Tag Archives: CPC

Pesticide Remediation by CPC

By Arpad Konczol, PhD
No Comments

Like any other natural product, the biomass of legal cannabis can be contaminated by several toxic agents such as heavy metals, organic solvents, microbes and pesticides, which significantly influence the safety of the end products.

Let’s just consider the toxicological effects. Since cannabis products are not only administered in edible forms but also smoked and inhaled, unlike most agricultural products, pesticide residue poses an unpredictable risk to consumers. One example is the potential role of myclobutanil in the vape crisis.

Unfortunately, federal and state laws are still conflicted on cannabis-related pesticides. Currently, only ten pesticide products have been registered specifically for hemp by the U.S. Environmental Protection Agency. So, the question arises what has to be done with all pf the high-value, but also contaminated cannabis, keeping in mind that during the extraction processes, not only the phytocannabinoids get concentrated but the pesticides as well, reaching concentrations up to tens or hundreds of parts per million!

Currently, there are three different sets of rules in place in the regulatory areas of Oregon, California and Canada. These regulations detail which pesticides need to be monitored and remediated if a certain limit for each is reached. Because the most extensive and strict regulations are found in Canada, RotaChrom used its regulations as reference in their case study.

Centrifugal Partition Chromatographic (CPC) system

To illustrate that reality sometimes goes beyond our imagination, we evaluated the testing results of a THC distillate sample of one of our clients. This sample contained 9 (!) pesticides, of which six levels exceeded the corresponding action limits. The most frightening, however, regarding this sample, is that it contained a huge amount of carbofuran, a category I substance. It is better not to think of the potential toxicological hazard of this material…

The CPC-based purification of CBD is a well-known and straightforward methodology. As the elution profile on the CPC chromatogram of a distillate shows, major and minor cannabinoids can be easily separated from CBD. At RotaChrom, this method has been implemented at industrial-scale in a cost effective and high throughput fashion. In any case, the question arises: where are the pesticides on this chromatogram? To answer this, we set ourselves the goal to fully characterize the pesticide removing capability of our methodologies.

Our results on this topic received an award at the prestigious PREP Conference in 2019. The ease of pesticides removal depends on the desired Compound of Interest.

Here is a quick recap on key functionalities of the partition chromatography.

  • Separation occurs between two immiscible liquid phases.
  • The stationary phase is immobilized inside the rotor by a strong centrifugal force.
  • The mobile phase containing the sample to be purified is fed under pressure into the rotor and pumped through the stationary phase in the form of tiny droplets (percolation).
  • The chromatographic column in CPC is the rotor: cells interconnected in a series of ducts attached to a large rotor
  • Simple mechanism: difference in partition

Let’s get into the chemistry a bit:

The partition coefficient is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquid phases.

The CPC chromatogram demonstrates the separation of Compounds of Interest based on their unique partition coefficients achieved through a centrifugal partition chromatography system.

CPC can be effectively used for pesticide removal. About 78% of the pesticides around CBD are very easy to remove, which you can see here:

In this illustration, pesticides are in ascending order of Kd from left to right. CBD, marked with blue, elutes in the middle of the chromatogram. The chart illustrates that most polar and most apolar pesticides were easily removed beside CBD. However, some compounds were in coelution with CBD (denoted as “problematic”), and some compounds showed irregular Kd-retention behavior (denoted as “outliers”).

If pesticides need to be removed as part of THC purification, then the pesticides that were problematic around CBD would be easier to remove and some of the easy ones would become problematic.

To simulate real-world production scenarios, an overloading study with CBD was performed, which you can see in the graph:

It is easy to see on the chromatogram that due to the increased concentration injected onto the rotor, the peak of CBD became fronting and the apparent retention shifted to the right. This means that pesticides with higher retention than CBD are more prone to coelution if extreme loading is applied.

To be able to eliminate problematic pesticides without changing the components of the solvent system, which is a typical industrial scenario, the so-called “sweet spot approach” was tested. The general rule of thumb for this approach is that the highest resolution of a given CPC system can be exploited if the Kd value of the target compounds fall in the range of 0.5-2.0. In our case, to get appropriate Kd values for problematic pesticides, the volume ratio of methanol and water was fine-tuned. Ascending mode was used instead of descending mode. For the polar subset of problematic pesticides, this simple modification resulted in an elution profile with significantly improved resolution, however, some coelution still remained.

In the case of apolar pesticides, the less polar solvent system with decreased water content in ascending mode provided satisfactory separation.

Moreover, if we focus on this subset in the three relevant regulatory areas, the outcome is even more favorable. For example, myclobutanil and bifenazate, dominant in all of the three regulatory regions, are fully removable in only one run of the CPC platform.

Based on these results, a generic strategy was created. The workflow starts with a reliable and precise pesticide contamination profile of the cannabis sample, then, if it does not appear to indicate problematic impurity, the material can be purified by the baseline method. However, if coeluting pesticides are present in the input sample, there are two options. First, adjusting the fraction collection of the critical pesticide can be eliminated, however the yield will be compromised in this case. Alternatively, by fine-tuning the solvent system, a second or even a third run of the CPC can solve the problem ultimately. Let me add here, that a third approach, i.e., switching to another solvent system to gain selectivity for problematic pesticides is also feasible in some cases.

In review, RotaChrom has conducted extensive research to analyze the list of pesticides according to the most stringent Canadian requirements. We have found that pesticides can be separated from CBD by utilizing our CPC platform. Most of these pesticides are relatively easy to remove, but RotaChrom has an efficient solution for the problematic pesticides. The methods used at RotaChrom can be easily extended to other input materials and target compounds (e.g., THC, CBG).

Lauren Pahnke
From The Lab

Centrifugal Partition Chromatography Paves the Way for Safer, More Standardized Cannabidiol Drugs

By Lauren Pahnke
No Comments
Lauren Pahnke

Imagine this: you are taking medication for cancer pain. One day, it works perfectly. The next, you feel no relief. On some days, you need to take three doses just to get the same effect as one. Your doctor can’t be completely positive how much active ingredient each dose contains, so you decide for yourself how much medication to take.

Doesn’t seem safe, right? It is crucial that doctors know exactly what they are prescribing to their patients. They must know that their patients are receiving the exact same dose of medication in their prescription each time they take it, and that their medication contains only the intended ingredients.

consistency is key to creating products that are safe for consumers.In the cannabis industry, lack of certainty on these important factors is a major problem for drug manufacturers as they attempt to incorporate cannabidiol (CBD), a compound found in cannabis that has no psychoactive effects but many medical benefits, into pharmaceutical drugs.

When using these compounds as medications, purity is essential. Cannabis contains a wide variety of compounds. Delta-9 tetrahydrocannabinol (THC) is the most well-known compound and its main psychoactive one1. Safety regulations dictate that consumers know exactly what they are getting when they take a medication. For example, their CBD-based medications should not contain traces of THC.

The cannabis industry greatly needs a tool to ensure the consistent extraction and isolation of compounds. In 2017, the cannabis industry was worth nearly $10 billion, and it is expected to grow $57 billion more in the next decade2. As legalization of medical cannabis expands, interest in CBD pharmaceuticals is likely to grow.

If compounds such as CBD are going to be used in pharmaceutical drugs, consistency is key to creating products that are safe for consumers.

CBD’s Potential

CBD is a non-psychoactive compound that makes up 40 percent of cannabis extracts1. It is great for medical applications because it does not interfere with motor or psychological function. Researchers have found it particularly effective for managing cancer pain, spasticity in multiple sclerosis, and specific forms of epilepsy3.

Figure 1: The chemical structure of cannabidiol.
Figure 1: The chemical structure of cannabidiol.

Other compounds derived from cannabis, such as cannabichromene (CBC) and cannabigerol (CBG), may also be beneficial compounds with medical applications. CBC is known to block pain and inflammation, and CBG is known for its use as a potential anti-cancer agent1.

Along with these compounds that provide medical benefits, there are psychoactive compounds that are used recreationally, such as THC.

“It will definitely be an advantage to have cannabis-based medications with clearly defined and constant contents of cannabinoids,” says Kirsten Müller-Vahl, a neurologist and psychiatrist at Hannover Medical School in Germany.

Creating a Standard Through Centrifugal Partition Chromatography

To obtain purified compounds from cannabis, researchers need to use technology that will extract the compounds from the plant.

Many manufacturers use some sort of chromatography technique to isolate compounds. Two popular methods are high performance liquid chromatography (HPLC) and flash chromatography. These methods have their places in the field, but they cannot be effectively and cost-efficiently scaled to isolate compounds. Instead, HPLC and flash chromatography may be better suited as analytical tools for studying the characteristics of the plant or extract. As cannabis has more than 400 chemical entities4, compound isolation is an important application.

This method is highly effective for achieving both high purity and recovery.Although molecules such as CBD can be synthesized in the lab, many companies would rather extract the compounds directly from the plant. Synthesized molecules do not result in a completely pure compound. The result, “is still a mixture of whatever cannabinoids are coming from a particular marijuana strain, which is highly variable,” says Brian Reid, chief scientific officer of ebbu, a company in Colorado that specializes in cannabis purification.

Currently, there is only one method available to researchers that completely allows them to isolate individual compounds: centrifugal partition chromatography (CPC).

The principle of CPC is similar to other liquid chromatography methods. It separates the chemical substances as the compounds in the mobile phase flow through and differentially interact with the stationary phase.

Where CPC and standard liquid chromatography differs is the nature of the stationary phase. In traditional chromatography methods, the stationary phase is made of silica or other solid particles, and the mobile phase is made of liquid. During CPC, the stationary phase is a liquid that is spun around or centrifuged to stay in place while the other liquid (mobile phase) moves through the disc. The two liquid phases, like oil and water, don’t mix. This method is highly effective for achieving both high purity and recovery. Chemists can isolate chemical components at 99 percent or higher purity with a 95 percent recovery rate5.

“CPC is ideal for ripping a single active ingredient out of a pretty complex mixture,” says Reid. “It’s the only chromatographic technique that does that well.”

The Need for Pure Compounds

High levels of purity and isolation are necessary for cannabis to be of true value in the pharmaceutical industry. Imagine relying on a medication to decrease your seizures, and it has a different effect every time. Sometimes there may be traces of psychoactive compounds. Sometimes there are too much or too little of the compound that halts your seizures. This is not a safe practice for consumers who rely on medications.“It’s hard to do studies on things you can’t control very well.”

Researchers working with cannabis desperately need a technology that can extract compounds with high purity rates. It is hard to run a study without knowing the precise amounts of compounds used. Reid uses a Gilson CPC 1000 system at ebbu for his cannabinoid research. With this technology, he can purify cannabinoids for his research and create reliable formulations. “Now that we have this methodology dialed in we can make various formulations —whether they’re water-soluble, sublingual, inhaled, you name it —with very precise ratios of cannabinoids and precise amounts of cannabinoids at the milligram level,” says Reid.

Kyle Geary, an internist at the University of Illinois at Chicago, is currently running a placebo-controlled trial of CBD capsules for Crohn’s disease. This consistent isolation is helpful for his research, as well. “Ideally, the perfect study would use something that is 100 percent CBD,” says Geary. “It’s hard to do studies on things you can’t control very well.”

The State of the Industry

While CBD is not considered a safe drug compound under federal law in the United States6, 17 states have recently passed laws that allow people to consume CBD for medical reasons7. Half of medicinal CBD users solely use the substance for treatment, a recent survey found8. As the industry quickly grows, it is crucial that consumer safety protocol keeps pace.

In June, the US Food and Drug Administration (FDA) approved the first drug that contains a purified drug substance from cannabis, Epidiolex9. Made from CBD, it is designed to treat Dravet Syndrome and Lennox-Gastaut syndrome, two rare forms of epilepsy. FDA Commissioner Scott Gottlieb said in the news release that although the FDA will work to support the development of high-quality cannabis-based products moving forward, “We are prepared to take action when we see the illegal marketing of CBD-containing products with serious, unproven medical claims. Marketing unapproved products, with uncertain dosages and formulations can keep patients from accessing appropriate, recognized therapies to treat serious and even fatal diseases.”

The industry should be prepared to implement protocols to ensure the quality of their CBD-based products. The FDA has issued warnings in recent years that some cannabinoid products it has tested do not contain the CBD levels their makers claim, and consumers should be wary of such products10. It’s hard to know when or if the FDA will begin regulating CBD-based pharmaceuticals. However, for pharma companies serious about their reputation, there is only one isolation method that creates reliable product quality: CPC.


References:

  1. Lab Manager. (2018, January 3). Cannabinoid Chemistry Infographic. Retrieved from http://www.labmanager.com/multimedia/2017/07/cannabinoid-chemistry-infographic#.WzT2e1MvyMI
  2. BDS Analytics. (2018, February 26). NEW REPORT: Worldwide spending on legal cannabis will reach $57 billion by 2027. Retrieved from https://bdsanalytics.com/press/new-report-worldwide-spending-on-legal-cannabis-will-reach-57-billion-by-2027/
  3. National Institute on Drug Abuse. (2015, June 24). The Biology and Potential Therapeutic Effects of Cannabidiol. Retrieved from https://www.drugabuse.gov/about-nida/legislative-activities/testimony-to-congress/2016/biology-potential-therapeutic-effects-cannabidiol
  4. Atakan, Z. (2012). Cannabis, a complex plant: Different compounds and different effects on individuals. Therapeutic Advances in Psychopharmacology,2(6), 241-254. doi:10.1177/2045125312457586
  5. Gilson. (n.d.). Centrifugal Partition Chromatography (CPC) Systems. Retrieved from http://www.gilson.com/en/AI/Products/80.320#.WzVB2lMvyMI
  6. Mead, A. (2017). The legal status of cannabis (marijuana) and cannabidiol (CBD) under US law. Epilepsy & Behavior, 70, 288-291.
  7. ProCon.org. (2018, May 8). 17 States with Laws Specifically about Legal Cannabidiol (CBD) – Medical Marijuana – ProCon.org. Retrieved from https://medicalmarijuana.procon.org/view.resource.php?resourceID=006473
  8. Borchardt, D. (2017, August 03). Survey: Nearly Half Of People Who Use Cannabidiol Products Stop Taking Traditional Medicines. Retrieved from https://www.forbes.com/sites/debraborchardt/2017/08/02/people-who-use-cannabis-cbd-products-stop-taking-traditional-medicines/#43889c942817
  9. U.S. Food & Drug Administration. (2018, June 25). Press Announcements – FDA approves first drug comprised of an active ingredient derived from marijuana to treat rare, severe forms of epilepsy. Retrieved from https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm611046.htm
  10. U.S. Food & Drug Administration. (2017). Public Health Focus – Warning Letters and Test Results for Cannabidiol-Related Products. Retrieved from https://www.fda.gov/newsevents/publichealthfocus/ucm484109.htm

A More Effective and Efficient Approach to Purer Cannabidiol Production Using Centrifugal Partition Chromatography

By Lauren Pahnke
3 Comments

Many physicians today treat their patients with cannabidiol (CBD, Figure 1), a cannabinoid found in cannabis. CBD is more efficacious over traditional medications, and unlike delta-9 tetrahydrocannbinol (THC), the main psychoactive compound in cannabis, CBD has no psychoactive effects. Researchers have found CBD to be an effective treatment for conditions such as cancer pain, spasticity in multiple sclerosis, and Dravet Syndrome, a form of epilepsy.

CBD is still considered an unsafe drug under federal law, but to meet the medical demand, 17 states in the US recently passed laws allowing individuals to consume CBD for medical purposes. A recent survey found that half of medicinal CBD users rely on the substance by itself for treatment. As doctors start using CBD to treat more patients, the demand for CBD is only expected to rise, and meeting that demand can pose challenges for manufacturers who are not used to producing such high quantities of CBD. Furthermore, as CBD-based drugs become more popular, the US Food and Drug Administration (FDA) will likely require manufacturers to demonstrate they can produce pure, high-quality products.

cannabidiol
Figure 1. The structure of cannabidiol, one of 400 active compounds found in cannabis.

Most manufacturers use chromatography techniques such as high performance liquid chromatography (HPLC) or flash chromatography to isolate compounds from natural product extracts. While these methods are effective for other applications, they are not, however, ideal for CBD isolate production. Crude cannabis oil contains some 400 potentially active compounds and requires pre-treatment prior to traditional chromatography purification. Both HPLC and flash chromatography also require silica resin, an expensive consumable that must be replaced once it is contaminated due to irreversible absorption of compounds from the cannabis extract. All of these factors limit the production capacity for CBD manufacturers.

Additionally, these chromatography methods use large quantities of solvents to elute natural compounds, which negatively impacts the environment.

A Superior Chromatography Method

Centrifugal partition chromatography (CPC) is an alternative chromatography method that can help commercial CBD manufacturers produce greater quantities of pure CBD more quickly and cleanly, using fewer materials and generating less toxic waste. CPC is a highly scalable CBD production process that is environmentally and economically sustainable.

The mechanics of a CPC run are analogous to the mechanics of a standard elution using a traditional chromatography column. While HPLC, for instance, involves eluting cannabis oil through a resin-packed chromatography column, CPC instead elutes the oil through a series of cells embedded into a stack of rotating disks. These cells contain a liquid stationary phase composed of a commonly used fluid such as water, methanol, or heptane, which is held in place by a centrifugal force. A liquid mobile phase migrates from cell to cell as the stacked disks spin. Compounds with greater affinity to the mobile phase are not retained by the stationary phase and pass through the column faster, whereas compounds with a greater affinity to the stationary phase are retained and pass through the column slower, thereby distributing themselves in separate cells (Figure 2).

Figure 2- CPC
Figure 2. How CPC isolates compounds from complex, natural mixtures. As the column spins, the mobile phase (yellow) moves through each cell in series. The compounds in the mobile phase (A, B, and C) diffuse into the stationary phase (blue) at different rates according to their relative affinities for the two phases.

A chemist can choose a biphasic solvent system that will optimize the separation of a target compound such as CBD to extract relatively pure CBD from a cannabis extract in one step. In one small-scale study, researchers injected five grams of crude cannabis oil low in CBD content into a CPC system and obtained 205 milligrams of over 95% pure CBD in 10 minutes.

Using a liquid stationary phase instead of silica imbues CPC with several time and cost benefits. Because natural products such as raw cannabis extract adhere to silica, traditional chromatography columns must be replaced every few weeks. On the other hand, a chemist can simply rinse out the columns in CPC and reuse them. Also, unlike silica columns, liquid solvents such as heptane used in CPC methods can be distilled with a rotary evaporator and recycled, reducing costs.

Environmental Advantages of CPC

The solvents used in chromatography, such as methanol and acetonitrile, are toxic to both humans and the environment. Many environmentally-conscious companies have attempted to replace these toxic solvents with greener alternatives, but these may come with drawbacks. The standard, toxic solvents are so common because they are integral for optimizing purity. Replacing a solvent with an alternative could, therefore, diminish purity and yield. Consequently, a chemist may need to perform additional steps to achieve the same quality and quantity achievable with a toxic solvent. This produces more waste, offsetting the original intent of using the green solvent.

CPC uses the same solvents as traditional chromatography, but it uses them in smaller quantities. Furthermore, as previously mentioned, these solvents can be reused. Hence, the method is effective, more environmentally-friendly, andeconomically feasible.

CPC’s Value in CBD Production

As manufacturers seek to produce larger quantities of pure CBD to meet the demand of patients and physicians, they will need to integrate CPC into their purification workflows. Since CPC produces a relativelyduct on a larger scale, it is equipped to handle the high-volume needs of a large manufacturer. Additionally, because it extracts more CBD from a given volume of raw cannabis extract, and does not use costly silica or require multiple replacement columns, CPC also makes the process of industrial-scale CBD production economically sustainable. Since it also uses significantly less solvent than traditional chromatography, CPC makes it financially feasible to make the process of producing CBD more environmentally-friendly.

Suggested Reading:

CPC 250: Purification of Cannabidiol from Cannabis sativa

Introduction to Centrifugal Partition Chromatography