processing, it is highly recommended that the industry uses potable water as standard practice. Potable water is water that is safe for drinking and therefore for use in agriculture and food manufacturing. In the United States, the Environmental Protection Agency (EPA) sets the standards for water systems under the Safe Drinking Water Act (SDWA.)The regulations include the mandatory levels defined as Maximum Contaminant Levels (MCLs) for each contaminant that can be found in water. Federal Drinking Water Standards are organized into six groups: Microorganisms, Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides. The agriculture and food manufacturing industry use the SDWA as a standard to determine water potability. Therefore, water testing forms part of their routine programs. Sampling points for water sources are identified, and samples are taken and sent to a reputable laboratory to determine its quality and safety.

Microbiological Testing

Petri dish containing the fungus Aspergillus flavus
Petri dish containing the fungus Aspergillus flavus.
Photo courtesy of USDA ARS & Peggy Greb.

Determining the safety of the water through microbiological testing is very important. Pathogens of concern such as E. coli, Salmonella, Cryptosporidium parvum and Cyclospora sp. can be transmitted to food through water. These pathogens have been known to be lethal to humans, especially when a consumer’s immune system is compromised (e.g. cancer patients, elderly, etc.) If your water source is well, the local state agency may come to your facility and test the water regularly for indicator organisms such as coliforms. If the levels are outside the limit, a warning will be given to your company. If your water source is the city, regular testing at the facility for indicator microorganisms is recommended. In each case, an action plan must be in place if results are unfavorable to ensure that only potable water is used in the operations.

Chemical Testing (Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides) 

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans. Although, there are several regulations governing the discharge of chemicals into storm water, fields and even into city water treatment plants, it is important that you test your incoming water for these chemicals on a regular basis. In addition, it is important that a risk assessment of your water source is conducted since you may be at a higher risk for certain components that require testing. For example, if your manufacturing facility is near an agricultural area, pesticides may enter the surface water (lakes, streams, and rivers) or the aquifer (ground water) through absorption into the ground or pollution. In this case, you may be at higher risk for Tetrahalomethanes (THMs), which are a byproduct of pesticides. Therefore, you should increase the testing for these components in comparison to other less likely to occur chemicals in this situation. Also, if your agriculture operation is near a nuclear plant, then radionuclides may become a higher risk than any of the other components.

GMPFinally, in addition to the implementation of risk management plans to ensure the safety of water, it is highly recommended that companies working in food manufacturing facilities become familiar with their water source to ensure adequate supply to carry on their operations, which is one of the requirements under the 21 CFR 117. Subpart B – Current Good Manufacturing Practices (cGMPs) for food manufacturers under the Preventive Controls for Human Foods Rule that was enacted under the Food Safety Modernization Act in 2015. Also, adequate supply is part of the Good Agricultural Practices (GAP) The EPA has created a program that allows you to conduct a risk assessment on your water source. This program is called Source Water Protection. It has six steps that are followed to develop a plan that not only protect sourcing but also ensures safety by identifying threats for the water supply. These six steps are:

  1. Delineate the Source Water Protection Area (SWPA): In this step a map of the land area that could contribute pollutants to the water is created. States are required to create these maps, so you should check with local and/or state offices for these.
  2. Inventory known and potential sources of contamination: Operations within the area may contribute contaminants into the water source. States usually delineates these operations in their maps as part of their efforts to ensure public safety. Some examples of operations that may contribute to contaminants into the water are: landfill, mining operations, nuclear plants, residential septic systems, golf courses, etc. When looking at these maps, be sure that you verify the identified sources by conducting your own survey. Some agencies may not have the resources to update the maps on a regular basis.
  3. Determine the susceptibility of the Public Water Source (PWS) to contaminate sources or activities within the SWPA: This is basically a risk assessment. In here you will characterize the risk based on the severity of the threat and the likelihood of the source water contamination. There are risk matrices that are used as tools for this purpose.
  4. Notify the public about threats identified in the contaminant source inventory and what they mean to the PWS: Create a communication plan to make the State and local agencies aware of any findings or accidents in your operation that may lead to contamination of the PWS.
  5. Implement management measures to prevent, reduce or eliminate risks to your water supply: Once risks are characterized, a plan must be developed and implemented to keep risks under control and ensure the safety of your water.
  6. Develop contingency planning strategies that address water supply contamination or service interruption emergencies: OSHA requires you to have an Emergency Preparedness Plan (EPP). This plans outlines what to do in case of an emergency to ensure the safety of the people working in the operation and the continuity of the business. This same approach should be taken when it comes to water supply. The main questions to ask are: a) What would we do if we find out the water has been contaminated? b) What plan is in place to keep the business running while ensure the safety of the products? c) How can we get the operation back up and running on site once the water source is re-stablished?

The main goal of all these programs is having safe water for the operations while keeping continuity of the business in case of water contamination.

extractiongraphic

The Four Pillars of Cannabis Processing

By Christian Sweeney
2 Comments
extractiongraphic

Cannabis extraction has been used as a broad term for what can best be described as cannabis processing. A well-thought-out cannabis process goes far beyond just extraction, largely overlapping with cultivation on the front-end and product development on the back-end1. With this in mind, four pillars emerge as crucial capabilities for developing a cannabis process: Cultivation, Extraction, Analytics and Biochemistry.

The purpose and value of each pillar on their own is clear, but it is only when combined that each pillar can be optimized to provide their full capacities in a well-designed process. As such, it is best to define the goals of each pillar alone, and then explain how they synergize with each other.

At the intersection of each pillar, specific technology platforms exist that can effectively drive an innovation and discovery cycle towards the development of ideal products.Cultivation is the foundation of any horticultural process, including cannabis production. Whether the goal be to convert pigments, flavors or bioactive compounds into a usable form, a natural process should only utilize what is provided by the raw material, in this case cannabis flower. That means cultivation offers a molecular feedstock for our process, and depending on our end goals there are many requirements we may consider. These requirements start as simply as mass yield. Various metrics that can be used here include mass yield per square foot or per light. Taken further, this yield may be expressed based not only on mass, but the cannabinoid content of the plants grown. This could give rise to a metric like CBD or THC yield per square foot and may be more representative of a successful grow. Furthermore, as scientists work to learn more about how individual cannabinoids and their combinations interact with the human body, cultivators will prioritize identifying cultivars that provide unique ratios of cannabinoids and other bioactive compounds consistently. Research into the synergistic effect of terpenes with cannabinoids suggests that terpene content should be another goal of cultivation2. Finally, and most importantly, it is crucial that cultivation provide clean and safe materials downstream. This means cannabis flower free of pesticides, microbial growth, heavy metals and other contaminants.

Extraction is best described as the conversion of target molecules in cannabis raw material to a usable form. Which molecules those are depends on the goals of your product. This ranges from an extract containing only a pure, isolated cannabinoid like CBD, to an extract containing more than 100 cannabinoids and terpenes in a predictable ratio. There are countless approaches to take in terms of equipment and process optimization in this space so it is paramount to identify which is the best fit for the end-product1. While each extraction process has unique pros and cons, the tunability of supercritical carbon dioxide provides a flexibility in extraction capabilities unlike any other method. This allows the operator to use a single extractor to create extracts that meet the needs of various product applications.

Analytics provide a feedback loop at every stage of cannabis production. Analytics may include gas chromatography methods for terpene content3 or liquid chromatography methods for cannabinoids 3, 4, 5. Analytical methods should be specific, precise and accurate. In an ideal world, they can identify the compounds and their concentrations in a cannabis product. Analytics are a pillar of their own due simply to the efforts required to ensure the quality and reliability of results provided as well as ongoing optimization of methods to provide more sensitive and useful results. That said, analytics are only truly harnessed when paired with the other three pillars.

extractiongraphic
Figure 1: When harnessed together the pillars of cannabis processing provide platforms of research and investigation that drive the development of world class products.

Biochemistry can be split into two primary focuses. Plant biochemistry focuses back towards cultivation and enables a cannabis scientist to understand the complicated pathways that give rise to unique ratios of bioactive molecules in the plant. Human biochemistry centers on how those bioactive molecules interact with the human endocannabinoid system, as well as how different routes of administration may affect the pharmacokinetic delivery of those active molecules.

Each of the pillars require technical expertise and resources to build, but once established they can be a source of constant innovation. Fig. 1 above shows how each of these pillars are connected. At the intersection of each pillar, specific technology platforms exist that can effectively drive an innovation and discovery cycle towards the development of ideal products.

For example, at the intersection of analytics and cultivation I can develop raw material specifications. This sorely needed quality measure could ensure consistencies in things like cannabinoid content and terpene profiles, more critically they can ensure that the raw material to be processed is free of contamination. Additionally, analytics can provide feedback as I adjust variables in my extraction process resulting in optimized methods. Without analytics I am forced to use very rudimentary methods, such as mass yield, to monitor my process. Mass alone tells me how much crude oil is extracted, but says nothing about the purity or efficiency of my extraction process. By applying plant biochemistry to my cultivation through the use of analytics I could start hunting for specific phenotypes within cultivars that provide elevated levels of specific cannabinoids like CBC or THCV. Taken further, technologies like tissue culturing could rapidly iterate this hunting process6. Certainly, one of the most compelling aspects of cannabinoid therapeutics is the ability to harness the unique polypharmacology of various cannabis cultivars where multiple bioactive compounds are acting on multiple targets7. To eschew the more traditional “silver bullet” pharmaceutical approach a firm understanding of both human and plant biochemistry tied directly to well characterized and consistently processed extracts is required. When all of these pillars are joined effectively we can fully characterize our unique cannabis raw material with targeted cannabinoid and terpene ratios, optimize an extraction process to ensure no loss of desirable bioactive compounds, compare our extracted product back to its source and ensure we are delivering a safe, consistent, “nature identical” extract to use in products with predictable efficacies.

Using these tools, we can confidently set about the task of processing safe, reliable and well characterized cannabis extracts for the development of world class products.


[1] Sweeney, C. “Goal-Oriented Extraction Processes.” Cannabis Science and Technology, vol 1, 2018, pp 54-57.

[2] Russo, E. B. “Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.” British Journal of Pharmacology, vol. 163, no. 7, 2011, pp. 1344–1364.

[3] Giese, Matthew W., et al. “Method for the Analysis of Cannabinoids and Terpenes in Cannabis.” Journal of AOAC International, vol. 98, no. 6, 2015, pp. 1503–1522.

[4] Gul W., et al. “Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using high-Performance Liquid Chromatography.” Journal of AOAC International, vol. 98, 2015, pp. 1523-1528.

[5] Mudge, E. M., et al. “Leaner and Greener Analysis of Cannabinoids.” Analytical and Bioanalytical Chemistry, vol. 409, 2017, pp. 3153-3163.

[6] Biros, A. G., Jones, H. “Applications for Tissue Culture in Cannabis Growing: Part 1.” Cannabis Industry Journal, 13 Apr. 2017, www.cannabisindustryjournal.com/feature_article/applications-for-tissue-culture-in-cannabis-growing-part-1/.

[7] Brodie, James S., et al. “Polypharmacology Shakes Hands with Complex Aetiopathology.” Trends in Pharmacological Sciences, vol. 36, no. 12, 2015, pp. 802–821.

EVIO Labs photo

EVIO Labs Expands Ahead of California Testing Deadline

By Aaron G. Biros
No Comments
EVIO Labs photo

In a few short weeks, the regulations in California’s cannabis market will expand to include more laboratory testing. The previous exemption for selling untested product will be eliminated come July 1st, meaning that every product on dispensary shelves will have to be tested for a number of contaminants.

EVIO labs photo
Pesticide testing, expanded residual solvent testing and foreign materials testing will be added come July 1st.

According to William Waldrop, chief executive officer and co-founder of EVIO Labs, the state is currently finalizing a revision to the existing emergency rules, which is designed to target the potential supply bottleneck situation. “To help alleviate the bottleneck, the state is eliminating the field duplicate test on every batch of cannabis or cannabis products,” says Waldrop. “This will give the labs additional bandwidth to process more batches for testing.” So one test per batch is the rule now and batch sizes will remain the same. This, of course, is contingent on the state finalizing that revision to the emergency regulations.

William Waldrop, chief executive officer and co-founder of EVIO Labs
William Waldrop, chief executive officer and co-founder of EVIO Labs

In addition to that change, the state will expand the types of testing requirements come July 1st.  New mandatory pesticide testing, expanded residual solvent testing and foreign materials testing are added in addition to the other tests already required.

With July 1st quickly approaching, many in California fear the rules could lead to a major market disruption, such as the previously mentioned bottleneck. Waldrop sees the elimination of duplicate testing as a preventative measure by the state. “It is a good move for the industry because it allows labs to test more batches, hopefully reducing the bottleneck come July,” says Waldrop. Still though, with only 26 licensed laboratories in the state as of March, testing facilities will have to meet higher demand, performing more tests and working with more clients.

EVIO Labs is preparing for this in a number of ways. They already have a lab in Berkeley and are working to expand their capacity for more analyses. In addition to their lab in Berkeley, the company is working to get three more locations operational as quickly as possible. “Right now, EVIO Labs is expanding through the identification of new market locations,” says Waldrop. “We have announced the acquisition of a facility in Humboldt and we are outfitting it for state-mandated testing. We have secured a location in LA, and licensing for LA just began as of June 1stso we are going through the local licensing process at this time. We are still moving through the licensing process for our facility in Costa Mesa as well.”

EVIO Labs photo
Labs will soon have to deal with higher demand, meaning more samples and more clients

“In the meantime, we have expanded capacity of personnel in our Berkeley facility to support our client base until these other locations come online,” says Waldrop. “We are refining our business, bringing on additional equipment and more resources.” While the rules haven’t been implemented yet, Waldrop says he’s seen an uptick in business with licensed operators requesting more testing for the new July 1st standards.

While some might feel a bit panicky about how the new standards could disrupt the market, Waldrop says his clients are looking forward to it. “Our clients are very happy with the proposed new rules, because it reduces the cost of testing per batch, which will inherently reduce wholesale costs, making cannabis more affordable for patients and recreational users.”

Washington Lab Conducts Transparency Study

By Aaron G. Biros
2 Comments

Earlier this week Capitol Analysis Group, a cannabis-testing laboratory based in Lacey, Washington, announced they are conducting a “data-driven Lab Transparency Project, an effort to improve accuracy of cannabis testing results in the state through transparency and a new third-party auditing process,” according to a press release. They plan to look through the state’s traceability data to find patterns of deviations and possible foul play.

The project launch comes after Straightline Analytics, a Washington cannabis industry data company, released a report indicating they found rampant laboratory shopping to be present in the state. Lab shopping is a less-than-ethical business practice where cannabis producers look for the lab that will give them the most favorable results, particularly with respect to higher potency figures and lower contamination fail rates.“Lab shopping shouldn’t exist, because it is a symptom of lab variability,”

According to the press release, their report “shows that businesses that pay for the highest number of lab tests achieve, on average, reported potency levels 2.71% higher than do those that pay for the lowest number of lab tests.” They also found labs that provide higher potency figures tend to have the largest market share.

The Lab Transparency Project logo
The Lab Transparency Project logo

The goal of The Lab Transparency Project is to provide summaries of lab data across the state, shining a light in particular on which labs provide the highest potency results. “Lab shopping shouldn’t exist, because it is a symptom of lab variability,” says Jeff Doughty, president of Capitol Analysis. “We already have standards that should prevent variations in lab results and proficiency testing that shows that the labs are capable of doing the testing.” The other piece to this project is independent third party auditing, where they hope other labs will collaborate in the name of transparency and honesty. “Problems arise when the auditors aren’t looking,” says Doughty. “Therefore, we’re creating the Lab Transparency Project to contribute to honesty and transparency in the testing industry.”

Dr. Jim McRae, founder of Straightline Analytics, and the author of that inflammatory report, has been a vocal critic of the Washington cannabis testing industry for years now. “I applaud Capitol Analysis for committing to this effort,” says McRae. “With the state’s new traceability system up and running following a 4-month breakdown, the time for openness and transparency is now.” Dr. McRae will be contributing to the summaries of lab data as part of the project.

According to Doughty, the project is designed to be a largely collaborative effort with other labs, dedicated to improving lab standards and transparency in the industry.

control the room environment

Environmental Controls: The Basics

By Vince Sebald
No Comments
control the room environment

The outside environment can vary widely depending on where your facility is located. However, the internal environment around any activity can have an effect on that activity and any personnel performing the activity, whether that’s storage, manufacturing, testing, office work, etc. These effects can, in turn, affect the product of such activities. Environmental control strategies aim to ensure that the environment supports efforts to keep product quality high in a manner that is economical and sensible, regardless of the outside weather conditions.

For this article, let us define the “environment” as characteristics related to the room air in which an activity is performed, setting aside construction and procedural conditions that may also affect the activity. Also, let us leave the issue of managing toxins or potent compounds for another time (as well as lighting, noise, vibration, air flow, differential pressures, etc). The intent here is to focus on the basics: temperature, humidity and a little bit on particulate counts.

Temperature and humidity are key because a non-suitable environment can result in the following problems:

  • Operator discomfort
  • Increased operator error
  • Difficulty in managing products (e.g. powders, capsules, etc)
  • Particulate generation
  • Degradation of raw materials
  • Product contamination
  • Product degradation
  • Microbial and mold growth
  • Excessive static

USP <659> “Packaging and Storage Requirements” identifies room temperature as 20-25°C (68-77 °F) and is often used as a guideline for operations. If gowning is required, the temperature may be reduced to improve operator comfort. This is a good guide for human working areas. For areas that require other specific temperatures (e.g. refrigerated storage for raw materials), the temperature of the area should be set to those requirements.

Humidity can affect activities at the high end by allowing mold growth and at the low end by increasing static. Some products (or packaging materials) are hydroscopic, and will take on water from a humid environment. Working with particular products (e.g. powders) can also drive the requirement for better humidity control, since some powders become difficult to manage in either high or low humidity environments. For human operations without other constraints, a typical range for desirable humidity is in the range of 20 to 70% RH in manufacturing areas, allowing for occasional excursions above. As in the case of temperature, other requirements may dictate a different range.

control the room environment
In some cases, a locally controlled environment is a good option to reduce the need to control the room environment as tightly or to protect the operator.

In a typical work environment, it is often sufficient to control the temperature, while allowing the relative humidity to vary. If the humidity does not exceed the limits for the activity, then this approach is preferred, because controlling humidity adds a level of complexity (and cost) to the air handling. If humidity control is required, it can be managed by adding moisture via various humidification systems, or cooling/reheating air to remove moisture. When very low humidity is required, special equipment such as a desiccant system may be required. It should be noted that although you can save money by not implementing humidity control at the beginning, retrofitting your system for humidity control at a later time can be expensive and require a shutdown of the facility.

Good engineering practice can help prevent issues that may be caused by activities performed in inappropriately controlled environments. The following steps can help manage the process:

  • Plan your operations throughout your facility, taking into account the requirements for the temperature and humidity in each area and know what activities are most sensitive to the environment. Plans can change, so plan for contingencies whenever possible.
  • Write down your requirements in a User Requirement Specification (URS) to a level of detail that is sufficient for you to test against once the system is built. This should include specific temperature and RH ranges. You may have additional requirements. Don’t forget to include requirements for instrumentation that will allow you to monitor the temperature and RH of critical areas. This instrumentation should be calibrated.
  • Solicit and select proposals for work based on the URS that you have generated. The contractor will understand the weather in the area and can ensure that the system can meet your requirements. A good contractor can also further assist with other topics that are not within the scope of this article (particulates, differential pressures, managing heating or humidity generating equipment effects, etc).
  • Once work is completed, verify correct operation using the calibrated instrumentation provided, and make sure you add periodic calibration of critical equipment, as well as maintenance of your mechanical system(s), to your calibration and maintenance schedules, to keep everything running smoothly.

The main point is if you plan your facility and know your requirements, then you can avoid significant problems down the road as your company grows and activity in various areas increases. Chances are that a typical facility may not meet your particular requirements, and finding that out after you are operational can take away from your vacation time and peace of mind. Consider the environment, its good business!

The Necessity of Food Safety Programs in Cannabis Food Processing

By Gabe Miller
No Comments

When processing cannabis, in any form, it is critical to remember that it is a product intended for human consumption. As such, strict attention must also be paid to food safety as well. With more and more states legalizing either medical or recreational cannabis, the potential for improper processing of the cannabis triggering an illness or death to the consumer is increasing.

The FDA Food Safety Modernization Act (FSMA) is the new food safety law that has resulted in seven new regulations, many which directly or indirectly impact the production and processing of cannabis. Under FSMA regulations, food processors must identify either known or reasonably foreseeable biological, chemical or physical hazards, assess the risks of each hazard, and implement controls to minimize or prevent them. The FSMA Preventive Controls for Human Foods (PCHF) regulation contains updated food “Good Manufacturing Practices (cGMPs) that are in many cases made a requirement in a state’s medical or recreational cannabis laws. These cGMPs can be found in 21 CFR 117 Subpart B.

It is imperative that cannabis manufacturers have a number of controls in place including management of suppliers providing the raw material.Food safety risks in cannabis processing could originate from bacteria, cleaning or agricultural chemicals, food allergens or small pieces of wood, glass or metal. The hazards that must be addressed could be natural, unintentionally introduced, or even intentionally introduced for economic benefit, and all must be controlled.

It is unlikely that high heat, used in other food products to remove bad bacteria would be used in the processing of cannabis as many of its desirable compounds are volatile and would dissipate under heating conditions. Therefore, any heat treatment needs to be carefully evaluated for effectiveness in killing bacterial pathogens while not damaging the valuable constituents of cannabis. Even when products are heated above temperatures that eliminate pathogens, if the raw materials are stored in a manner that permits mold growth, mycotoxins produced by molds that have been linked to cancer could be present, even after cooking the product. Storage of raw materials might require humidity controls to minimize the risk of mold. Also, pesticides and herbicides applied during the growth and harvesting of cannabis would be very difficult to remove during processing.

It is imperative that cannabis manufacturers have a number of controls in place including management of suppliers providing the raw material. Other controls that must be implemented include proper cannabis storage, handling and processing as well as food allergen control, and equipment/facility cleaning and sanitation practices. Processing facilities must adhere to Good Manufacturing Practices (GMP’s) for food processing, including controls such as employee hand washing and clothing (captive wear, hair nets, beard nets, removal of jewelry, and foot wear) that might contribute to contamination. A Pest Control plan must be implemented to prevent fecal and pathogen contamination from vermin such as rodents, insects, or birds.

Processing facilities must be designed for proper floor drainage to prevent standing water. Processing air should be properly filtered with airflow into the cannabis processing facility resulting in a slightly higher pressure than the surrounding air pressure, from the clean process area outwards. Toilet facilities with hand washing are essential, physically separated from the process areas. Food consumption areas must also be physically separate from processing and bathroom areas and have an available, dedicated hand sink nearby. Employee training and company procedures must be effective in keeping food out of the processing area. Labels and packaging must be stored in an orderly manner and controlled to prevent possible mix-up.Cleaning of the processing equipment is critical to minimize the risk of cross contamination and microbial growth.

Written food safety operational procedures including prerequisite programs, standard operating procedures (SOP’s), etc. must be implemented and monitored to ensure that the preventive controls are performed consistently. This could be manual written logs, electronic computerized data capture, etc., to ensure processes meet or exceed FSMA requirements.

A written corrective action program must be in place to ensure timely response to food safety problems related to cannabis processing problems when they occur and must include a preventive plan to reduce the chance of recurrence. The corrective actions must be documented by written records.

Supply chain controls must be in place. In addition, a full product recall plan is required, in the event that a hazard is identified in the marketplace to provide for timely recall of the contaminated product.

Cleaning of the processing equipment is critical to minimize the risk of cross contamination and microbial growth. The processing equipment must be designed for ease of cleaning with the minimum of disassembly and should conform to food industry standards, such as the 3-A Sanitary Standards, American Meat Institute’s Equipment Standards, the USDA Equipment Requirements, or the Baking Industry Sanitation Standards Committee (BISSC) Sanitation Standards ANSI/ASB/Z50.2-2008.

Serious food borne contaminations have occurred in the food industry, and cannabis processing is just as susceptible to foodborne contamination. These contaminations are not only a risk to consumer health, but they also burden the food processors with significant costs and potential financial liability.

Anyone processing cannabis in any form must be aware of the state regulatory requirements associated with their products and implement food safety programs to ensure a safe, desirable product for their customers.

EVIO Logo

EVIO Labs: The First Accredited Cannabis Lab in Florida

By Lauren Masko
No Comments
EVIO Logo

EVIO Labs recently became the first cannabis laboratory in Florida to obtain ISO 17025 accreditation. Perry Johnson Laboratory Accreditation, Inc. (PJLA), an organization that provides third-party assessments to ISO/IEC 17025, accredited EVIO Labs. The assessment process that lead to ISO 17025 accreditation for EVIO Labs included a thorough review of their quality management system, their capability to perform potency and contaminant testing for cannabis products.

Tracy Szerszen, president and operations manager at PJLA, encourages this international standard for laboratories to provide confidence to end-users that the test results they receive are reliable. She says laboratories that achieve this accreditation are showing they have the proper tools, equipment and staff to provide accurate testing. “It is a very critical component of the industry, and becoming accredited provides the assurance that laboratories are performing to the highest standard,” says Szerszen. “EVIO Labs has taken the right step in their commitment towards meeting this standard and providing clean and safe cannabis for the patients of Florida.”

PJLAEVIO Labs provides cannabis testing for cannabinoid and terpene profiles, microbiological and pesticides contamination, residual solvent, heavy metals, mycotoxins, water activity and moisture content. Chris Martinez, co-founder and president of EVIO Labs Florida explains that the Florida Department of Health mandates that an independent third-party laboratory tests medical cannabis to ensure that these products are safe for human consumption. Martinez says their first priority is the safety of their patients, and ensuring that EVIO Labs provides clean and safe cannabis for Florida.

Chris Martinez
Chris Martinez, co-founder and president of EVIO Labs Florida

Martinez launched their laboratory with some help from Shimadzu last year. “Our Broward lab is powered by Shimadzu with over $1.2M in the latest testing equipment utilizing LCMS technology with the world’s fastest polarity switching time of 5 m/sec and scan speeds of 30,000 u/sec with UF Qarray sensitivity 90 times that of previously available technologies,” says Martinez. According to Martinez, their licensing agreement with EVIO Labs (OTC:SGBYD) marked a first for the publicly traded company with exclusivity in the Florida market. The agreement includes proprietary testing methodologies, operating procedures, training and support.

Every certificate of analysis is reviewed by a lab director with over 20 years of experience operating in FDA regulated labs. Martinez says that EVIO has some of the most advanced technology in the industry, which provides them the opportunity to quickly provide results, frequently as fast as a 24-hour period. Martinez and his team are currently building a 3,300 square-foot laboratory in Gainesville, which is expected to be running by March of this year.